Graph Algorithms

I. Shortest paths

- $D = (V, A)$ directed graph, $s, t \in V$.
- A walk is a sequence $P = (v_0, a_1, v_1, ..., a_k, v_k), k \geq 0$, where a_i is an arc from v_{i-1} to v_i, for $i = 1, ..., k$.
- P is a path, if $v_0, ..., v_k$ are all different.
- If $s = v_0$ and $t = v_k$, P is a s-t walk resp. s-t path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any s-t path (and $+\infty$ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: $V_0 = \{s\}$

Iteration: $V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \cdots \cup V_i) \mid (u, v) \in A, \text{ for some } u \in V_i\}$, until $V_{i+1} = \emptyset$.

Running time: $O(|A|)$

- V_i is the set of nodes with distance i from s.
- The algorithm computes shortest paths from s to all reachable nodes.
- Can be described by a directed tree $T = (V', A')$ with root s such that each u-v path in T is a shortest s-t path in D.

Shortest paths with non-negative lengths

- Length function $l : A \rightarrow \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \geq 0\}$
- For a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ define $l(P) = \sum_{i=1}^{k} l(a_i)$.

Algorithm (Dijkstra 1959)

Initialization: $U = V, f(s) = 0, f(v) = \infty$, for $v \in V \setminus \{s\}$

Iteration: Find $u \in U$ with $f(u) = \min\{f(v) \mid v \in U\}$.
For all $a = (u, v) \in A$ with $f(v) > f(u) + l(a)$ let $f(v) = f(u) + l(a)$.
Let $U \leftarrow U \setminus \{u\}$, until $U = \emptyset$.

Upon termination, $f(v)$ gives the length of a shortest path from s to v.

Running time: $O(|V|^2)$ (can be improved to $O(|A| + |V| \log |V|)$.)

Application: Longest common subsequence

- Sequences $a = a_1, ..., a_m$ and $b = b_1, ..., b_n$
- Find the longest common subsequence of a and b (obtained by removing symbols in a or b).
Modeling as a shortest path problem

- Grid graph with nodes \((i, j), 0 \leq i \leq m, 0 \leq j \leq n\).
- Horizontal and vertical arcs of length 1.
- Diagonal arcs \(((i - 1, j - 1), (i, j))\) of length 0, if \(a_i = b_j\).

The diagonal arcs on a shortest path from \((0, 0)\) to \((m, n)\) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions \(l : A \rightarrow \mathbb{Q}\).
- A directed circuit is a walk \(P = (v_0, a_1, v_1, \ldots, a_k, v_k)\) with \(k \geq 1\) and \(v_0 = v_k\) such that \(v_1, \ldots, v_k\) and \(a_1, \ldots, a_k\) are all different.
- If \(D = (V, A)\) contains a directed circuit of negative length, there exist \(s\)-\(t\) walks of arbitrary small negative length.

Proposition

Let \(D = (V, A)\) be a directed graph without circuits of negative length. For any \(s, t \in V\) for which there exists at least one \(s\)-\(t\) walk, there exists a shortest \(s\)-\(t\) walk, which is a path.

Shortest paths with arbitrary lengths

\(D = (V, A), n = |V|, l : A \rightarrow \mathbb{Q}\).

Algorithm (Bellman-Ford 1956/58)

Compute \(f_0, \ldots, f_n : V \rightarrow \mathbb{R} \cup \{\infty\}\) in the following way:

Initialization: \(f_0(s) = 0, f_0(v) = \infty\), for \(v \in V \setminus \{s\}\)

Iteration: For \(k = 1, \ldots, n\) and all \(v \in V\):

\[
f_k(v) = \min \{f_{k-1}(v), \min_{(u, v) \in A} (f_{k-1}(u) + l(u, v))\}
\]

Running time: \(O(|V||A|)\)

Properties

- For each \(k = 0, \ldots, n\) and each \(v \in V\):

\[
f_k(v) = \min \{l(P) \mid P \text{ is an } s\text{-}v \text{ walk traversing at most } k \text{ arcs} \}
\]

(by induction)

- If \(D\) contains no circuits of negative length, \(f_{n-1}(v)\) is the length of a shortest path from \(s\) to \(v\).

Finding an explicit shortest path

- When computing \(f_0, \ldots, f_n\) determine a predecessor function \(p : V \rightarrow V\) by setting \(p(v) = u\) whenever \(f_{k+1}(v) = f_k(u) + l(u, v)\).

- At termination, \(v, p(v), p(p(v)), \ldots, s\) gives the reverse of a shortest \(s\)-\(v\) path.
Theorem
Given \(D = (V, A), s, t \in V \) and \(l : A \to \mathbb{Q} \) such that \(D \) contains no circuit of negative length, a shortest \(s-t \) path can be found in time \(O(|V||A|) \).

Remark
\(D \) contains a circuit of negative length reachable from \(s \) if and only if \(l_n(v) \neq l_{n-1}(v) \), for some \(v \in V \).

\[\text{NP-completeness} \]

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem
The decision problem

\[\text{Input: Directed graph } D = (V, A), s, t \in V, l : A \to \mathbb{Z}, L \in \mathbb{Z} \]

\[\text{Question: Does there exist an } s-t \text{ path } P \text{ with } l(P) \leq L? \]

is NP-complete.

Corollary
The shortest path problem with arbitrary lengths is NP-complete.
The longest path problem with non-negative lengths is NP-complete.

\[\text{Application: Knapsack problem} \]

- Knapsack, volume 8, 5 articles

<table>
<thead>
<tr>
<th>Article (i)</th>
<th>Volume (a_i)</th>
<th>Value (c_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- Objective: Select articles fitting into the knapsack and maximizing the total value.

\[\text{Possible models} \]

- **Linear 0-1 model**

\[\max \{ 4x_1 + 7x_2 + 3x_3 + 5x_4 + 4x_5 \mid 5x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 \leq 8, x_1, \ldots, x_5 \in \{0,1\} \} \]

- **Shortest path model**

 - Directed graph with nodes \((i, x), 0 \leq i \leq 6, 0 \leq x \leq 8\).
 - Arcs from \((i - 1, x)\) to \((i, x)\) resp. \((i, x + a)\) of length 0 resp. \(-c_i\), for \(0 \leq i \leq 5\).
 - Arcs from \((5, x)\) to \((6, 8)\) of length 0, for \(0 \leq x \leq 6\).
 - A shortest path from \((0, 0)\) to \((6, 8)\) gives an optimal solution.

 \[\text{pseudo-polynomial algorithm} \]
II. Network flows

- **Network**
 - Directed graph $G = (V, E)$
 - *Source* $s \in V$, *sink* $t \in V$
 - *Edge capacities* $\text{cap} : E \to \mathbb{R}_+ = \{ x \in \mathbb{R} \mid x \geq 0 \}$

- **Flow** $f : E \to \mathbb{R}_+$ satisfying
 1. Flow conservation constraints
 \[\sum_{e : \text{target}(e) = v} f(e) = \sum_{e : \text{source}(e) = v} f(e), \text{ for all } v \in V \setminus \{s, t\} \]
 2. Capacity constraints
 \[0 \leq f(e) \leq \text{cap}(e), \text{ for all } e \in E \]

Maximum flow problem

- **Excess** at node v: $\text{excess}(v) = \sum_{e : \text{target}(e) = v} f(e) - \sum_{e : \text{source}(e) = v} f(e)$
- If f is a flow, then $\text{excess}(v) = 0$, for all $v \in V \setminus \{s, t\}$.
- **Value** of a flow: $\text{val}(f) \overset{\text{def}}{=} \text{excess}(t)$
- **Maximum flow problem**: \(\max \{ \text{val}(f) \mid f \text{ is a flow in } G \} \)
- Can be seen as a linear programming problem.

Maximum flow problem (a)

Lemma
If f is a flow, then $\text{excess}(t) = -\text{excess}(s)$.

Proof: We have
\[\text{excess}(s) + \text{excess}(t) = \sum_{v \in V} \text{excess}(v) = 0. \]

- First “$=$”:\ $\text{excess}(v) = 0$, for $v \in V \setminus \{s, t\}$
- Second “$=$”:\ For any edge $e = (v, w)$, the flow through e appears twice in the sum, positively in $\text{excess}(w)$ and negatively in $\text{excess}(v)$.

Cuts

- A cut is a partition (S, T) of V, i.e., $T = V \setminus S$.
- (S, T) is an (s, t)-cut if $s \in S$ and $t \in T$.
- **Capacity** of the cut (S, T)
 \[\text{cap}(S, T) = \sum_{E \cap (S \times T)} \text{cap}(e) \]
- A cut is saturated by f if $f(e) = \text{cap}(e)$, for all $e \in E \cap (S \times T)$, and $f(e) = 0$, for all $e \in E \cap (T \times S)$.
Lemma

If f is a flow and (S, T) an (s,t)-cut, then

$$\text{val}(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \text{cap}(S, T).$$

If S is saturated by f, then $\text{val}(f) = \text{cap}(S, T)$.

Proof: We have

$$\text{val}(f) = -\text{excess}(s) = -\sum_{u \in S} \text{excess}(u) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \sum_{e \in E \cap (S \times T)} \text{cap}(e) = \text{cap}(S).$$

For a saturated cut, the inequality is an equality.

Remarks

- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network G_f for a flow f in $G = (V, E)$ indicates the capacity unused by f. It is defined as follows:

- G_f has the same node set as G.
- For every edge $e = (v, w)$ in G, there are up to two edges e' and e'' in G_f:
 1. if $f(e) < \text{cap}(e)$, there is an edge $e' = (v, w)$ in G_f with residual capacity $r(e') = \text{cap}(e) - f(e)$.
 2. if $f(e) > 0$, there is an edge $e'' = (w, v)$ in G_f with residual capacity $r(e'') = f(e)$.

Theorem

Let f be an (s,t)-flow, let G_f be the residual network w.r.t. f, and let S be the set of all nodes reachable from s in G_f.

1. If \(t \in S \), then \(f \) is not maximum.

2. If \(t \not\in S \), then \(S \) is a saturated cut and \(f \) is maximum.

Proof

If \(t \) is reachable from \(s \) in \(G_f \), then \(f \) is not maximal.

- Let \(P \) be a (simple) path from \(s \) to \(t \) in \(G_f \).
- Let \(\delta \) be the minimum residual capacity of an edge in \(P \). By definition, \(r(e) > 0 \), for all edges \(e \) in \(G_f \). Therefore, \(\delta > 0 \).
- Construct a flow \(f' \) of value \(\text{val}(f) + \delta \):

\[
f'(e) = \begin{cases}
 f(e) + \delta, & \text{if } e' \in P \\
 f(e) - \delta, & \text{if } e'' \in P \\
 f(e), & \text{if neither } e' \text{ nor } e'' \text{ belongs to } P.
\end{cases}
\]

- \(f' \) is a flow and \(\text{val}(f') = \text{val}(f) + \delta \).

Example

If \(t \) is not reachable from \(s \) in \(G_f \), then \(f \) is maximal.

- Let \(S \) be the set of nodes reachable from \(s \) in \(G_f \), and let \(T = V \setminus S \).
- There is no edge \((v, w) \) in \(G_f \) with \(v \in S \) and \(w \in T \).
- Hence
 - \(f(e) = \text{cap}(e) \), for any \(e \in E \cap (S \times T) \), and
 - \(f(e) = 0 \), for any \(e \in E \cap (T \times S) \).
- Thus \(S \) is saturated and, by the Lemma, \(f \) is maximal.

Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., \(f(e) = 0 \), for all \(e \in E \).
2. Construct the residual network \(G_f \).
3. Check whether \(t \) is reachable from \(s \) in \(G_f \).
• if not, stop.
• if yes, increase the flow along an augmenting path, and iterate.

Analysis

• Let $|V| = n$ and $|E| = m$.
• Each iteration takes time $O(n + m)$.
• If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

• Suppose capacities are integers, bounded by C.
• $v^* \triangleq$ value of maximum flow $\leq Cn$.
• All flows constructed are integral (proof by induction).
• Every augmentation increases flow value by at least 1.
• Running time $O((n + m)v^*) \rightarrow$ pseudo-polynomial algorithm

Edmonds-Karp Algorithm

• Compute a shortest augmenting path, i.e. with a minimum number of arcs.
• Apply breadth-first search (or Dijkstra's algorithm).
• Number of iterations is bound by nm, leads to an $O(nm^2)$ maximum flow algorithm.
• Works also for irrational capacities.

Max-Flow Min-Cut Theorem

Theorem
For a network (V, E, s, t) with capacities $\text{cap} : E \to \mathbb{R}_+$ the maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

$$\max\{\text{val}(f) \mid f \text{ is a flow}\} = \min\{\text{cap}(S, T) \mid (S, T) \text{ is an } (s, t)-\text{cut}\}$$

Corollary
For integer capacities $\text{cap} : E \to \mathbb{Z}_+$, there exists an integer-valued maximum flow $f : E \to \mathbb{Z}_+$.

III. Matching

- $G = (V, E)$ undirected graph
- **Matching**: Subset of edges $M \subseteq E$, no two of which share an endpoint.
- **Maximum matching**: Matching of maximum cardinality
- **Perfect matching**: Every vertex in V is matched.

Augmenting paths

- Let M be a matching in $G = (V, E)$.
- A path $P = (v_0, v_1, ..., v_t)$ in G is called M-augmenting if:
 - t is odd,
 - $v_1 v_2, v_3 v_4, v_{t-2} v_{t-1} \in M$,
 - $v_0, v_t \notin \bigcup M = \bigcup_{e \in M} e$.
- If P is an M-augmenting path and $E(P)$ the edge set of P, then

$$M' = M \triangle E(P) = (M \setminus E(P)) \cup (E(P) \setminus M)$$

is a matching in G of size $|M'| = |M| + 1$.

Berge’s Theorem

Theorem (Berge’57)
Let M be a matching in the graph $G = (V, E)$. Then either M is a maximum cardinality matching or there exists an M-augmenting path.

Generic Matching Algorithm

Initialization: $M \leftarrow \emptyset$

Iteration: If there exists an M-augmenting path P, replace $M \leftarrow M \triangle E(P)$.

→ how can one find an M-augmenting path?

- Difficult in general → Edmonds’ matching algorithm (Edmonds’65)
- Easy for bipartite graphs

Bipartite graphs

A graph $G = (V, E)$ is **bipartite** if there exist $A, B \subseteq V$ with $A \cup B = V, A \cap B = \emptyset$ and each edge in E has one end in A and one end in B.

Proposition
A graph $G = (V, E)$ is bipartite if and only if each circuit of G has even length.

Bipartite matching
Matching augmenting algorithm for bipartite graphs

Input: Bipartite graph $G = (A \cup B, E)$ with matching M.

Output: Matching M' with $|M'| > |M|$ or proof that no such matching exists.

Description: Construct a directed graph D_M with the same node set as G.

- For each edge $e = \{a, b\}$ in G with $a \in A, b \in B$:
 - if $e \in M$, there is the arc (b, a) in D_M.
 - if $e \not\in M$, there is the arc (a, b) in D_M.

Let $A_M = A \setminus \bigcup M$ and $B_M = B \setminus \bigcup M$.

M-augmenting paths in G correspond to directed paths in D_M starting in A_M and ending in B_M.

Theorem

A maximum-cardinality matching in a bipartite graph $G = (V, E)$ can be found in time $O(|V||E|)$.

Bipartite matching as a maximum flow problem

- Add a source s and edges (s, a) for $a \in A$, with capacity 1.
- Add a sink t and edges (b, t) for $b \in B$, with capacity 1.
- Direct edges in G from A to B, with capacity 1.

- Integral flows f correspond to matchings M, with $\text{val}(f) = |M|$.
- Ford-Fulkerson takes time $O(nm)$, since $\nu^* \leq n$.
- Can be improved to $O(\sqrt{nm})$.

Marriage theorem

Theorem (Hall)

A bipartite graph $G = (A \cup B, E)$, with $|A| = |B| = n$, has a perfect matching if and only if for all $B' \subseteq B$, $|B'| \leq |N(B')|$, where $N(B')$ is the set of all neighbors of nodes in B'.
Proof

- Let \((S, T)\) be an \((s, t)\)-cut in the corresponding network.
- Let \(A_S = A \cap S, A_T = A \cap T, B_S = B \cap S, B_T = B \cap T\).

\[
\text{cap}(S, T) = \sum_{e \in E \cap S \times T} \text{cap}(e) = |A_T| + |B_S| + |N(B_T) \cap A_S| \\
\geq |N(B_T) \cap A_T| + |N(B_T) \cap A_S| + |B_S| \\
= |N(B_T)| + |B_S| \\
\geq |B_T| + |B_S| = |B| = n
\]

- By the max-flow min-cut theorem, the maximum flow is at least \(n\).

Konig's theorem

- \(G = (V, E)\) undirected graph
- \(C \subseteq V\) is a **vertex covering** if every edge of \(G\) has at least one end in \(C\).
- **Lemma:** For any matching \(M\) and any vertex covering \(C\), we have \(|M| \leq |C|\).
- **Theorem (Konig)** For a bipartite graph \(G\),

\[
\max\{|M| : M \text{ a matching }\} = \min\{|C| : C \text{ a vertex covering }\}.
\]

Network connectivity

- \(G = (V, E)\) directed graph, \(s, t \in V, s \neq t\) non-adjacent.
- **Theorem (Menger)** The maximum number of **arc-disjoint** paths from \(s\) to \(t\) equals the minimum number of arcs whose removal disconnects all paths from \(s\) to \(t\).
- **Theorem (Menger)** The maximum number of **node-disjoint** paths from \(s\) to \(t\) equals the minimum number of nodes (different from \(s\) and \(t\)) whose removal disconnects all paths from \(s\) to \(t\).
Duality in linear programming

• Primal problem

\[z_P = \max \{ c^T x \mid Ax \leq b, x \in \mathbb{R}^n \} \]
(P)

• Dual problem

\[w_D = \min \{ b^T u \mid A^T u = c, u \geq 0 \} \]
(D)

General form

<table>
<thead>
<tr>
<th>(P)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min) (c^T x)</td>
<td>(\max) (u^T b)</td>
</tr>
<tr>
<td>w.r.t. (A_i x \geq b_i, \quad i \in M_1)</td>
<td>w.r.t. (u_i \geq 0, \quad i \in M_1)</td>
</tr>
<tr>
<td>(A_i x \leq b_i, \quad i \in M_2)</td>
<td>(u_i \leq 0, \quad i \in M_2)</td>
</tr>
<tr>
<td>(A_i x = b_i, \quad i \in M_3)</td>
<td>(u_i \text{ free,} \quad i \in M_3)</td>
</tr>
<tr>
<td>(x_j \geq 0, \quad j \in N_1)</td>
<td>((A_{ij})^T u \leq c_j, \quad j \in N_1)</td>
</tr>
<tr>
<td>(x_j \leq 0, \quad j \in N_2)</td>
<td>((A_{ij})^T u \geq c_j, \quad j \in N_2)</td>
</tr>
<tr>
<td>(x_j \text{ free,} \quad j \in N_3)</td>
<td>((A_{ij})^T u = c_j, \quad j \in N_3)</td>
</tr>
</tbody>
</table>

Duality theorems

• **Weak duality** If \(x^* \) is primal and \(u^* \) is dual feasible, then

\[c^T x^* \leq z_P \leq w_D \leq b^T u^*. \]

• **Strong duality** If both (P) and (D) have a finite optimum, then \(z_P = w_D \).

• **Only four possibilities**

1. \(z_P \) and \(w_D \) are both finite and equal.
2. \(z_P = +\infty \) and (D) is infeasible.
3. \(w_D = -\infty \) and (P) is infeasible.
4. (P) and (D) are both infeasible.

Maximum flow and duality
• Primal problem

$$\max \sum_{e: \text{source}(e)=s} x_e - \sum_{e: \text{target}(e)=s} x_e$$

s.t. $$\sum_{e: \text{target}(e)=v} x_e - \sum_{e: \text{source}(e)=v} x_e = 0, \quad \forall v \in V \setminus \{s,t\}$$

$$0 \leq x_e \leq c_e, \quad \forall e \in E$$

• Dual problem

$$\min \sum_{e \in E} c_e y_e$$

s.t. $$z_w - z_v + y_e \geq 0, \quad \forall e = (v,w) \in E$$

$$z_s = 1, z_t = 0$$

$$y_e \geq 0, \quad \forall e \in E$$

Maximum flow and duality

• Let $$(y^*, z^*)$$ be an optimal solution of the dual.

• Define $S = \{v \in V \mid z^*_v > 0\}$ and $T = V \setminus S$.

• $$(S, T)$$ is a minimum cut.

• Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

• A matrix A is totally unimodular if each subdeterminant of A is 0, +1 or −1.

• Theorem (Hoffman and Kruskal) $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff the polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ is integral, i.e., $P = \text{conv}(P \cap \mathbb{Z}^n)$, for any $b \in \mathbb{Z}^m$.

• Corollary $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for any $b \in \mathbb{Z}^m, c \in \mathbb{Z}^n$ both optima in the LP duality equation

$$\max \{c^T x \mid Ax \leq b, x \geq 0\} = \{\min b^T u \mid A^T u \geq c, u \geq 0\}$$

are attained by integral vectors (if they are finite).

• Proposition The constraint matrix A arising in a maximum flow problem is totally unimodular.

Matching and linear programming

• $G = (V, E)$ undirected graph, $M \subseteq E$ matching

• Incidence vector: $\chi^M : E \rightarrow \mathbb{R}, \chi^M(e) = \begin{cases} 1, & \text{if } e \in M, \\ 0, & \text{if } e \notin M. \end{cases}$

• Maximum matching as an integer linear program

$$\max \left\{ \sum_{e \in E} x_e \mid \sum_{e \ni v} x_e \leq 1, \forall v \in V, \; x_e \in \{0,1\}, \forall e \in E \right\}$$
• For bipartite graphs the constraint matrix is totally unimodular \(\Rightarrow \) linear program

\[
\max \left\{ \sum_{e \in E} x_e \mid \sum_{v \in V} x_e \leq 1, \forall v \in V, \ x_e \geq 0, \forall e \in E \right\}
\]

• Dual linear program

\[
\min \left\{ \sum_{v \in V} y_v \mid y_v + y_w \geq 1, \forall e = \{v, w\} \in E, \ y_v \geq 0, \forall v \in V \right\}
\]

\(\Rightarrow \) minimum vertex cover

References

