Exercise sheet 4 for Algebraic curves and the Weil conjectures

Kay Rülling ${ }^{1}$

Exercise 4.1. Let k be a field with fixed algebraic closure \bar{k}. Show that there is an $\mathcal{O}_{\mathbb{P}^{1} / k}$-linear isomorphism

$$
\mathcal{O}_{\mathbb{P}^{1} / k}(-2) \xrightarrow{\simeq} \omega_{\mathbb{P}^{1} / k} .
$$

Conclude that $\Gamma\left(\mathbb{P}^{1} / k, \omega_{\mathbb{P}^{1} / k}\right)=0$.
Exercise 4.2. Let k be a field of characteristic $\neq 2,3$ with fixed algeraic closure \bar{k}. Let $a, b \in k$ and let $E \subset \mathbb{P}^{2}(\bar{k})$ be the projective variety $/ k$ defined by $E=Z\left(X_{2}^{2} X_{0}-\left(X_{1}^{3}+a X_{1} X_{0}^{2}+b X_{0}^{3}\right)\right)$.
(1) Set $U=Z\left(y^{2}-\left(x^{3}+a x+b\right)\right)$, where $x=X_{1} / X_{0}, y=X_{2} / X_{0}$ and $W=Z\left(z-\left(u^{3}+a u z^{2}+b z^{3}\right)\right)$, where $u=X_{1} / X_{2}, z=X_{0} / X_{2}$. Show that $U, W \subset E / k$ are open and $E=U \cup W$.
(2) Show that E is an irreducible curve $/ k$.
(3) Show that E is a smooth $/ k$ if and only if $4 a^{3}+27 b^{2} \neq 0$.

We assume $4 a^{3}+27 b^{2} \neq 0$ in the following.
(4) Set $U_{1}=U \backslash Z(y), U_{2}=U \backslash Z\left(3 x^{2}+a\right)$ and $U_{3}=W \backslash Z(1-$ $\left.2 a u z-3 b z^{2}\right)$. Show that $E=U_{1} \cup U_{2} \cup U_{3}$ is an open covering.
(5) Define the differential forms

$$
\begin{gathered}
\alpha_{1}:=\frac{d x}{2 y} \in \Gamma\left(U_{1}, \omega_{E}\right), \quad \alpha_{2}:=\frac{d y}{3 x^{2}+a} \in \Gamma\left(U_{2}, \omega_{E}\right), \\
\alpha_{3}:=-\frac{d u}{1-2 a u z-3 b z^{2}} \in \Gamma\left(U_{3}, \omega_{E}\right),
\end{gathered}
$$

where $\omega_{E}:=\Omega_{E / k}^{1}$. Show that there is a differential $\alpha \in$ $\Gamma\left(E, \omega_{E}\right)$ with $\alpha_{\mid U_{i}}=\alpha_{i}, i=1,2,3$.
(6) Show that we have an isomorphism $\mathcal{O}_{E} \rightarrow \omega_{E}, f \mapsto f \cdot \alpha$.

Exercise 4.3. Let k be a field with fixed algebraic closure \bar{k} and Y an affine k-variety with coordinate ring $k[Y]=A$. We write $\mathbb{P}_{Y}^{1}=\mathbb{P}^{1} \times Y$ and $\mathcal{O}_{\mathbb{P}_{Y}^{1}}(r)=p_{1}^{*} \mathcal{O}_{\mathbb{P}^{1} / k}(r)$, where $p_{1}: \mathbb{P}^{1} \times Y \rightarrow \mathbb{P}^{1}$ is the projection.

[^0](1) Compute $H^{1}\left(\mathbb{P}_{Y}^{1}, \mathcal{O}_{\mathbb{P}_{Y}^{1}}(r)\right)$ using Cech cohomology and the standard affine open cover of \mathbb{P}_{Y}^{1}.
(2) Show that there is a perfect pairing of finitely generated free A-modules
$$
H^{0}\left(\mathbb{P}_{Y}^{1}, \mathcal{O}_{\mathbb{P}_{Y}^{1}}(-2-r)\right) \otimes_{A} H^{1}\left(\mathbb{P}_{Y}^{1}, \mathcal{O}_{\mathbb{P}_{Y}^{1}}(r)\right) \rightarrow H^{1}\left(\mathbb{P}_{Y}^{1}, \mathcal{O}_{\mathbb{P}_{Y}^{1}}(-2)\right) \cong A
$$
(Recall that a pairing $\phi: M \otimes_{A} N \rightarrow A$ is perfect if the induced maps $M \rightarrow \operatorname{Hom}_{A}(N, A), m \mapsto \phi(m \otimes-)$, and $N \rightarrow$ $\operatorname{Hom}_{A}(M, A)$ are isomorphisms.)
Exercise 4.4. Let k be a field with fixed algebraic closure \bar{k} and X / k a smooth, irreducible, quasi-projective variety. Denote by $K=k(X)$ the function field of K.
(1) Let $V \subset X / k$ be a prime Weil divisor. For $U \subset X / k$ open define $\mathbb{Z}_{V}(U)=\mathbb{Z}$, if $U \cap V \neq \emptyset$, and $\mathbb{Z}_{V}(U)=0$, else. Show that \mathbb{Z}_{V} is a flasque sheaf on X. Deduce that $\oplus_{V} \mathbb{Z}_{V}$ is a flasque sheaf on X.
(2) Since X is smooth the local rings $\mathcal{O}_{X, V}$ are DVRs and hence define a normalized discrete valuation $\operatorname{ord}_{V}: K^{\times} \rightarrow Z$. Show that there is a surjective morphism of sheaves $K_{X}^{\times} \xrightarrow{\oplus_{V} \text { ord }_{V}} \oplus_{V} \mathbb{Z}_{V}$, where K_{X}^{\times}denotes the constant sheaf on X defined by K^{\times}.
(3) Conclude that we have a flasque resolution of \mathcal{O}_{X}^{\times}
$$
0 \rightarrow \mathcal{O}_{X}^{\times} \rightarrow K_{X}^{\times} \rightarrow \oplus_{V} \mathbb{Z}_{V} \rightarrow 0
$$
(Hint: Use that $a \in \mathcal{O}_{X}^{\times}(U) \Leftrightarrow a \in K^{\times}$and $\operatorname{ord}_{V}(a)=0$, for all prime Weil divisors V with $V \cap U \neq \emptyset$.)
(4) Use the above resolution to compute
$$
H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)=\mathrm{CH}^{1}(X)
$$

Remark 1. Without any assumptions on X one can show $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \cong$ $\check{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \cong \operatorname{Pic}(X)$, see Exercise 3, for the second equality.

[^0]: ${ }^{1}$ Questions or comments to kay.ruelling@fu-berlin.de or come to 1.103(RUD25) on Tue/Thu/Fri.

