II. Network flows

- **Network**
 - Directed graph $G = (V, E)$
 - Source $s \in V$, sink $t \in V$
 - Edge capacities $\text{cap} : E \rightarrow \mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$

- **Flow**: $f : E \rightarrow \mathbb{R}_+$ satisfying
 1. Flow conservation constraints
 \[
 \sum_{e \in \text{target}(e) = v} f(e) = \sum_{e \in \text{source}(e) = v} f(e), \text{ for all } v \in V \setminus \{s, t\}
 \]
 2. Capacity constraints
 \[
 0 \leq f(e) \leq \text{cap}(e), \text{ for all } e \in E
 \]

Maximum flow problem

- **Excess** at node v: $\text{excess}(v) = \sum_{e \in \text{target}(e) = v} f(e) - \sum_{e \in \text{source}(e) = v} f(e)$
- If f is a flow, then $\text{excess}(v) = 0$, for all $v \in V \setminus \{s, t\}$.
- **Value** of a flow: $\text{val}(f) \overset{\text{def}}{=} \text{excess}(t)$
- **Maximum flow problem**: $\max\{\text{val}(f) \mid f \text{ is a flow in } G\}$
- Can be seen as a linear programming problem.

Lemma

If f is a flow, then $\text{excess}(t) = -\text{excess}(s)$.

Proof: We have
\[
\text{excess}(s) + \text{excess}(t) = \sum_{v \in V} \text{excess}(v) = 0.
\]

- First “=”: $\text{excess}(v) = 0$, for $v \in V \setminus \{s, t\}$
- Second “=”: For any edge $e = (v, w)$, the flow through e appears twice in the sum, positively in $\text{excess}(w)$ and negatively in $\text{excess}(v)$.

Cuts

- A cut is a partition (S, T) of V, i.e., $T = V \setminus S$.
- (S, T) is an (s, t)-cut if $s \in S$ and $t \in T$.
- **Capacity** of the cut (S, T)
 \[
 \text{cap}(S, T) = \sum_{E \cap (S \times T)} \text{cap}(e)
 \]
- A cut is saturated by f if $f(e) = \text{cap}(e)$, for all $e \in E \cap (S \times T)$, and $f(e) = 0$, for all $e \in E \cap (T \times S)$.

Cuts (2)

Lemma
If f is a flow and (S, T) an (s, t)-cut, then

$$\text{val}(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \text{cap}(S, T).$$

If S is saturated by f, then $\text{val}(f) = \text{cap}(S, T)$.

Proof: We have

$$\text{val}(f) = -\text{excess}(s) = -\sum_{u \in S} \text{excess}(u) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \sum_{e \in E \cap (S \times T)} \text{cap}(e) = \text{cap}(S).$$

For a saturated cut, the inequality is an equality.

Remarks
- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network
The residual network G_f for a flow f in $G = (V, E)$ indicates the capacity unused by f. It is defined as follows:

- G_f has the same node set as G.
- For every edge $e = (v, w)$ in G, there are up to two edges e' and e'' in G_f:
 1. if $f(e) < \text{cap}(e)$, there is an edge $e' = (v, w)$ in G_f with residual capacity $r(e') = \text{cap}(e) - f(e)$.
 2. if $f(e) > 0$, there is an edge $e'' = (w, v)$ in G_f with residual capacity $r(e'') = f(e)$.

Theorem
Let f be an (s, t)-flow, let G_f be the residual network w.r.t. f, and let S be the set of all nodes reachable from s in G_f.
1. If \(t \in S \), then \(f \) is not maximum.

2. If \(t \not\in S \), then \(S \) is a saturated cut and \(f \) is maximum.

Proof

If \(t \) is reachable from \(s \) in \(G_f \), then \(f \) is not maximal.

- Let \(P \) be a path from \(s \) to \(t \) in \(G_f \).
- Let \(\delta \) be the minimum residual capacity of an edge in \(P \).
 By definition, \(r(e) > 0 \), for all edges \(e \) in \(G_f \). Therefore, \(\delta > 0 \).
- Construct a flow \(f' \) of value \(\text{val}(f) + \delta \):
 \[
 f'(e) = \begin{cases}
 f(e) + \delta, & \text{if } e' \in P \\
 f(e) - \delta, & \text{if } e'' \in P \\
 f(e), & \text{if neither } e' \text{ nor } e'' \text{ belongs to } P.
 \end{cases}
 \]
- \(f' \) is a flow and \(\text{val}(f') = \text{val}(f) + \delta \).

Example

If \(t \) is not reachable from \(s \) in \(G_f \), then \(f \) is maximal.

- Let \(S \) be the set of nodes reachable from \(s \) in \(G_f \), and let \(T = V \setminus S \).
- There is no edge \((v, w) \) in \(G_f \) with \(v \in S \) and \(w \in T \).
- Hence
 - \(f(e) = \text{cap}(e) \), for any \(e \in E \cap (S \times T) \), and
 - \(f(e) = 0 \), for any \(e \in E \cap (T \times S) \).
- Thus \(S \) is saturated and, by the Lemma, \(f \) is maximal.

Ford-Fulkerson Algorithm (1955)

1. Start with the zero flow, i.e., \(f(e) = 0 \), for all \(e \in E \).
2. Construct the residual network \(G_f \).
3. Check whether \(t \) is reachable from \(s \) in \(G_f \).
• if not, stop.
• if yes, increase the flow along an augmenting path, and iterate.

Analysis

• Let \(|V| = n \) and \(|E| = m\).
• Each iteration takes time \(O(n + m)\).
• If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

• Suppose capacities are integers, bounded by \(C\).
• \(v^* \stackrel{\text{def}}{=} \) value of maximum flow \(\leq Cn\).
• All flows constructed are integral (proof by induction).
• Every augmentation increases flow value by at least 1.
• Running time \(O((n+m)v^*) \rightarrow \text{pseudo-polynomial algorithm}\)

Edmonds-Karp Algorithm (1972)

• Compute a shortest augmenting path, i.e. with a minimum number of arcs.
• Apply breadth-first search (or Dijkstra’s algorithm).
• Number of iterations is bound by \(nm\), leads to an \(O(nm^2)\) maximum flow algorithm.
• Works also for irrational capacities.

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson 1954)
For a network \((V, E, s, t)\) with capacities \(\text{cap} : E \rightarrow \mathbb{R}_+\) the maximum value of a flow is equal to the minimum capacity of an \((s, t)\)-cut:

\[
\max \{\text{val}(f) \mid f \text{ is a flow}\} = \min \{\text{cap}(S, T) \mid (S, T) \text{ is an } (s, t)\text{-cut}\}
\]

Corollary
For integer capacities \(\text{cap} : E \rightarrow \mathbb{Z}_+\), there exists an integer-valued maximum flow \(f : E \rightarrow \mathbb{Z}_+\).