2. December 2016

Exercise sheet 4 for Algebraic curves and the Weil conjectures

Kay Rülling¹

Exercise 4.1. Let k be a field with fixed algebraic closure k. Show that there is an $\mathcal{O}_{\mathbb{P}^1/k}$ -linear isomorphism

$$\mathcal{O}_{\mathbb{P}^1/k}(-2) \xrightarrow{\simeq} \omega_{\mathbb{P}^1/k}$$

Conclude that $\Gamma(\mathbb{P}^1/k, \omega_{\mathbb{P}^1/k}) = 0.$

Exercise 4.2. Let k be a field of characteristic $\neq 2, 3$ with fixed algeraic closure \bar{k} . Let $a, b \in k$ and let $E \subset \mathbb{P}^2(\bar{k})$ be the projective variety /k defined by $E = Z(X_2^2X_0 - (X_1^3 + aX_1X_0^2 + bX_0^3)).$

- (1) Set $U = Z(y^2 (x^3 + ax + b))$, where $x = X_1/X_0, y = X_2/X_0$ and $W = Z(z (u^3 + auz^2 + bz^3))$, where $u = X_1/X_2, z = X_0/X_2$. Show that $U, W \subset E/k$ are open and $E = U \cup W$.
- (2) Show that E is an irreducible curve/k.
- (3) Show that E is a smooth /k if and only if $4a^3 + 27b^2 \neq 0$.

We assume $4a^3 + 27b^2 \neq 0$ in the following.

- (4) Set $U_1 = U \setminus Z(y)$, $U_2 = U \setminus Z(3x^2 + a)$ and $U_3 = W \setminus Z(1 2auz 3bz^2)$. Show that $E = U_1 \cup U_2 \cup U_3$ is an open covering.
- (5) Define the differential forms

$$\alpha_1 := \frac{dx}{2y} \in \Gamma(U_1, \omega_E), \quad \alpha_2 := \frac{dy}{3x^2 + a} \in \Gamma(U_2, \omega_E),$$
$$\alpha_3 := -\frac{du}{1 - 2auz - 3bz^2} \in \Gamma(U_3, \omega_E),$$

where $\omega_E := \Omega_{E/k}^1$. Show that there is a differential $\alpha \in \Gamma(E, \omega_E)$ with $\alpha_{|U_i|} = \alpha_i, i = 1, 2, 3$.

(6) Show that we have an isomorphism $\mathcal{O}_E \to \omega_E, f \mapsto f \cdot \alpha$.

Exercise 4.3. Let k be a field with fixed algebraic closure \bar{k} and Y an affine k-variety with coordinate ring k[Y] = A. We write $\mathbb{P}^1_Y = \mathbb{P}^1 \times Y$ and $\mathcal{O}_{\mathbb{P}^1_Y}(r) = p_1^* \mathcal{O}_{\mathbb{P}^1/k}(r)$, where $p_1 : \mathbb{P}^1 \times Y \to \mathbb{P}^1$ is the projection.

 $^{^1 \}rm Questions$ or comments to kay.ruelling@fu-berlin.de or come to $1.103 (\rm RUD25)$ on Tue/Thu/Fri.

- (1) Compute $H^1(\mathbb{P}^1_Y, \mathcal{O}_{\mathbb{P}^1_Y}(r))$ using Cech cohomology and the standard affine open cover of \mathbb{P}^1_Y .
- (2) Show that there is a perfect pairing of finitely generated free A-modules

$$H^{0}(\mathbb{P}^{1}_{Y}, \mathcal{O}_{\mathbb{P}^{1}_{Y}}(-2-r)) \otimes_{A} H^{1}(\mathbb{P}^{1}_{Y}, \mathcal{O}_{\mathbb{P}^{1}_{Y}}(r)) \to H^{1}(\mathbb{P}^{1}_{Y}, \mathcal{O}_{\mathbb{P}^{1}_{Y}}(-2)) \cong A.$$
(Recall that a pairing $\phi : M \otimes_{A} N \to A$ is perfect if the induced maps $M \to \operatorname{Hom}_{A}(N, A), \ m \mapsto \phi(m \otimes -), \ \text{and} \ N \to \operatorname{Hom}_{A}(M, A)$ are isomorphisms.)

Exercise 4.4. Let k be a field with fixed algebraic closure \bar{k} and X/k a smooth, irreducible, quasi-projective variety. Denote by K = k(X) the function field of K.

- (1) Let $V \subset X/k$ be a prime Weil divisor. For $U \subset X/k$ open define $\mathbb{Z}_V(U) = \mathbb{Z}$, if $U \cap V \neq \emptyset$, and $\mathbb{Z}_V(U) = 0$, else. Show that \mathbb{Z}_V is a flasque sheaf on X. Deduce that $\bigoplus_V \mathbb{Z}_V$ is a flasque sheaf on X.
- (2) Since X is smooth the local rings $\mathcal{O}_{X,V}$ are DVRs and hence define a normalized discrete valuation $\operatorname{ord}_V : K^{\times} \to Z$. Show that there is a surjective morphism of sheaves $K_X^{\times} \xrightarrow{\oplus_V \operatorname{ord}_V} \oplus_V \mathbb{Z}_V$, where K_X^{\times} denotes the constant sheaf on X defined by K^{\times} .
- (3) Conclude that we have a flasque resolution of \mathcal{O}_X^{\times}

$$0 \to \mathcal{O}_X^{\times} \to K_X^{\times} \to \oplus_V \mathbb{Z}_V \to 0.$$

(*Hint*: Use that $a \in \mathcal{O}_X^{\times}(U) \Leftrightarrow a \in K^{\times}$ and $\operatorname{ord}_V(a) = 0$, for all prime Weil divisors V with $V \cap U \neq \emptyset$.)

(4) Use the above resolution to compute

$$H^1(X, \mathcal{O}_X^{\times}) = \operatorname{CH}^1(X).$$

Remark 1. Without any assumptions on X one can show $H^1(X, \mathcal{O}_X^{\times}) \cong \check{H}^1(X, \mathcal{O}_X^{\times}) \cong \operatorname{Pic}(X)$, see Exercise 3, for the second equality.

 $\mathbf{2}$