Deciding languages in NP

Theorem. If $L \in \text{NP}$, then there exists a deterministic Turing machine M and a polynomial $p(n)$ such that

- M decides L and
- $T_M(n) \leq 2^{p(n)}$, for all $n \in \mathbb{N}$.

Proof: Suppose L is accepted by a non-deterministic machine M_{nd} whose running time is bounded by the polynomial $q(n)$.

To decide whether $w \in L$, the machine M will

1. determine the length n of w and compute $q(n)$.
2. simulate all executions of M_{nd} of length at most $q(n)$. If the maximum number of choices of M_{nd} in one step is r, there are at most $r^q(n)$ such executions.
3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by $r^q(n) \cdot q'(n) = O(2^{p(n)})$, for some polynomial $p(n)$.

An alternative characterization of NP

- **Proposition.** $L \in \text{NP}$ if and only if there exists $L' \in \text{P}$ and a polynomial $p(n)$ such that for all $w \in \Sigma^*$:

 $w \in L \iff \exists v \in (\Sigma')^* : |v| \leq p(|w|)$ and $(w, v) \in L'$

- Informally, a problem is in NP if it can be solved non-deterministically in the following way:
 1. guess a solution/certificate v of polynomial length,
 2. check in polynomial time whether v has the desired property.

Propositional satisfiability

- **Satisfiability problem SAT**

 Instance: A formula F in propositional logic with variables x_1, \ldots, x_n.

 Question: Is F satisfiable, i.e., does there exist an assignment $I : \{x_1, \ldots, x_n\} \rightarrow \{0, 1\}$ making the formula true?

 - Trying all possible assignments would require exponential time.
 - Guessing an assignment I and checking whether it satisfies F can be done in (non-deterministic) polynomial time. Thus:

 - **Proposition.** SAT is in NP.

Polynomial reductions

- A polynomial reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a polynomially computable function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ with $w \in L_1 \iff f(w) \in L_2$.

- **Proposition.** If L_1 is polynomially reducible to L_2, then

 1. $L_1 \in \text{P}$ if $L_2 \in \text{P}$ and $L_1 \in \text{NP}$ if $L_2 \in \text{NP}$
2. $L_2 \not\in P$ if $L_1 \not\in P$ and $L_2 \not\in NP$ if $L_1 \not\in NP$.

- L_1 and L_2 are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^*$ is NP-complete if
 1. $L \in NP$
 2. Any $L' \in NP$ is polynomially reducible to L.

- **Proposition.** If L is NP-complete and $L \in P$, then $P = NP$.

- **Corollary.** If L is NP-complete and $P \neq NP$, then there exists no polynomial algorithm for L.

Structure of the class NP

![Diagram showing the relationship between P, NP, and NP-complete]

Fundamental open problem: $P \neq NP$?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is NP-complete.

- **Proposition.** L is NP-complete if
 1. $L \in NP$
 2. there exists an NP-complete problem L' that is polynomially reducible to L.

- **Example:** INDEPENDENT SET

 Instance: Graph $G = (V, E)$ and $k \in \mathbb{N}, k \leq |V|$.
 Question: Is there a subset $V' \subseteq V$ such that $|V'| \geq k$ and no two vertices in V' are joined by an edge in E?
Reducing 3SAT to INDEPENDENT SET

- Let F be a conjunction of n clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph G with $3n$ vertices that correspond to the variables in F.
- For any clause in F, connect by three edges the corresponding vertices in G.
- Connect all pairs of vertices corresponding to a variable x and its negation $\neg x$.
- F is satisfiable if and only if G contains an independent set of size n.

NP-hard problems

- **Decision problem**: solution is either yes or no
- Example: Traveling salesman decision problem:
 Given a network of cities, distances, and a number B, does there exist a tour with length $\leq B$?
- **Search problem**: find an object with required properties
- Example: Traveling salesman optimization problem:
 Given a network of cities and distances, find a shortest tour.
- Decision problem NP-complete \Rightarrow search problem NP-hard
- **NP-hard problems**: at least as hard as NP-complete problems

NP-hard problems in bioinformatics

- Multiple sequence alignment
 Wang/Jiang 94
- Protein folding
 Fraenkel 93
- Protein threading
 Lathrop 94
- Protein design
 Pierce/Winfree 02
- ...

Literature

- J. E. Hopcroft and J. D. Ullman: Introduction to automata theory, languages and computation. Addison-Wesley, 1979
- C. H. Papadimitriou: Computational complexity. Addison-Wesley, 1994