Computability and Complexity Theory

Computability and complexity

- **Computability theory**
 - What problems can be solved on a computer?
 - What is a computable function?
 - Decidable vs. undecidable problems

- **Complexity theory**
 - How much time and memory is needed to solve a problem?
 - Tractable vs. intractable problems

What is a computable function?

- Non-trivial question \leadsto various formalizations, e.g.
 - General recursive functions $\text{Gödel/Herbrand/Kleene 1936}$
 - λ-calculus Church 1936
 - μ-recursive functions Gödel/Kleene 1936
 - Turing machines Turing 1936
 - Post systems Post 1943
 - Markov algorithms Markov 1951
 - Unlimited register machines $\text{Shepherdson-Sturgis 1963}$
 ...

- All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.
Formal definition

- \(M = (Q, \Sigma, \Gamma, \delta, q_0, #, F) \)
- \(Q \) is the finite set of states.
- \(\Gamma \) is the finite alphabet of allowable tape symbols.
- \(# \in \Gamma \) is the blank.
- \(\Sigma \subset \Gamma \setminus \{#\} \) is the set of input symbols.
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \) is the next move function (possibly undefined for some arguments)
- \(q_0 \in Q \) is the start state.
- \(F \subseteq Q \) is the set of final (accepting) states.

Recognizing languages

- Instantaneous description: \(\alpha l q \alpha r \), where
 - \(q \) is the current state,
 - \(\alpha \in \Gamma^* \) is the string on the tape up to the rightmost nonblank symbol,
 - the head is scanning the leftmost symbol of \(\alpha_r \).
- Move: \(\alpha_i q \alpha_r \vdash \alpha'_i q'_r \), by one step of the machine.
- Language accepted
 \[
 L(M) = \{ w \in \Sigma^* | q_0 w \vdash^* \alpha_i q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_i, \alpha_r \in \Gamma^* \}
 \]
- \(M \) may not halt, if \(w \) is not accepted.

Example

- Turing machine
 \[
 M = (\{ q_0, \ldots, q_4 \}, \{0, 1\}, \{0, 1, X, Y, #\}, \delta, q_0, #, \{q_4\})
 \]
 accepting the language \(L = \{ 0^n 1^n | n \geq 1 \} \)

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>Y</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1, X, R)</td>
<td>–</td>
<td>–</td>
<td>(q_3, Y, R)</td>
<td>–</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_1, 0, R)</td>
<td>(q_2, Y, L)</td>
<td>–</td>
<td>(q_1, Y, R)</td>
<td>–</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2, 0, L)</td>
<td>–</td>
<td>(q_0, X, R)</td>
<td>(q_2, Y, L)</td>
<td>–</td>
</tr>
<tr>
<td>(q_3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(q_3, Y, R)</td>
<td>(q_4, #, R)</td>
</tr>
<tr>
<td>(q_4)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- Example computation
 \[
 q_0011 \vdash Xq_1011 \vdash X0q_111 \vdash Xq_20Y1 \vdash \\
 q_2X0Y1 \vdash Xq_00Y1 \vdash XXq_1Y1 \vdash XXXq_1Y \vdash \\
 XXq_2YY \vdash Xq_2XYY \vdash XXq_0YY \vdash XXXq_3Y \vdash \\
 XXXYYq_3 \vdash XXXYYq_4
 \]