Computability and Complexity Theory

Computability and complexity

- **Computability theory**
 - What is an algorithm?
 - What problems can be solved on a computer?
 - What is a computable function?
 - Solvable vs. unsolvable problems (decidability)

- **Complexity theory**
 - How much time and memory is needed to solve a problem?
 - Tractable vs. intractable problems

What is a computable function?

- Non-trivial question \Rightarrow various formalizations, e.g.
 - General recursive functions
 - G"odel/Herbrand/Kleene 1936
 - λ-calculus
 - Church 1936
 - μ-recursive functions
 - G"odel/Kleene 1936
 - Turing machines
 - Turing 1936
 - Post systems
 - Post 1943
 - Markov algorithms
 - Markov 1951
 - Unlimited register machines
 - Shepherdson-Sturgis 1963

- All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Finite automata

Finite automaton: $M = (Q, \Sigma, \delta, q_0, F)$ with

- Q finite set of states
- Σ finite input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- $q_0 \in Q$ initial state
- $F \subseteq Q$ set of final states
Example

\[
\begin{array}{c}
\text{q0} \\
\text{a} \\
\text{b} \\
\text{q1}
\end{array}
\]

\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]

\(M^0 = (Q, \Sigma, \delta, q_0, F)\) with

- \(Q = \{q_0, q_1\}\), \(\Sigma = \{a, b\}\), \(F = \{q_0\}\)
- \(\delta(q_0, a) = q_0\), \(\delta(q_0, b) = q_1\), \(\delta(q_1, a) = q_1\), \(\delta(q_1, b) = q_0\)

Recognizing languages

- Denote by \(\Sigma^*\) the set of finite words (strings) over \(\Sigma\), by \(\varepsilon \in \Sigma^*\) the empty word.
- Define \(\overline{\delta} : Q \times \Sigma^* \rightarrow Q\) by
 \[
 \overline{\delta}(q, \varepsilon) = q \quad \text{and} \quad \overline{\delta}(q, wa) = \delta(\overline{\delta}(q, w), a), \text{ for all } w \in \Sigma^*, a \in \Sigma.
 \]
- **Language accepted by \(M\):**
 \[L(M) = \{w \in \Sigma^* \mid \overline{\delta}(q_0, w) = p, \text{ for some } p \in F\}\]
- **Example:** \(L(M^0)\) is the set of all strings over \(\Sigma = \{a, b\}\) with an even number of \(b\)'s.
- Gene regulatory networks can be modeled as networks of finite automata.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.
Formal definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, #, F)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable tape symbols.
- $\# \in \Gamma$ is the blank.
- $\Sigma \subset \Gamma \setminus \{\#\}$ is the set of input symbols.
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the next move function (possibly undefined for some arguments)
- $q_0 \in Q$ is the start state.
- $F \subseteq Q$ is the set of final (accepting) states.

Recognizing languages

- Instantaneous description: $\alpha_l q \alpha_r$, where
 - q is the current state,
 - $\alpha_l \alpha_r \in \Gamma^*$ is the string on the tape up to the rightmost nonblank symbol,
 - the head is scanning the leftmost symbol of α_r.
- Move: $\alpha_l q \alpha_r \vdash \alpha_l' q \alpha_r'$, by one step of the machine.
- Language accepted by M
 $$L(M) = \{ w \in \Sigma^* | q_0 w \vdash^* \alpha_l q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_l, \alpha_r \in \Gamma^* \}$$

M may not halt, if w is not accepted.

Example

- Turing machine
 $$M = (\{ q_0, \ldots, q_4 \}, \{0, 1\}, \{0, 1, X, Y, #\}, \delta, q_0, #, \{q_4\})$$
 accepting the language $L = \{0^n 1^n \mid n \geq 1\}$

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>Y</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>(q_1, X, R)</td>
<td>–</td>
<td>–</td>
<td>(q_3, Y, R)</td>
<td>–</td>
</tr>
<tr>
<td>q_1</td>
<td>$(q_2, 0, R)$</td>
<td>(q_2, Y, L)</td>
<td>–</td>
<td>(q_1, Y, R)</td>
<td>–</td>
</tr>
<tr>
<td>q_2</td>
<td>$(q_2, 0, L)$</td>
<td>–</td>
<td>(q_0, X, R)</td>
<td>(q_2, Y, L)</td>
<td>–</td>
</tr>
<tr>
<td>q_3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(q_3, Y, R)</td>
<td>$(q_4, #, R)$</td>
</tr>
<tr>
<td>q_4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Example computation

 $q_0011 \vdash Xq_1011 \vdash X0q_111 \vdash Xq_20Y1 \vdash$
 $q_2X0Y1 \vdash Xq_00Y1 \vdash XXq_1Y1 \vdash XXYYq_1 \vdash$
 $XXq_2YY \vdash Xq_2XYY \vdash XXq_0YY \vdash XXYYq_3 \vdash$
 $XXYYq_3 \vdash XXYY#q_4$
Recursive languages

- A language \(L \subseteq \Sigma^* \) is recursively enumerable if \(L = L(M) \), for some Turing machine \(M \).

\[
\begin{align*}
 w \rightarrow [M] & \rightarrow \\
 \{ & \text{yes, if } w \in L \\
\text{no, if } w \notin L \\
 M \text{ does not halt, if } w \notin L \}
\end{align*}
\]

- A language \(L \subseteq \Sigma^* \) is recursive if \(L = L(M) \) for some Turing machine \(M \) that halts on all inputs \(w \in \Sigma^* \).

\[
\begin{align*}
 w \rightarrow [M] & \rightarrow \\
 \{ & \text{yes, if } w \in L \\
\text{no, if } w \notin L \}
\end{align*}
\]

- **Lemma.** \(L \) is recursive iff both \(L \) and \(L = \Sigma^* \setminus L \) are recursively enumerable.