Exercise 1.

BWT

- For the text `tacaacaatacaagag$` construct the BWT and the arrays C and Occ. Use them to search for the pattern `aca`.

Exercise 2.

BWT - compressing L

- Let R be the MTF encoding of L and Y the corresponding list of characters. Give an algorithm in pseudocode to decode R into L.

Exercise 3.

BWT - compressing pos

- Present an example that proves the following assumption stated in the script:

 If we mark every η-th row in the matrix M the worst case time of a pos query is $O(\frac{n-1}{\eta}n)$

Exercise 4.

Chaining

- Prove the lemmata used for the Manhattan distance and the sum-of-pairs distance in the chaining problem, as discussed in the lecture (Lemma 1 and Lemma 3).