10 Sequence Assembly

The exposition was prepared by Daniel Huson, Knut Reinert, and (a few bits) Clemens Gr̈Ppl. It is based on the following sources, which are all recommended reading:

10.1 Genome Sequencing

Current sequencing technologies can only determine short consecutive pieces of DNA (Depending on the method 20 – 60, 150 – 250, and 700 – 1000). To sequence a larger piece of DNA, shotgun sequencing is used.

Originally, shotgun sequencing was applied to small viral genomes and to 30 – 40kb segments of larger genomes.

In 1994, the 1.8Mb genome of the bacteria H.influenzae was assembled from shotgun data.

At the beginning of 2000, an assembly of the 130Mb Drosophila genome was published.

At the beginning of 2001, two initial assemblies of the human genome were published.

Since then many genomes have been sequenced using the whole shotgun method.

10.2 The technologies

We give now three short animations to illustrate how the still most commonly used method (capillary gel electrophoresis) and two new, quite mature technologies (454 sequencing and Solexa sequencing) work.
10.3 The technologies
10.4 The big picture – From molecule to sequence

<table>
<thead>
<tr>
<th>Whole genome shotgun sequencing (WGS)</th>
<th>Illustration</th>
<th>Clone by clone sequencing (CBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source sequence (target) (\approx 3000 Mbp for human)</td>
<td>Source sequence (target)</td>
<td>Whole genome shotgun sequencing (WGS)</td>
</tr>
<tr>
<td></td>
<td>ACCTGGCTAGCAGCACAGCGCGCTATATCGACTACGACTACGACTGACAGCA</td>
<td>is broken into smaller pieces (150–1000kbp)</td>
</tr>
<tr>
<td></td>
<td>ACCTGGCTAGCAGCACAGCGCGCTATATCGACTACGACTACGACTGACAGCA</td>
<td>Not done in WGS</td>
</tr>
<tr>
<td></td>
<td>ACCTGGCTAGCAGCACAGCGCGCTATATCGACTACGACTACGACTGACAGCA</td>
<td>Big pieces are selected to tile the target (minimum tiling least costly but most difficult) \Rightarrow Physical mapping</td>
</tr>
<tr>
<td></td>
<td>ACCTGGCTAGCAGCACAGCGCGCTATATCGACTACGACTACGACTGACAGCA</td>
<td>Big source sequence is copied many times...</td>
</tr>
<tr>
<td></td>
<td>Not done in WGS</td>
<td>all source sequences (e.g. 40000 for human) are copied many times</td>
</tr>
<tr>
<td></td>
<td>Big pieces are selected to tile the target (minimum tiling least costly but most difficult) \Rightarrow Physical mapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>each sequence is randomly broken into fragments</td>
<td>that are then size selected, size e.g. 2kb, 10kb, 50kb or 150kb, ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that are then size selected</td>
</tr>
<tr>
<td></td>
<td>and randomly broken into fragments, e.g. using sonication or nebulation, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.biology-online.org/dictionary/sonication: The process of disrupting biologic materials by use of sound wave energy.</td>
</tr>
</tbody>
</table>
and inserted into cloning vectors.

In double barrel shotgun sequencing, each clone is sequenced from both ends, to obtain a mate-pair of reads, each read of average length 550 with \(\approx 1\%\) error.

Result of assembly is a collection of scaffolds for the whole genome.

Ordering is quite difficult, since small pieces are hard to map back to the genomic axis.

Not done in WGS

The sequence of all clones has to be assembled according to the physical map and sequence overlaps. Due to repeats and assembly errors this is hard.

10.5 Shotgun sequencing data

Given an unknown DNA sequence \(a = a_1 a_2 \ldots a_L\).

Shotgun sequencing of \(a\) produces a set of reads

\[
\mathcal{F} = \{f_1, f_2, \ldots, f_R\},
\]

of average length 550 (at present).

Essential characteristics of the data:

- Incomplete coverage of the source sequences.
- Sequencing introduces errors at a rate of about \(\%1\) for the first 500 bases, if carefully performed.
- The reads are sampled from both strands of the source sequence and thus the orientation of any given read is unknown.
10.6 The fragment assembly problem

The input is a collection of reads (or fragments) $F = \{f_1, f_2, \ldots, f_R\}$, that are sequences over the alphabet $\Sigma = \{A, C, G, T\}$.

An ϵ-layout of F is a string S over Σ and a collection of R pairs of integers $(s_j, e_j)_{j\in\{1,2,\ldots,R\}}$, such that

- if $s_j < e_j$ then f_j can be aligned to the substring $S[s_j, e_j]$ with less than $\epsilon \cdot |f_j|$ differences, and
- if $s_j > e_j$ then f_j can be aligned to the substring $S[e_j, s_j]$ with less than $\epsilon \cdot |f_j|$ differences, then
- $\bigcup_{j=1}^{R} [\min(s_j, e_j), \max(s_j, e_j)] = [1, |S|]$.

The string S is the reconstructed source string. The integer pairs indicate where the reads are placed and the order of s_i and e_i indicate the orientation of the read f_i, i.e. whether f_i was sampled from S or its complement \overline{S}.

The set of all ϵ-layouts models the set of all possible solutions. There are many such solutions and so we want a solution that is in some sense best. Traditionally, this has been phrased as the Shortest Common Superstring Problem (SCS) of the reads within error rate ϵ. Unfortunately, the SCS Problem often produces overcompressed results.

Consider the following source sequence that contains two instances R, R' of a high fidelity repeat and three stretches of unique sequence A, B and C:

- $\begin{array}{cccccccc}
R & R' \\
source: & A & Rl & Rc & Rr & B & R'l & R'c & R'r \\
reads: & & & & & & & &
\end{array}$

The shortest answer isn’t always the best and the interior part $R_c \approx R'_c$ of the repeat region is overcompressed:
10.7 Sequence assembly in three stages

Traditional approaches to sequence assembly divides the problem into three phases:

1. In the overlap phase, every read is compared with every other read, and the overlap graph is computed.
2. In the layout phase, the pairs \((s_j, e_j)\) are determined that position every read in the assembly.
3. In the consensus phase, a multialignment of all the placed reads is produced to obtain the final sequence.

10.8 The overlap phase

For a read \(f_i\), we must calculate how it overlaps any other read \(f_j\) (or its reverse complement, \(f_j^\prime\)). Holding \(f_i\) fixed in orientation, \(f_i\) and \(f_j\) can overlap in the following ways (or not!):

\[
\begin{align*}
&f_i \quad f_j \\
&f_j \quad f_i \\
&(f_i \quad f_j) \\
&\left(f_i \quad f_j^\prime \right)
\end{align*}
\]

The number of possible relationships doubles, when we also consider \(f_j^\prime\).

The overlap phase is the computational bottleneck in large assembly projects. For example, assembling all
27 million human reads produced at Celera requires
\[2 \cdot \left(\frac{27000000}{2} \right) \approx 1458000000000000 \approx 1.5 \cdot 10^{15} \]
comparisons.

For any two reads \(a \) and \(b \) (and either orientation of the latter), one searches for the overlap alignment with the highest alignment score, based on a similarity score \(s(a, b) \) on \(\Sigma \) and an indel penalty \(g(k) = k \delta \).

Let \(S(a, b) \) be the maximum score over all alignments of two reads \(a = a_1a_2 \ldots a_m \) and \(b = b_1b_2 \ldots b_n \); then we want to compute:
\[
A(a, b) = \max \left\{ S(a_1, b_1) \mid \begin{array}{l}
1 \leq k \leq i \leq m, \\
1 \leq l \leq j \leq n, \\
\text{and } i = m \text{ or } j = n \text{ holds}
\end{array} \right\}.
\]

10.9 Overlap alignment

This is a standard pairwise alignment problem (similar to local alignment, except we don’t have a 0 in the recursion) and we can use dynamic programming to compute:
\[
A(i, j) = \max \left\{ A(i-1, j) - \delta, \\
A(i, j-1) - \delta, \\
A(i-1, j-1) + s(a_i, b_j) \right\}.
\]

Algorithm (Overlap alignment)

Input: \(a = a_1a_2 \ldots a_n \) and \(b = b_1b_2 \ldots b_m \), \(s(\cdot, \cdot) \) and \(\delta \)

Output: \(A(i, j) \)

begin
\[A(0, j) = A(i, 0) \leftarrow 0 \text{ for } i = 1, \ldots, n, j = 1, \ldots, m \]

for \(i = 1, \ldots, n; \) do
\[A(i, j) \leftarrow \max \left\{ A(i-1, j) - \delta, \\
A(i, j-1) - \delta, \\
A(i-1, j-1) + s(a_i, b_j) \right\} \]
end

Runtime is \(O(nm) \).

Given two reads \(a = a_1a_2 \ldots a_m \) and \(b = b_1b_2 \ldots b_n \). For the matrix \(A(i, j) \) computed as above, set \((p, q) := \arg \max[A(i, j) \mid i = m \text{ or } j = n] \).
There are two cases:

\[p = m \quad \text{or} \quad q = n \]

The trace-back paths look like this:

The alignments look like this:

10.10 Faster overlap detection

Dynamic programming is too slow for large sequencing projects. Indeed, it is wasteful, as in assembly, only high scoring overlaps with more than e.g. 96% identity play a role.

One can use a seed and extend approach (as used e.g. in BLAST):

1. Produce the concatenation of all input reads \(H = f_1 f_2 \ldots f_L \).
2. For each read \(f_i \in F \): Find all seeds, i.e. exact matches between \(k \)-mers of \(f_i \) and the concatenated sequence \(H \). (Merge neighboring seeds.)
3. Compute extensions: Attempt to extend each (merged) seed to a high scoring overlap alignment between \(f_i \) and the corresponding read \(f_j \).

(A \(k \)-mer is a string of length \(k \). In this context, \(k = 18 \ldots 22 \))

Computation of seeds:
Extension of seeds using \textit{banded} dynamic programing (running time is linear in the read length)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.6.png}
\caption{Seed and extend paradigm. A banded alignment is conducted that explores narrow bands around the seeds and possibly larger regions between the seeds.}
\end{figure}

\section{True and repeat-induced overlaps}

Assume that we have found a high quality overlap o between f_i and f_j. There are three possible cases:

- The overlap o corresponds to an overlap of f_i and f_j in the source sequence. In this case we call o a \textit{true} overlap.
- The reads f_i and f_j come from different parts of the source sequence and their overlapping portions are contained in different instances of the same repeat, this is called a \textit{repeat-induced} overlap.
- The overlap exists by chance. To avoid short \textit{random} overlaps, one requires that an overlap is at least 40bp long.

\begin{figure}
\centering
\begin{tabular}{c c c}
\textit{Source} & $R1$ & $R2$ \\
f_i & f_j & f_k & f_l
\end{tabular}
\caption{A true overlap and a repeat-induced overlap.}
\end{figure}

The figure shows a true overlap between f_i and f_j and a repeat induced overlap between f_k and f_l.

\section{Avoiding repeat-induced overlaps}

We want to avoid the computation of repeat-induced overlaps. One strategy is to only consider those seeds in the seed-and-extend computation whose k-mers are not contained inside a repeat. In this way we can ensure that any computed overlap has a significant unique part.

There are two strategies for this:
• **Screening known repeats**: Each read is aligned against a database of known repeats, i.e. using the program *Repeatmasker*. Portions of reads that match a known repeat are labeled as “repetitive”.

• **De novo screening**: For each k-mer contained in \(H \), the concatenation of reads, we determine how many times it occurs in \(H \) and then label those k-mers as repetitive, whose number of occurrences is unexpectedly high.

10.13 Celera’s overlapper

The assembler developed at Celera Genomics employs an overlapper than compares up to 32 million pairs of reads per second.

Overlapping all pairs of 27 million reads of human DNA using this program takes about 10 days, running on about 10-20 four-processor machines (Compaq ES40), each with 4GB of main memory.

The input data file is about 50GB. To parallelize the overlap computation, each job grabs as many reads as will fit into 4GB of memory (minus the memory necessary for doing the computation) and then streams all 27 million reads against the ones held in main memory.

10.14 The overlap graph

The overlap phase produces an overlap graph \(OG \), defined as follows: Each read \(f_p \in \mathcal{F} \) is represented by a directed edge \((s_p, e_p)\) from node \(s_p \) to \(e_p \), representing the start and end of \(f_p \), respectively. The length of such a read edge is simply the length of the corresponding read.

An overlap between \(f_p = f_p_1 f_p_2 \ldots f_p_m \) and \(f_q = f_q_1 f_q_2 \ldots f_q_n \) gives rise to an undirected overlap edge \(e \) between \(s_p \), or \(e_p \), and \(s_q \), or \(e_q \), depending on the orientation of the overlap, e.g.:

```
\[ 1 \quad f_p \quad i \quad m \quad 1 \quad j \quad f_q \quad n \]
```

The label (or “length”) of the overlap edge \(e \) is defined to be \(-1\) times the overlap length, e.g. \(-(\frac{m-i+j-1}{2} + 1) \) in the figure.

10.15 Example

Assume we are given 6 reads \(\mathcal{F} = \{ f_1, f_2, \ldots, f_6 \} \), each of length 500, together with the following overlaps:
Here, for example, the last 320 bases of read f_1 align to the first 320 bases of the reverse complement $\overline{f_2}$ of f_2, whereas f_1 and $\overline{f_5}$ overlap in the first 50 bases of each.

We obtain the following overlap graph OG:

Each read f_p is represented by a read edge (s_p, e_p) of length $|f_p|$. Overlaps off the start s_p, or end e_p, of f_p are represented by overlap edges starting at the node s_p, or e_p, respectively. Each overlap edge is labeled by -1 times the overlap length.

10.16 The layout phase

The goal of the layout phase is to arrange all reads into an approximate multi-alignment. This involves assigning coordinates to all nodes of the overlap graph OG, and thus, determining the value of s_i and e_i for each read f_i.

A simple heuristic is to select a spanning forest of the overlap graph OG that contains all read edges.

1(A spanning forest is a set F of edges such that any two nodes in the same connected component of OG are connected by a unique simple, unoriented path of edges in F.)
Such a subset of edges positions every read with respect to every other, within a given connected component of the graph:

Such a putative alignment of reads is called a **contig**.

The spanning tree is usually constructed using a **greedy heuristic** in which the overlap edges are chosen in order of decreasing overlap length (i.e., increasing edge “length”).
10.17 Repeats and the layout phase

Consider the following situation:

This gives rise to the following overlap graph:

Consider this spanning tree:

A layout produced using the edge e or f does not reflect the true ordering of the reads and the obtained contig is called misassembled:
However, avoiding the repeat-induced edges e and f, one obtains a correct layout:

```
Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens Gröpl, December 5, 2011, 10:12
10013

Note that neither of the two layouts is “consistent” with all overlap edges in the graph.

10.18 Unitigging

The main difficulty in the layout phase is that we can’t distinguish between true overlaps and repeat-induced overlaps. The latter produce “inconsistent” layouts in which the coordinate assignment induces overlaps that are not reflected in the overlap graph (e.g., reads $f_4$ and $f_5$ in the example above).

Thus, the layout phase proceeds in two stages:

1. Unitigging: First, all uniquely assemblable contigs are produced, as just described. These are called unitigs.

2. Repeat resolution: Then, at a later stage, one attempts to reconstruct the repetitive sequence that lies between such unitigs.

Reads are sampled from a source sequence that contains repeats:

```
source:
```

```
reads:
```

Reads that form consistent chains in the overlap graph are assembled into unitigs and the remaining “repetitive” reads are processed later:

```
untigs:
```

```
layouts:
```

```
reads in repeats:
```
10.19 Unique unitigs

As defined above, a “unitig” is obtained as a chain of consistently overlapping reads. However, a unitig does not necessarily represent a segment of unique source sequence. For example, its reads may come from the interior of different instances of a long (many copy) repeat:

```
source: R R' R''
```

```
reads: ______________________________
```

```
unique unitig
```

```
non-unique unitig
```

Non-unique unitigs can be detected by virtue of the fact that they contain significantly more reads than expected.

10.20 The Poisson distribution

In probability theory and statistics, the Poisson distribution (pronounced, after Simeon-Denis Poisson (1781-1840)) is a discrete probability distribution that expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event. The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume.

If the expected number of occurrences in this interval is \( \lambda \), then the probability that there are exactly \( k \) occurrences (\( k \) being a non-negative integer, \( k = 0, 1, 2, \ldots \)) is equal to

\[
f(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!},
\]

where

- \( e \) is the base of the natural logarithm (\( e \approx 2.71828 \))
- \( k \) is the number of occurrences of an event - the probability of which is given by the function
- \( k! \) is the factorial of \( k \)
• $\lambda$ is a positive real number, equal to the expected number of occurrences that occur during the given interval. For instance, if the events occur on average 4 times per minute, and you are interested in the number of events occurring in a 10 minute interval, you would use as your model a Poisson distribution with $\lambda = 10 \cdot 4 = 40$.

As a function of $k$, this is the probability mass function. The Poisson distribution can be derived as a limiting case of the binomial distribution. The Poisson distribution can be applied to systems with a large number of possible events, each of which is rare. A classic example is the nuclear decay of atoms.

(Cited from http://en.wikipedia.org/wiki/Poisson_distribution with modifications.)

10.21 Identifying unique unitigs

Under assumption that the sampling of reads from the target is done uniformly, we can model the arrival of the fragments start positions along the target sequence by a Poisson process.

Let $R$ be the number of reads and $G$ the estimated length of the source sequence. Then we expect on average $R/G$ arrivals of fragments per base. This is called the rate of the Poisson process.

In a Poisson process with rate $\lambda$, the distances between the sites are independent exponentially distributed random variables with mean $1/\lambda$; and the probability that we have $k$ sites in an interval $[s, s + t]$ is $e^{-\lambda t} (\lambda t)^k / k!$. [Waterman, p. 89]

Let $\rho$ be the length of fragments and assume $\rho \ll G$. One can show that the fraction of $G$ covered by $k$ fragments is $e^{-c} c^k / k!$, where $c = R \rho / G$.

For a unitig with $k$ reads and approximate length $\rho$, the probability of seeing the $k$ start positions in the interval of length $\rho$ is (neglecting border effects)

$$\frac{e^{-c} c^k}{k!}$$

with $c := \frac{R \rho}{G}$, if the unitig is not oversampled, and

$$\frac{e^{-2c} (2c)^k}{k!},$$

if the unitig is the result of collapsing two repeats.
(see Mike Waterman’s book, page 148, for details)

The arrival statistic used to identify unique unitigs is the (natural) log of the ratio of these two probabilities,

$$c - (\log 2) k.$$

The sign of the arrival statistic tells which of the two cases is more likely. However, for the purpose of unitigging, we want to be really sure, thus a unitig is deemed unique only if its arrival statistic has a positive value of 10 or more.

10.22 Mate pairs

Fragment assembly of reads produces contigs, whose relative placement and orientation with respect to each other is unknown.
Recall that modern shotgun sequencing protocols employ a so-called double barreled shotgun. That is, longer clones of a given fixed length are sequenced from both ends and one obtains a pair of reads, a mate pair, whose relative orientation and mean $\mu$ (and standard deviation $\sigma$ of) length are known:

$$(\mu, \sigma)$$

Typical clone lengths are $\mu = 2\text{ kb}$, $10\text{ kb}$, $50\text{ kb}$ or $150\text{ kb}$. For clean data, $\sigma \approx 10\%$ of $\mu$. Mate pair mismatching is a problem and can effect $10 - 30\%$ of all pairs.

### 10.23 Scaffolding

Consider two reconstructed contigs. If they correspond to neighboring regions in the source sequence, then we can expect to see mate pairs to span the gap between them:

Such mate pairs determine the relative orientation of both contigs, and we can compute a mean and standard deviation for the gap between them. In this case, the contigs are said to be scaffolded$^2$:

### 10.24 Determining the distance between two contigs

Given two contigs $c_1$ and $c_2$ connected by mate pairs $m_1, m_2, \ldots, m_k$. Each mate pair gives as an independent estimate $(\mu, \sigma)$ for the true distance between the two contigs.

Following standard statistical practice, these measurements $(\mu_1, \sigma_1), (\mu_2, \sigma_2), \ldots, (\mu_k, \sigma_k)$ of the distance between the two contigs $c_1$ and $c_2$ can be combined by taking a weighted average, using the reciprocal variances as weights, as follows:

$^2$engl. scaffold = dt. GerÄâ½st
Let \( p := \sum \frac{l_i}{\sigma_i^2} \) and \( q := \sum \frac{1}{\sigma_i^2} \). Then the distance between \( c_1 \) and \( c_2 \) is estimated as

\[
\mu := \frac{p}{q}, \quad \text{with standard deviation} \quad \sigma := \frac{1}{\sqrt{q}}.
\]

Here is an example:

\[
\begin{array}{|c|c|}
\hline
D, \sigma & \\
\hline
l_1, \sigma_1 & 2k \text{ mate pair} \\
\hline
l_2, \sigma_2 & I_1 \\
\hline
l_3, \sigma_3 & I_2 \\
\hline
l_4, \sigma_4 & 2k \text{ mate pair} \\
\hline
\end{array}
\]

It is possible that the mate pairs between two contigs \( c_1 \) and \( c_2 \) lead to significantly different estimations of the distance from \( c_1 \) and \( c_2 \). In practice, only mate pairs that confirm each other, i.e. whose estimations are within 3\( \sigma \) of each other are considered together in a gap estimation. (The “3” is a magic constant.)

### 10.25 The significance of mate pairs

Can we really rely on mate pair information? Given two contigs \( c_1 \) and \( c_2 \).

- If there is only one mate pair between the two contigs, then due to the high error rates associated with mate pairs, this is not significant.
- If, however, \( c_1 \) and \( c_2 \) are unique unitigs, and if there exist two different mate pairs between the two that give rise to the same relative orientation and similar estimations of the gap size between \( c_1 \) and \( c_2 \), then this the scaffolding of \( c_1 \) and \( c_2 \) is highly reliable.

This is because that probability that two false mate pairs occur that confirm each other, is extremely small.

**Example.**

Let the sequence length be \( G = 120MB \), for example (Drosophila). For simplicity, assume we have 5-fold coverage of mate pairs, with a mean length of \( \mu = 10kb \) and standard deviation of \( \sigma = 1kb \).

Consider a false mate pair \( m_1 = (f_1, f_2) \) with reads \( f_1 \) and \( f_2 \). Let \( N_1 \) and \( N_2 \) denote the two intervals (in the source sequence) of length 3\( \sigma \) centered at the starts of \( f_1 \) and \( f_2 \), respectively. Both have length 6\( kb \).

Consider a second false mate \( m_2 = (g_1, g_2) \) with \( g_1 \) inside \( N_1 \). Then the probability that \( g_2 \) lies in \( N_2 \) is roughly

\[
\frac{6kb}{120MB} = \frac{1}{20000}.
\]
Assume that the reads have length 600. Assume that 10% of all mate pairs are false. At 5-fold coverage, the interval \( N_1 \) is covered by about \( 5 \times \frac{6000}{600} = 50 \) reads, of which \( \approx 5 \) have false mates.

Hence, the probability that \( m_1 \) is confirmed by some second false mate pair \( m_2 \) is

\[
\approx 5 \cdot \frac{1}{20000} = \frac{1}{4000} = 0.00025.
\]

This does not take into account that \( N_1 \) certainly contains many reads with correct mate pairs.

### 10.26 The overlap-mate graph

Given a set of reads \( F = \{f_1, f_2, \ldots, f_k\} \) and let \( G \) denote the overlap graph associated with \( F \).

Given one set (or more) \( M_{\mu,\sigma} = \{m_1, \ldots, m_k\} \) of mate pairs \( m_k = (f_i, f_j) \), with mean \( \mu \) and standard deviation \( \sigma \).

Let \( f_i \) and \( f_j \) be two mated reads represented by the edges \( (s_i, e_i) \) and \( (s_j, e_j) \) in \( G \). We add an undirected mate edge between \( e_i \) and \( e_j \), labeled \( (\mu, \sigma) \), to indicate that \( f_i \) and \( f_j \) are mates and thus obtain the overlap-mate graph:

The overlap-mate graph is good for visualization, but it turns out that a more useful concept is obtained by “lifting” the mate pair information to the level of contigs.
10.27 The contig-mate graph

Given a set of \( F \) of fragments and a set of assembled contigs \( C = \{c_1, c_2, \ldots, c_t\} \). Represent each assembled contig \( c_i \) by a contig edge with nodes \( s_i \) and \( e_i \). Then, add mate edges between such nodes to indicate that the corresponding contigs contain fragments that are mates.

For example:

\[
\begin{align*}
D, \sigma \\
\text{\( l1, \sigma 1 \)} & \quad \text{\( 2k \) mate pair} \\
\text{\( l2, \sigma 2 \)} & \quad \text{\( 10k \) mate pair} \\
\text{\( l3, \sigma 3 \)} & \quad \text{\( 10k \) mate pair} \\
\text{\( l4, \sigma 4 \)} & \quad \text{\( 2k \) mate pair}
\end{align*}
\]

leads to:

\[
\begin{align*}
c1 & \rightarrow \text{\( l1, \sigma 1 \)} \rightarrow \text{\( l2, \sigma 2 \)} \rightarrow \text{\( l3, \sigma 3 \)} \rightarrow \text{\( l4, \sigma 4 \)} \rightarrow c2
\end{align*}
\]

10.28 Edge bundling

The complexity is further reduced by edge bundling. Consider two contigs \( c_1 \) and \( c_2 \), joined by several mate pair edges \( m_1, \ldots, m_k \) between node \( e_1 \) and \( s_2 \). Every maximal subset of mutually confirming mate edges is replaced by a single bundled mate edge \( e \), whose mean length \( \mu \) and standard deviation \( \sigma \) are computed as discussed above. Any such bundled edge is again labeled by a pair \((\mu, \sigma)\).

(A heuristic is used to compute these subsets: Repeatedly bundle the median-length simple mate edge with all mate edges within three standard deviations of it, until all simple mate edges have been bundled.)

Additionally, we set the weight \( w(e) \) of any mate edge to 1, if it is a simple mate edge, and to \( \sum_{i=1}^{k} w(e_i) \), if it was obtained by bundling edges \( e_1, \ldots, e_k \).

For example, consider the following graph:
Assuming that mate edges drawn together have similar lengths and large enough standard deviation, edge bundling will produce the following graph:

10.29 Transitive edge reduction

Yet another trick used for simplification is transitive edge reduction. Consider the previous graph with some specific edge lengths:

The mate edge $e$ gives rise to estimation of the distance from the right node of contig $c_1$ to the left node of $c_3$ that is similar to the one obtained by following the path $P = (g, c_2, h)$. Based on this transitivity property we can reduce the edge $e$ on to the path $p$:

to obtain:
Consider two nodes \( v \) and \( w \) that are connected by an alternating path \( P = (m_1, b_1, m_2, \ldots, m_k) \) of mate-edges \((m_1, m_2, \ldots)\) and contig edges \((c_1, c_2, \ldots)\) from \( v \) to \( w \), beginning and ending with a mate-edge. We obtain a mean length and standard deviation for \( P \) by setting

\[
l(P) := \sum_m \mu(m_i) + \sum_c l(c_i)
\]

and

\[
\sigma(P) := \sqrt{\sum_m \sigma(m_i)^2}.
\]

We say that a mate-edge \( e \) from \( v \) to \( w \) can be transitivity reduced on to the path \( P \), if \( e \) and \( P \) approximately have the same length, i.e., if \( |\mu(e) - l(P)| \leq C \cdot \max(\sigma(e), \sigma(P)) \) for some constant \( C \), typically 3. If this is the case, then we can reduce \( e \) by removing \( e \) from the graph and incrementing the weight of every mate-edge \( m_i \) in \( P \) by \( w(e) \).

In the following, we will assume that any contig-mate graph considered has been edge-bundled and perhaps also transitively reduced to some degree.

### 10.30 Happy mate pairs

Consider a mate pair \( m \) of two reads \( f_i \) and \( f_j \), obtained from a clone of mean length \( \mu \) and standard deviation \( \sigma \):

Assume that \( f_i \) and \( f_j \) are contained in the same contig or scaffold of an assembly. We call \( m \) happy, if \( f_i \) and \( f_j \) have the correct relative orientation, i.e. the arrows are facing each other, and both are at approximately the right distance, i.e., \( |\mu - |s_i - s_j|| \leq 3\sigma \). Otherwise, \( m \) is unhappy. Two unhappy mates (due to their orientation) are highlighted here.
10.31 Ordering and orientation of the contig-mate graph

Given a collection of contigs \( C = \{c_1, c_2, \ldots, c_k\} \) constructed from a set of reads \( F = \{f_1, f_2, \ldots, f_R\} \), together with the corresponding mate pair information \( M \). Let \( G = (V, E) \) denote the associated contig-mate graph.

An ordering (and orientation) of \( G \) (or \( C \)) is a map \( \phi : V \rightarrow \mathbb{N} \) such that \( |\phi(b_i) - \phi(e_i)| = l(c_i) \) for all contigs \( c_i \in C \). In other words, it is an assignment of coordinates to all nodes that preserves contig lengths.

Additionally, we require \( \{\phi(b_i), \phi(e_i)\} \neq \{\phi(b_j), \phi(e_j)\} \) for any two distinct contigs \( c_i \) and \( c_j \).

10.32 Happiness of mate edges

Let \( G = (V, E) \) be a contig-mate graph and \( \phi \) an ordering of \( G \).

Consider a mate-edge \( e \) with nodes \( v \) and \( w \). Let \( c_i \) denote the contig edge incident to \( v \) and let \( c_j \) denote the contig edge incident to \( w \). Let \( v' \) and \( w' \) denote the other two nodes of \( c_i \) and \( c_j \), respectively. We call \( e \) happy with respect to \( \phi \), if

1. \( c_i \) and \( c_j \) have the correct relative orientation, and
2. the distance between \( v \) and \( w \) is approximately correct.

In other words, we require that either

1. \( \phi(v') \leq \phi(v) \) and \( |\phi(w) - \phi(v) - \mu(e)| \leq 3\sigma(e) \) and \( \phi(w) \leq \phi(w') \), or
2. \( \phi(w') \leq \phi(w) \) and \( |\phi(v) - \phi(w) - \mu(e)| \leq 3\sigma(e) \) and \( \phi(v) \leq \phi(v') \).

Otherwise, \( e \) is unhappy.

10.33 Example

Given the following contig-mate graph:

An ordering \( \phi \) assigns coordinates \( \phi(v) \) to all nodes \( v \) and thus determines a layout of the contigs:
10.34 Spanning tree heuristic for the Contig Ordering Problem

An ordering $\phi$ that maximizes the number of happy mate edges is a useful scaffolding of the given contigs.

The simplest heuristic for obtaining an ordering is to compute a maximum weight spanning tree for the contig-mate graph and use it to order all contigs, similar to the read layout problem.

Unfortunately, this method does not work well in practice, because a single false mate edge can lead to incorrect interleaving of contigs from completely different regions of the source sequence:

Figure 2.10: From left to right, the reads overlap consistently, until we reach the “branch-point” at the position indicated by a dotted line. From this position onward, the data partitions into two mutually incompatible chains of overlapping reads. Here, the reads to the left of the branch-point lie in the interior of a repeat whereas the reads that span the branch-point overlap with unique flanking sequence.

10.35 Representing an ordering in the mate-contig graph

By the definition given above, an ordering is an assignment of coordinates to all nodes of the contig-mate graph that corresponds to a scaffolding of the contigs.

When we are not interested in the exact coordinates, then the relative order and orientation of the contigs can
be represented as follows:

Given a contig-mate graph $G = (V, E)$. A set $S \subseteq E$ of selected edges is called a (valid) scaffolding of $G$, if it has the following two properties:

- every contig edge is selected, and
- every node is incident to at most two selected edges.

Thus, a scaffolding of $G$ is a set of non-intersecting selected paths, each representing a scaffolding of its contained contigs.

The following example contains two chains of selected edges representing scaffolds $s_1 = (c_1, c_2, c_3, c_4)$ and $s_2 = (c_5, c_6, c_7)$:

![Graph](image)

However, to be able to represent the interleaved scaffolding discussed earlier, we need to add some inferred edges (shown here as dotted lines) to the graph:

![Graph](image)

### 10.36 Greedy path-merging

Given a contig-mate graph $G = (V, E)$. The greedy path merging algorithm is a heuristic for solving the Contig Ordering Problem. It proceeds “bottom up”, maintaining a valid scaffolding $S \subseteq E$, as follows:

Initially, all contig edges $c_1, c_2, \ldots, c_k$ are selected, and no other edges. At this stage, the graph consists of $k$ selected paths $P_1 = (c_1), \ldots, P_k = (c_k)$.

Then, in order of decreasing weight, we consider each mate edge $e = \{v, w\}$:

- If $v$ and $w$ lie in the same selected path $P_i$, then $e$ is a chord of $P_i$ and no action is necessary.

- If $v$ and $w$ are contained in two different paths $P_i$ and $P_j$, then:
  1. We attempt to merge the two paths (as will be described soon) to obtain a new path $P_k$, but
  2. We accept such a merge only if the increase of $H(G)$, the number of happy mate edges, is larger than the increase of $U(G)$, the number of unhappy ones.
10.37 The greedy path-merging algorithm

Algorithm Given a contig-mate graph \( G \). The output of this algorithm is a node-disjoint collection of selected paths in \( G \), each one defining an ordering of the contigs whose edges it covers.

begin
Select all contig edges.
for each mate-edge \( e \) in descending order of weight:
if \( e \) is not selected:
Let \( v, w \) denote the two nodes connected by \( e \)
Let \( P_1 \) be the selected path incident to \( v \)
Let \( P_2 \) be the selected path incident to \( w \)
if \( P_1 \neq P_2 \) and we can merge \( P_1 \) and \( P_2 \) (guided by \( e \))
to obtain \( P \):
if \( H(P) - (H(P_1) + H(P_2)) \geq U(P) - (U(P_1) + U(P_2)) \):
Replace \( P_1 \) and \( P_2 \) by \( P \)
end
end

10.38 Merging two paths

Given two selected paths \( P_1 \) and \( P_2 \) and a guiding unselected mate-edge \( e_0 \) with nodes \( v_0 \) (incident to \( P_2 \)) and \( w_0 \) (incident to \( P_1 \)). Merging of \( P_1 \) and \( P_2 \) is attempted as follows:

\[\begin{align*}
\text{(a)} & \quad P_1 \quad c_{11} \quad c_{12} \quad h \quad w_0 \quad c_{13} \quad c_{14} \quad c_{15} \\
\text{P2} & \quad c_{21} \quad c_{22} \quad c_{23} \quad c_{24} \quad c_{25} \quad c_{26} \quad c_{27} \\
\text{(b)} & \quad P_1 \quad c_{11} \quad c_{12} \quad h \quad w_0 \quad c_{13} \quad c_{14} \quad c_{15} \\
\text{P2} & \quad c_{21} \quad c_{22} \quad c_{23} \quad c_{24} \quad c_{25} \quad c_{26} \quad c_{27} \\
\text{(c)} & \quad P_1 \quad c_{11} \quad c_{12} \quad h \quad w_0 \quad c_{13} \quad c_{14} \quad c_{15} \\
\text{P2} & \quad c_{21} \quad c_{22} \quad c_{23} \quad c_{24} \quad c_{25} \quad c_{26} \quad c_{27}
\end{align*}\]

This algorithm returns \( true \), if it successfully produced a new selected path \( P \) containing all contigs edges in \( P_1 \) and \( P_2 \), and \( false \), if it fails.

Merging proceeds by “zipping” the two paths \( P_1 \) and \( P_2 \) together, first starting with \( e_0 \) and “zipping” to the right. Then, with the edge labeled \( h \) now playing the role of \( e_0 \), zipper to the left. Merging is said to fail, if the positioning of the “active” contig \( c_i \) implies that it must overlap with some contig in \( P_2 \) by a significant amount, but no such alignment (of sufficiently high quality) exists.
10.39 Example

Here are we are given 5 contigs $c_1, \ldots, c_5$, each of length $l(c_i) = 10000$:

The final scaffolding is $(c_1, c_2, c_3, c_5, c_4)$.

10.40 Repeat resolution

Consider two unique unitigs $u_1$ and $u_2$ that are placed next to each other in a scaffolding, due to a heavy mate edge between them:

We consider all non-unique unitigs and singleton reads that potentially can be placed between $u_1$ and $u_2$ by mate edges:

Different heuristics (and manual inspection by experts, for the remaining cases) are used to explore the corresponding local region of the overlap graph in an attempt to find a chain of overlapping fragments that spans the gap and is compatible with the given mate pair information:
10.41 Multialignment

In a last step we have to compute a consensus sequence for each contig based on the layout of the fragments (this can also be done right after computing the contigs/unitigs).

Read 1: ACGCTCCAGCTAAACG
Read 2: ATCGCTAATCCGCCGCCCCGC
Read 3: AACCTCCAGCTAAACG
Read 4: TGGCCGCCGGCCCCGAAAACGC
Consensus: AACCTCCAGCTAAACGCTAATGCGGGCCCCGAAAACGC

10.42 Summary

Given a collection $F = \{f_1, f_2, \ldots, f_R\}$ of reads and mate pair information, sampled from a unknown source DNA sequence. Assembly proceeds in the following steps:

1. compute the overlap graph, e.g. using a seed-and-extend approach,
2. construct all unitigs, e.g. using the minimal spanning tree approach,
3. scaffold the unitigs, e.g. using the greedy-path merging algorithm,
4. attempt to resolve repeats between unitigs, and
5. compute a multi alignment of all reads in a given contig to obtain a consensus sequence for it.

Note that the algorithms for steps (2) and (3) that are used in actual assembly projects are much more sophisticated than ones described in these notes.

10.43 A WGS assembly of human (Celera)

Input: 27 million fragments of av. length 550bp, 70% paired:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5m</td>
<td>pairs of length 2kb</td>
<td></td>
</tr>
<tr>
<td>4m</td>
<td>pairs of length 10kb</td>
<td></td>
</tr>
<tr>
<td>0.9m</td>
<td>pairs of length 50kb</td>
<td></td>
</tr>
<tr>
<td>0.35m</td>
<td>pairs of length 150kb</td>
<td></td>
</tr>
</tbody>
</table>

Celera’s assembler uses approximately the following resources:

<table>
<thead>
<tr>
<th>Program</th>
<th>CPU hours</th>
<th>Max. memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screener</td>
<td>4800</td>
<td>2GB</td>
</tr>
<tr>
<td>Overlapper</td>
<td>12000</td>
<td>4GB</td>
</tr>
<tr>
<td>Unitigger</td>
<td>120</td>
<td>32GB</td>
</tr>
<tr>
<td>Scaffold</td>
<td>120</td>
<td>32GB</td>
</tr>
<tr>
<td>RepeatRez</td>
<td>50</td>
<td>32GB</td>
</tr>
<tr>
<td>Consensus</td>
<td>160</td>
<td>2GB</td>
</tr>
</tbody>
</table>

Total: \(\approx 18000\) CPU hours.
The size of the human genome is \(\approx 3\text{Gb}\). An unpublished 2001 assembly of the 27m fragments has the following statistics:

- The assembly consists of 6500 scaffolds that span 2776Mb of sequence.
- The spanned sequence contains 150000 gaps, making up 148Mb in total.
- Of the spanned sequence, 99.0\% is contained in scaffolds (or contigs?) of size 30kb or more.
- Of the spanned sequence, 98.7\% is contained in scaffolds (or contigs?) of size 100kb or more.