english version | version française | 日本語版

Shane Kelly

研究補佐
Esnaultの数論幾何学研究グループで

FB Mathematik und Informatik
Arnimallee 3, Zimmer 109
14195 ベルリン
ドイツ

shane 点 kelly 点 uni アットマーク gmail 点 com
履歴書.pdf



現在の研究分野

代数幾何学、数論幾何学 (特にモチビック・コホモロジー;モチビック・ホモトピー論、K理論)

双有理幾何学、特異点の解消 (正の標数の微分形式で)

モジュラー表現論

講義と演習

冬学期 2016/2017: Linear codes

冬学期 2016/2017: Étale cohomology

夏学期 2017: Infinity categories

夏学期 2017: Topological data analysis

冬学期 2017/2018: 整数論I

冬学期 2017/2018: Mathematics of Data Science

論文

(1) Voevodsky motives and ldh descent
Astérisque, 391. (2017)

(2) Mixed Motives and Geometric Representation Theory in Equal Characteristic (Jens Niklas Eberhardtとの共同研究)
投稿済み (2016) arXiv

(3) Un isomorphisme de Suslin
Bull. Soc. Math. Fr., 掲載決定. (2016) arXiv

(4) Points in algebraic geometry (Ofer Gabberとの共同研究)
J. Pure Appl. Algebr., Volume 219, Issue 10, pp 4667-4680 (2015) arXiv

(5) Weight homology of motives (斎藤・秀司との共同研究)
Int. Math. Res. Not. (13):3938-3984. (2017). arXiv

(6) Differential forms in positive characteristic II: cdh-descent via functorial Riemann-Zariski spaces (Annette Huberとの共同研究)
投稿済み (2017) arXiv

(7) Differential forms in positive characteristic avoiding resolution of singularities (Annette HuberStefan Kebekusとの共同研究)
Bull. Soc. Math. Fr., 145, fascicule 2, pp 305-343. (2017) arXiv

(8) The motivic Steenrod algebra in positive characteristic (Marc HoyoisPaul Arne Østværとの共同研究)
J. Eur. Math. Soc., Volume 19, Issue 12, pp 3813-3849. (2017) arXiv

(9) Vanishing of Negative K-theory in positive characteristic
Compositio Mathematica, 150, pp 1425-1434. (2014) arXiv

(10) Some observations about motivic tensor triangulated geometry over a finite field
Surveys around Ohkawa's theorem on Bousfield classes (2016) arXiv

論文博士

Triangulated categories of motives in positive characteristic
Australian National UniversityとUniversité de Paris-Nord 13の間のcotutelleの論文博士
指導教官: Denis-Charles CisinskiAmnon Neeman
(2012) arXiv

学部生

(11) Characterizing a family of elusive groups (Michael Giudiciとの共同研究)
Journal of Group Theory, 12(1). (2009)

(12) Constructions of intriguing sets of polar spaces from field reduction and derivation.
Designs, Codes and Cryptography, 43(1). (2007)

(13) Tight Sets and m-Ovoids of Polar Spaces (John BambergとMaska LawとTim Penttilaとの共同研究)
J. Combin. Theory Ser. A, 114(7). (2007)

その他

What is the cdh topology?.pdf



</ホームページ>