Universal language

- \(\langle M, w \rangle \): encoding \(\langle M \rangle \) of \(M \) concatenated with \(w \in \{0,1\}^* \).
- Universal language
 \[L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \]
- **Theorem.** \(L_u \) is recursively enumerable.
- A Turing machine \(U \) accepting \(L_u \) is called universal Turing machine.
- **Theorem** (Turing 1936). \(L_u \) is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language \(L \subseteq \Sigma^* \) the decision problem \(D_L \)

 Input: \(w \in \Sigma^* \)

 Output: \[\begin{cases} \text{yes, if } w \in L \\ \text{no, if } w \notin L \end{cases} \]
 and vice versa.
- \(D_L \) is **decidable** (resp. semi-decidable) if \(L \) is recursive (resp. recursively enumerable).
- \(D_L \) is **undecidable** if \(L \) is not recursive.

Reductions

- A **many-one reduction** of \(L_1 \subseteq \Sigma_1^* \) to \(L_2 \subseteq \Sigma_2^* \) is a computable function \(f : \Sigma_1^* \to \Sigma_2^* \) with \(w \in L_1 \iff f(w) \in L_2 \).
- **Proposition.** If \(L_1 \) is many-one reducible to \(L_2 \), then
 1. \(L_1 \) is decidable if \(L_2 \) is decidable.
 2. \(L_2 \) is undecidable if \(L_1 \) is undecidable.

Post’s correspondence problem

- Given pairs of words
 \[(v_1, w_1), (v_2, w_2), \ldots, (v_k, w_k) \]
 over an alphabet \(\Sigma \), does there exist a sequence of integers \(i_1, \ldots, i_m, m \geq 1 \), such that
 \[v_{i_1} \ldots v_{i_m} = w_{i_1} \ldots w_{i_m} \]
- **Example**

<table>
<thead>
<tr>
<th>(i)</th>
<th>(v_i)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>10111</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

 \[\Rightarrow v_2 v_1 v_3 = w_2 w_1 w_3 = 101111110 \]
- **Theorem** (Post 1946). Post’s correspondence problem is undecidable.
Hilbert’s Tenth Problem

Hilbert, *International Congress of Mathematicians, Paris, 1900*

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)

Hilbert’s tenth problem is undecidable.

Non-deterministic Turing machines

- **Next move relation:**
 \[\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\}) \]
- **L(M)** = set of words \(w \in \Sigma^* \) for which there exists a sequence of moves accepting \(w \).
- **Proposition.** If \(L \) is accepted by a non-deterministic Turing machine \(M_1 \), then \(L \) is accepted by some deterministic machine \(M_2 \).

Time complexity

- **M** a (deterministic) Turing machine that halts on all inputs.
- **Time complexity function** \(T_M : \mathbb{N} \rightarrow \mathbb{N} \)
 \[T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M 	ext{ on } w \text{ takes } m \text{ moves} \} \]

 (assume numbers are coded in binary format)
- A Turing machine is **polynomial** if there exists a polynomial \(p(n) \) with \(T_M(n) \leq p(n) \), for all \(n \in \mathbb{N} \).
- The complexity class \(P \) is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- **M** non-deterministic Turing machine
- The running time of \(M \) on \(w \in \Sigma^* \) is
 - the length of a shortest sequence of moves accepting \(w \) if \(w \in L(M) \)
 - 1, if \(w \not\in L(M) \)
- \(T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m \} \)
- The complexity class \(NP \) is the class of languages accepted by a polynomial non-deterministic Turing machine.