1. Name two applications of the Burrows-Wheeler transform. What is the actual benefit of the Burrows-Wheeler transform in these applications (in comparison to other methods)?

2. Given the Burrows-Wheeler transform $L = ammmnb$aaa. (without dot)
 1. Decode the original text.
 2. Formulate an algorithm that efficiently counts the number of occurrences of a pattern in the original text (without decoding the original text). Describe all of the used data structures.
 3. Illustrate how your algorithm works by searching the pattern $P = ana$.

3. For the text tacaacatacaagag construct the BWT and the arrays C and OCC. Use them to search for the pattern aca.