Deciding languages in NP

Theorem. If \(L \in \text{NP} \), then there exists a deterministic Turing machine \(M \) and a polynomial \(p(n) \) such that

- \(M \) decides \(L \) and
- \(T_M(n) \leq 2^{p(n)} \), for all \(n \in \mathbb{N} \).

Proof: Suppose \(L \) is accepted by a non-deterministic machine \(M_{nd} \) whose running time is bounded by the polynomial \(q(n) \).

To decide whether \(w \in L \), the machine \(M \) will

1. determine the length \(n \) of \(w \) and compute \(q(n) \).
2. simulate all executions of \(M_{nd} \) of length at most \(q(n) \). If the maximum number of choices of \(M_{nd} \) in one step is \(r \), there are at most \(r^{q(n)} \) such executions.
3. if one of the simulated executions accepts \(w \), then \(M \) accepts \(w \), otherwise \(M \) rejects \(w \).

The overall complexity is bounded by \(r^{q(n)} \cdot q'(n) = O(2^{p(n)}) \), for some polynomial \(p(n) \).

An alternative characterization of NP

- **Proposition.** \(L \in \text{NP} \) if and only if there exists \(L' \in \text{P} \) and a polynomial \(p(n) \) such that for all \(w \in \Sigma^* : \)

 \[
 w \in L \iff \exists v \in (\Sigma')^* : |v| \leq p(|w|) \text{ and } (w, v) \in L'
 \]

- Informally, a problem is in \(\text{NP} \) if it can be solved non-deterministically in the following way:
 1. guess a solution/certificate \(v \) of polynomial length,
 2. check in polynomial time whether \(v \) has the desired property.

Propositional satisfiability

- **Satisfiability problem SAT**

 Instance: A formula \(F \) in propositional logic with variables \(x_1, \ldots, x_n \).

 Question: Is \(F \) satisfiable, i.e., does there exist an assignment \(I : \{x_1, \ldots, x_n\} \rightarrow \{0, 1\} \) making the formula true?

 - Trying all possible assignments would require exponential time.
 - Guessing an assignment \(I \) and checking whether it satisfies \(F \) can be done in (non-deterministic) polynomial time. Thus:

 - **Proposition.** \(\text{SAT} \) is in \(\text{NP} \).
Polynomial reductions

- A polynomial reduction of \(L_1 \subseteq \Sigma^*_1 \) to \(L_2 \subseteq \Sigma^*_2 \) is a polynomially computable function \(f : \Sigma^*_1 \to \Sigma^*_2 \) with \(w \in L_1 \iff f(w) \in L_2 \).

- **Proposition.** If \(L_1 \) is polynomially reducible to \(L_2 \), then
 1. \(L_1 \in P \) if \(L_2 \in P \) and \(L_1 \in NP \) if \(L_2 \in NP \)
 2. \(L_2 \not\in P \) if \(L_1 \not\in P \) and \(L_2 \not\in NP \) if \(L_1 \not\in NP \).

- \(L_1 \) and \(L_2 \) are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language \(L \subseteq \Sigma^* \) is NP-complete if
 1. \(L \in NP \)
 2. Any \(L' \in NP \) is polynomially reducible to \(L \).

- **Proposition.** If \(L \) is NP-complete and \(L \in P \), then \(P = NP \).

- **Corollary.** If \(L \) is NP-complete and \(P \neq NP \), then there exists no polynomial algorithm for \(L \).

Structure of the class NP

![Structure of the class NP](image)

Fundamental open problem: \(P \neq NP \)?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is NP-complete.

- **Proposition.** \(L \) is NP-complete if
 1. \(L \in NP \)
 2. there exists an NP-complete problem \(L' \) that is polynomially reducible to \(L \).

- **Example:** INDEPENDENT SET

 Instance: Graph \(G = (V, E) \) and \(k \in \mathbb{N}, k \leq |V| \).
 Question: Is there a subset \(V' \subseteq V \) such that \(|V'| \geq k \) and no two vertices in \(V' \) are joined by an edge in \(E \)?