Universal language

- \(\langle M, w \rangle \): encoding \(\langle M \rangle \) of \(M \) concatenated with \(w \in \{0, 1\}^* \).

- Universal language
 \[L_U = \{ \langle M \rangle \mid M \text{ accepts } w \} \]

- **Theorem.** \(L_U \) is recursively enumerable.
- A Turing machine \(U \) accepting \(L_U \) is called **universal Turing machine**.
- **Theorem** (Turing 1936). \(L_U \) is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language \(L \subseteq \Sigma^* \) the decision problem \(D_L \)

 Input: \(w \in \Sigma^* \)
 Output: \[
 \begin{cases}
 \text{yes,} & \text{if } w \in L \\
 \text{no,} & \text{if } w \notin L
 \end{cases}
 \]
 and vice versa.

- \(D_L \) is **decidable** (resp. **semi-decidable**) if \(L \) is recursive (resp. recursively enumerable).
- \(D_L \) is **undecidable** if \(L \) is not recursive.

Reductions

- A **many-one reduction** of \(L_1 \subseteq \Sigma_1^* \) to \(L_2 \subseteq \Sigma_2^* \) is a computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) with \(w \in L_1 \iff f(w) \in L_2 \).

- **Proposition.** If \(L_1 \) is many-one reducible to \(L_2 \), then
 1. \(L_1 \) is decidable if \(L_2 \) is decidable.
 2. \(L_2 \) is undecidable if \(L_1 \) is undecidable.

Post’s correspondence problem

- Given pairs of words
 \[(v_1, w_1), (v_2, w_2), \ldots, (v_k, w_k) \]
 over an alphabet \(\Sigma \), does there exist a sequence of integers \(i_1, \ldots, i_m, m \geq 1 \), such that
 \[v_{i_1}, \ldots, v_{i_m} = w_{i_1}, \ldots, w_{i_m}. \]

- **Example**
 \[
 \begin{array}{c|c|c}
 i & v_i & w_i \\
 \hline
 1 & 1 & 111 \\
 2 & 10111 & 10 \\
 3 & 10 & 0 \\
 \end{array}
 \Rightarrow v_2 v_1 v_3 = w_2 w_1 w_3 = 101111110
 \]

- **Theorem** (Post 1946). Post’s correspondence problem is undecidable.
Hilbert’s Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

Non-deterministic Turing machines

- Next move relation:
 \[\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\}) \]
- \(L(M) \) = set of words \(w \in \Sigma^* \) for which there exists a sequence of moves accepting \(w \).
- Proposition. If \(L \) is accepted by a non-deterministic Turing machine \(M_1 \), then \(L \) is accepted by some deterministic machine \(M_2 \).

Time complexity

- \(M \) a (deterministic) Turing machine that halts on all inputs.
- Time complexity function \(T_M : \mathbb{N} \rightarrow \mathbb{N} \)
 \[T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M \text{ on } w \text{ takes } m \text{ moves} \} \]
 (assume numbers are coded in binary format)
- A Turing machine is polynomial if there exists a polynomial \(p(n) \) with \(T_M(n) \leq p(n) \), for all \(n \in \mathbb{N} \).
- The complexity class \(P \) is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- \(M \) non-deterministic Turing machine
- The running time of \(M \) on \(w \in \Sigma^* \) is
 - the length of a shortest sequence of moves accepting \(w \) if \(w \in L(M) \)
 - 1, if \(w \not\in L(M) \)
- \(T_M(n) = \max \{ m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m \} \)
- The complexity class \(NP \) is the class of languages accepted by a polynomial non-deterministic Turing machine.