Exercise sheet 6 for Algebraic curves and the Weil conjectures

Kay Rülling ${ }^{1}$

Let C be a smooth geometrically connected curve over a perfect field k. Then we will prove in the course that there is a canonical isomorphism of k-vector spaces
(*) $H^{0}\left(C / k, \omega_{C} \otimes_{\mathcal{O}_{C}} L^{\vee}\right) \xrightarrow{\simeq} H^{1}(C / k, L)^{\vee}:=\operatorname{Hom}_{k}\left(H^{1}(C / k, L), k\right)$, where $\omega_{C}=\Omega_{C / k}^{1}, L$ is any invertible sheaf on C / k and $L^{\vee}=\mathcal{H o m}_{\mathcal{O}_{C}}\left(L, \mathcal{O}_{C}\right)$ is its dual. In the following you can use this statement.

Exercise 6.1. In the situation above, show:
(1) $\operatorname{dim}_{k} H^{0}\left(C / k, \omega_{C}\right)=\operatorname{dim}_{k} H^{1}\left(C / k, \mathcal{O}_{C}\right)=: g$ (It is the genus of C).
(2) Assume $C=Z(F) \subset \mathbb{P}^{2}(\bar{k})$, where $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ is a homogenous polynomial of degree n. Then $g=\frac{(n-2)(n-1)}{2}$.
(3) $\operatorname{dim}_{k} H^{0}(C / k, L)-\operatorname{dim}_{k} H^{0}\left(C / k, \omega_{C} \otimes_{\mathcal{O}_{C}} L^{\vee}\right)=1-g+\operatorname{deg} L$, where L is an invertible sheaf on C / k.
(4) Let $K_{C / k} \in C H^{1}(C / k)$ be the canonical divisor of C / k, i.e. $\omega_{C} \cong \mathcal{O}_{C}\left(K_{C / k}\right)$. Show $\operatorname{deg}\left(K_{C / k}\right)=2 g-2$.
(5) If $\operatorname{deg} L \geq 2 g-1$, then $\operatorname{dim}_{k} H^{0}(C / k, L)=1-g+\operatorname{deg} L$.
(6) Assume $\operatorname{deg} L=0$. Show that $\operatorname{dim}_{k} H^{0}(C / k, L)=1$, if $L \cong \mathcal{O}_{C}$, and $=0$, else. (Hint: Here you don't need $\left(^{*}\right)$ or Riemann-Roch, just write $L \cong \mathcal{O}_{C}(D)$ for some divisor D and look what you get.)

Exercise 6.2. Let C be a smooth projective geometrically connected curve over k of genus g.
(1) Show that any non-constant function $t \in k(C)$ (i.e. $t \in k(C) \backslash k$) induces a dominant k-morphism $C \rightarrow \mathbb{P}_{k}^{1}$ such that the corresponding function field inclusion is given by $k(t) \subset k(C)$.
(2) Assume $g=0$. Then C is k-isomorphic to \mathbb{P}_{k}^{1} if and only if C has a k-rational point $P_{0} \in C(k)$. (Hint: If there exists $P_{0} \in C(k)$ use Exercise 6.1. (5), to show that there exists a

[^0]non-constant function $f \in k(C)^{\times}$with a simple pole only at P_{0}. Then consider the k-morphism $\pi: C \rightarrow \mathbb{P}_{k}^{1}$ induced by f as in (1) and show that $\left[P_{0}\right]=\pi^{*}[\infty]$. Now apply deg and conclude.)

Exercise 6.3. Let $\pi: C^{\prime} \rightarrow C$ be a dominant k-morphism between smooth projective and geometrically connected curves over k of respective genus $g\left(C^{\prime}\right)$ and $g(C)$. Denote by $K^{\prime}=k\left(C^{\prime}\right)$ and $K=k(C)$ the function fields and assume that that the field extension K^{\prime} / K induced by π is separable and of degree $\left[K^{\prime}: K\right]=n$. Show the Hurwitz genus formula

$$
2 g\left(C^{\prime}\right)-2=n \cdot(2 g(C)-2)+\operatorname{deg} R,
$$

where R is the ramification divisor, see Exercise 5.3 (it is an effective divisor on C^{\prime}.) (Hint: Exercise 5.3.)

Exercise 6.4. Let $\pi: C^{\prime} \rightarrow C$ be as in Exercise 6.2 above. We say π is étale, if for all closed points Q the ramification index is one, i.e. $e_{Q}=e(Q / P)=1$, with $P=\pi(Q)$; in this case we say that π or C^{\prime} is a connected finite étale cover of C.
(1) Show: π is étale $\Longleftrightarrow \chi\left(C^{\prime}, \mathcal{O}_{C}^{\prime}\right)=n \cdot \chi\left(C, \mathcal{O}_{C}\right)$, where $\chi\left(C, \mathcal{O}_{C}\right)=$ $\operatorname{dim}_{k} H^{0}\left(C / k, \mathcal{O}_{C}\right)-\operatorname{dim}_{k} H^{1}\left(C / k, \mathcal{O}_{C}\right)$ is the Euler characteristic of C.
(2) Show that the only connected finite étale cover of \mathbb{P}_{k}^{1} is \mathbb{P}_{k}^{1} itself. (This can be seen as a geometric version of Minkowski's Theorem from Number Theory: The field of rational numbers \mathbb{Q} does not admit a non-trivial unramified extension.)

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

