Graph Algorithms

I. Shortest paths

- $D = (V, A)$ directed graph, $s, t \in V$.
- A walk is a sequence $P = (v_0, a_1, v_1, ..., a_k, v_k), k \geq 0$, where a_i is an arc from v_{i-1} to v_i, for $i = 1, ..., k$.
- P is a path, if $v_0, ..., v_k$ are all different.
- If $s = v_0$ and $t = v_k$, P is a s-t walk resp. s-t path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any s-t path (and $+\infty$ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: $V_0 = \{s\}$

Iteration: $V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \cdots \cup V_i) \mid (u, v) \in A, \text{ for some } u \in V_i\}$, until $V_{i+1} = \emptyset$.

Running time: $O(|A|)$

- V_i is the set of nodes with distance i from s.
- The algorithm computes shortest paths from s to all reachable nodes.
- Can be described by a directed tree $T = (V', A')$ with root s such that each u-v path in T is a shortest s-t path in D.

Shortest paths with non-negative lengths

- Length function $l : A \rightarrow \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \geq 0\}$
- For a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ define $l(P) = \sum_{i=1}^{k} l(a_i)$.

Algorithm (Dijkstra 1959)

Initialization: $U = V, f(s) = 0, f(v) = \infty$, for $v \in V \setminus \{s\}$

Iteration: Find $u \in U$ with $f(u) = \min\{f(v) \mid v \in U\}$.
- For all $a = (u, v) \in A$ with $f(v) > f(u) + l(a)$ let $f(v) = f(u) + l(a)$.
- Let $U \leftarrow U \setminus \{u\}$, until $U = \emptyset$.

Upon termination, $f(v)$ gives the length of a shortest path from s to v.

Running time: $O(|V|^2)$ (can be improved to $O(|A| + |V| \log |V|)$.)

Example

```
      10
     /   \\    
   3     1
   |      |
   2     5
```

```
   6
   |
  4
```
Application: Longest common subsequence

- Sequences \(a = a_1, \ldots, a_m \) and \(b = b_1, \ldots, b_n \)
- Find the longest common subsequence of \(a \) and \(b \) (obtained by removing symbols in \(a \) or \(b \)).

Modeling as a shortest path problem

- Grid graph with nodes \((i, j), 0 \leq i \leq m, 0 \leq j \leq n\).
- Horizontal and vertical arcs of length 1.
- Diagonal arcs \(((i - 1, j - 1), (i, j))\) of length 0, if \(a_i = b_j \).

The diagonal arcs on a shortest path from \((0, 0)\) to \((m, n)\) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions \(l : A \rightarrow \mathbb{Q} \).
- A directed circuit is a walk \(P = (v_0, a_1, v_1, \ldots, a_k, v_k) \) with \(k \geq 1 \) and \(v_0 = v_k \) such that \(v_1, \ldots, v_k \) and \(a_1, \ldots, a_k \) are all different.
- If \(D = (V, A) \) contains a directed circuit of negative length, there exist \(s \)-\(t \) walks of arbitrary small negative length.

Proposition

Let \(D = (V, A) \) be a directed graph without circuits of negative length. For any \(s, t \in V \) for which there exists at least one \(s \)-\(t \) walk, there exists a shortest \(s \)-\(t \) walk, which is a path.

Shortest paths with arbitrary lengths

\(D = (V, A), n = |V|, l : A \rightarrow \mathbb{Q} \).

Algorithm (Bellman-Ford 1956/58)

Compute \(f_0, \ldots, f_n : V \rightarrow \mathbb{R} \cup \{\infty\} \) in the following way:

Initialization: \(f_0(s) = 0, f_0(v) = \infty, \text{ for } v \in V \setminus \{s\} \)

Iteration: For \(k = 1, \ldots, n \) and all \(v \in V \):

\[
f_k(v) = \min \{ f_{k-1}(v), \min_{(u,v) \in A} f_{k-1}(u) + l(u, v) \}
\]

Running time: \(O(|V||A|) \)
Example

\[\begin{array}{cccccc}
0 & 0 & \infty & \infty & \infty & \infty \\
1 & 0 & 7 & \infty & \infty & 6 \\
2 & 0 & 7 & 2 & 4 & 6 \\
3 & 0 & 7 & 2 & 4 & 2 \\
4 & 0 & 7 & -2 & 4 & 2 \\
\end{array} \]

Properties

- For each \(k = 0, \ldots, n \) and each \(v \in V \):
 \[
 f_k(v) = \min \{ l(P) \mid P \text{ is an } s-v \text{ walk traversing at most } k \text{ arcs} \}
 \]
 (by induction)

- If \(D \) contains no circuits of negative length, \(f_{n-1}(v) \) is the length of a shortest path from \(s \) to \(v \).

Finding an explicit shortest path

- When computing \(f_0, \ldots, f_n \) determine a predecessor function \(p : V \to V \) by setting \(p(v) = u \) whenever
 \[
 f_{k+1}(v) = f_k(u) + l(u, v).
 \]

- At termination, \(v, p(v), p(p(v)), \ldots, s \) gives the reverse of a shortest \(s-v \) path.

Theorem

Given \(D = (V, A), s, t \in V \) and \(l : A \to \mathbb{Q} \) such that \(D \) contains no circuit of negative length, a shortest \(s-t \) path can be found in time \(O(|V||A|) \).

Remark

\(D \) contains a circuit of negative length reachable from \(s \) if and only if \(f_n(v) \neq f_{n-1}(v) \), for some \(v \in V \).

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

\[
\text{Input: Directed graph } D = (V, A), s, t \in V, l : A \to \mathbb{Z}, L \in \mathbb{Z}
\]

\text{Question: Does there exist an } s-t \text{ path } P \text{ with } l(P) \leq L?

is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete.
The longest path problem with non-negative lengths is NP-complete.
Application: Knapsack problem

- Knapsack, volume 8, 5 articles

<table>
<thead>
<tr>
<th>Article</th>
<th>Volume a_i</th>
<th>Value c_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- Shortest path model
 - Directed graph with nodes $(i, x), 0 \leq i \leq 6, 0 \leq x \leq 8$.
 - Arcs from $(i-1, x)$ to (i, x) resp. $(i, x+a_i)$ of length 0 resp. $-c_i$, for $0 \leq i \leq 5$.
 - Arcs from $(5, x)$ to $(6, 8)$ of length 0, for $0 \leq x \leq 6$.
 - A shortest path from $(0, 0)$ to $(6, 8)$ gives an optimal solution.

 \(\Rightarrow\) pseudo-polynomial algorithm

- Linear 0-1 model

\[
\max \{4x_1 + 7x_2 + 3x_3 + 5x_4 + 4x_5 \mid 5x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 \leq 8, x_1, \ldots, x_5 \in \{0, 1\}\}
\]