1. SAT Problem (NIVEAU I)
 The pigeon-hole SAT problem expresses the problem of finding a way to place \(n \) pigeons
 in \(n - 1 \) pigeon-holes such that no hole contains more than one pigeon. Obviously, this
 problem is unsatisfiable.

 • Model the Pigeon-hole SAT problem. (See script: Literals, clauses, clause-sets)

2. Turing machine simulation (NIVEAU I)
 Given a Turing machine \(M \) accepting the language \(L = \{0^n 1^n \mid n \geq 1\} \) with accepting
 state \(q_4 \) and the next move function \(\delta \):

 \[
 \begin{array}{c|cccc}
 \delta & 0 & 1 & X & Y & \# \\
 \hline
 q_0 & (q_1, X, R) & - & - & (q_3, Y, R) & - \\
 q_1 & (q_1, 0, R) & (q_2, Y, L) & - & (q_1, Y, R) & - \\
 q_2 & (q_2, 0, L) & - & (q_0, X, R) & (q_2, Y, L) & - \\
 q_3 & - & - & - & (q_3, Y, R) & (q_4, \#, R) \\
 q_4 & - & - & - & - & - \\
 \end{array}
 \]

 Simulate \(M \) on input 0011 and 001101.

3. Decision problems (NIVEAU II)
 Let \(w_i \) be the \(i \)-th word in \(\{0, 1\}^* \) and \(M_n \) the \(n \)-th turing machine. Consider:

 • the general halting problem \(K \): “Does Turing machine \(M_n \) halt for input \(w_i \)”

 and

 • the special halting problem \(K' \) “Does Turing machine \(M_n \) halt for input \(w_n \)”

 (a) Prove that \(K' \) is undecidable but semi-decidable.
 (b) Use reduction to prove that \(K \) is undecidable.