Non-deterministic Turing machines

- **Next move relation:**
 \[\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\}) \]

- **L(M)** = set of words \(w \in \Sigma^* \) for which there exists a sequence of moves accepting \(w \).

- **Proposition.** If \(L \) is accepted by a non-deterministic Turing machine \(M_1 \), then \(L \) is accepted by some deterministic machine \(M_2 \).

Time complexity

- \(M \) a (deterministic) Turing machine that halts on all inputs.

- Time complexity function \(T_M : \mathbb{N} \rightarrow \mathbb{N} \)
 \[T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M \text{ on } w \text{ takes } m \text{ moves} \} \]

 (assume numbers are coded in binary format)

- A Turing machine is polynomial if there exists a polynomial \(p(n) \) with \(T_M(n) \leq p(n) \), for all \(n \in \mathbb{N} \).

- The complexity class \(P \) is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- \(M \) non-deterministic Turing machine

- The running time of \(M \) on \(w \in \Sigma^* \) is
 - the length of a shortest sequence of moves accepting \(w \) if \(w \in L(M) \)
 - 1, if \(w \notin L(M) \)

- \(T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m \} \)

- The complexity class \(NP \) is the class of languages accepted by a polynomial non-deterministic Turing machine.

Deciding languages in NP

Theorem. If \(L \in NP \), then there exists a deterministic Turing machine \(M \) and a polynomial \(p(n) \) such that

- \(M \) decides \(L \) and
- \(T_M(n) \leq 2^{p(n)}, \text{ for all } n \in \mathbb{N}. \)

Proof: Suppose \(L \) is accepted by a non-deterministic machine \(M_{nd} \) whose running time is bounded by the polynomial \(q(n) \).

To decide whether \(w \in L \), the machine \(M \) will

1. determine the length \(n \) of \(w \) and compute \(q(n) \).
2. simulate all executions of \(M_{nd} \) of length at most \(q(n) \). If the maximum number of choices of \(M_{nd} \) in one step is \(r \), there are at most \(r^{q(n)} \) such executions.
3. if one of the simulated executions accepts \(w \), then \(M \) accepts \(w \), otherwise \(M \) rejects \(w \).

The overall complexity is bounded by \(r^n \cdot q'(n) = O(2^p(n)) \), for some polynomial \(p(n) \).

An alternative characterization of NP

- **Proposition.** \(L \in NP \) if there exists \(L' \in P \) and a polynomial \(p(n) \) such that for all \(w \in \Sigma^* \):

 \[
 w \in L \iff \exists v \in (\Sigma')^* : |v| \leq p(|w|) \text{ and } (w, v) \in L'
 \]

- Informally, a problem is in \(NP \) if it can be solved non-deterministically in the following way:
 1. guess a solution/certificate \(v \) of polynomial length,
 2. check in polynomial time whether \(v \) has the desired property.

Propositional satisfiability

- **Satisfiability problem SAT**

 Instance: A formula \(F \) in propositional logic with variables \(x_1, \ldots, x_n \).

 Question: Is \(F \) satisfiable, i.e., does there exist an assignment \(I : \{x_1, \ldots, x_n\} \rightarrow \{0,1\} \) making the formula true?

- Trying all possible assignments would require exponential time.
- Guessing an assignment \(I \) and checking whether it satisfies \(F \) can be done in (non-deterministic) polynomial time. Thus:

 - **Proposition.** SAT is in \(NP \).

Polynomial reductions

- A polynomial reduction of \(L_1 \subseteq \Sigma_1^* \) to \(L_2 \subseteq \Sigma_2^* \) is a polynomially computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) with \(w \in L_1 \iff f(w) \in L_2 \).

- **Proposition.** If \(L_1 \) is polynomially reducible to \(L_2 \), then
 1. \(L_1 \in P \) if \(L_2 \in P \) and \(L_1 \in NP \) if \(L_2 \in NP \)
 2. \(L_2 \not\in P \) if \(L_1 \not\in P \) and \(L_2 \not\in NP \) if \(L_1 \not\in NP \).

- \(L_1 \) and \(L_2 \) are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language \(L \subseteq \Sigma^* \) is \(NP \)-complete if
 1. \(L \in NP \)
 2. Any \(L' \in NP \) is polynomially reducible to \(L \).

- **Proposition.** If \(L \) is \(NP \)-complete and \(L \in P \), then \(P = NP \).

- **Corollary.** If \(L \) is \(NP \)-complete and \(P \neq NP \), then there exists no polynomial algorithm for \(L \).
Structure of the class NP

NP

P

NP-complete

Fundamental open problem: \(P \neq NP \) ?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is NP-complete.
- **Proposition.** \(L \) is NP-complete if
 1. \(L \in NP \)
 2. there exists an NP-complete problem \(L' \) that is polynomially reducible to \(L \).

- **INDEPENDENT SET**

 Instance: Graph \(G = (V, E) \) and \(k \in \mathbb{N}, k \leq |V| \).

 Question: Is there a subset \(V' \subseteq V \) such that \(|V'| \geq k \) and no two vertices in \(V \) are joined by an edge in \(E \)?

Reducing 3SAT to INDEPENDENT SET

- Let \(F \) be a conjunction of \(n \) clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph \(G \) with \(3n \) vertices that correspond to the variables in \(F \).
- For any clause in \(F \), connect by three edges the corresponding vertices in \(G \).
- Connect all pairs of vertices corresponding to a variable \(x \) and its negation \(\neg x \).
- \(F \) is satisfiable if and only if \(G \) contains an independent set of size \(n \).

Solving numerical constraints

<table>
<thead>
<tr>
<th>Satisfiability</th>
<th>over (\mathbb{Q})</th>
<th>over (\mathbb{Z})</th>
<th>over (\mathbb{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear equations</td>
<td>polynomial</td>
<td>polynomial</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Linear inequalities</td>
<td>polynomial</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Satisfiability</th>
<th>over (\mathbb{R})</th>
<th>over (\mathbb{Z})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear constraints</td>
<td>polynomial</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Nonlinear constraints</td>
<td>decidable</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
NP-hard problems

- **Decision problem**: solution is either yes or no

- Example: Traveling salesman decision problem:
 Given a network of cities, distances, and a number B, does there exist a tour with length \(\leq B \)?

- **Search problem**: find an object with required properties

- Example: Traveling salesman optimization problem:
 Given a network of cities and distances, find a shortest tour.

- Decision problem \(NP \)-complete \(\Rightarrow \) search problem \(NP \)-hard

- **\(NP \)-hard problems**: at least as hard as \(NP \)-complete problems

Graph theoretical problems

- Shortest path \(\text{polynomial} \)
- Traveling salesman \(\text{NP-hard} \)
- Minimum spanning tree \(\text{polynomial} \)
- Steiner tree \(\text{NP-hard} \)