18. November 2016

Exercise sheet 3 for Algebraic curves and the Weil conjectures

Kay Rülling¹

Exercise 3.1. Let $k = \overline{k}$ be an algebraically closed field and $X \subset \mathbb{P}^n(k)$ a projective variety over k. Denote by $I(X) \subset k[T_0, \ldots, T_n]$ the ideal of X. Let $F_1, \ldots, F_r \in I(X)$ be homogeneous polynomials generating I(X). Consider the $(n + 1) \times r$ -matrix $J := (\partial F_i / \partial T_j)_{1 \le i \le r, 0 \le j \le n}$; it is a matrix with coefficients homogeneous polynomials and hence we can evaluate it at any point $a \in k^{n+1}$.

- (1) For $x \in X$ define $\operatorname{rk}(J(x))$ as the rank of the matrix $J(a_0, \ldots, a_n)$, where $(a_0, \ldots, a_n) \in k^{n+1}$ is some representative of x. Show that $\operatorname{rk}(J(x))$ is a well defined number, i.e., independent of the choice of the representative of x.
- (2) Show that if $F \in k[T_0, \ldots, T_n]$ is a homogeneous polynomial of degree s, then we have $s \cdot F = \sum_i T_i \partial F / \partial T_i$ (Euler's identity).
- (3) Show that X is smooth at x (as defined in the lecture) if and only if $\operatorname{rk} J(x) = n \dim \mathcal{O}_{X,x}$.

Exercise 3.2. Let k be a field and fix an algebraic closure \bar{k} . On the projective *n*-space over $k \mathbb{P}^n/k$ we defined Serre's twisted sheaves $\mathcal{O}_{\mathbb{P}^n}(r)$, for all $r \in \mathbb{Z}$. Show

$$\Gamma(\mathbb{P}^n/k, \mathcal{O}_{\mathbb{P}^n}(r)) = \begin{cases} 0 & \text{if } r < 0\\ k[T_0, \dots, T_n]_r & \text{if } r \ge 0, \end{cases}$$

where $k[T_0, \ldots, T_n]_r$ is the k-vector space of homogeneous polynomials of degree r in $k[T_0, \ldots, T_n]$.

Exercise 3.3. Let X be a topological space. An open cover \mathcal{U} of X is a tuple $\mathcal{U} = (U_i)_{i \in I}$ of open subsets $U_i \subset X$ indexed by some set I, such that $X = \bigcup_i U_i$. We say that an open cover $\mathcal{V} = (V_j)_{j \in J}$ is a *refinement* of \mathcal{U} and write $\mathcal{V} \prec \mathcal{U}$, if there exists a set map $\tau : J \to I$ such that $V_j \subset U_{\tau(j)}$. Show that \prec induces the structure of a directed set on the set of open covers of X (i.e. $\mathcal{U} \prec \mathcal{U}$; $\mathcal{W} \prec \mathcal{V}$ and $\mathcal{V} \prec \mathcal{U} \Rightarrow \mathcal{W} \prec \mathcal{U}$; any two open covers have a common refinement).

 $^{^1 \}rm Questions$ or comments to kay.ruelling@fu-berlin.de or come to 1.103 (RUD25) on Tue/Thu/Fri.

Exercise 3.4. Let X be a topological space and F a sheaf of abelian groups on X (written additively). Given an open cover $\mathcal{U} = (U_i)_{i \in I}$ define the two maps (where $U_{i,j} = U_i \cap U_j$ etc.)

$$\delta_0 : \prod_{i \in I} F(U_i) \to \prod_{(i,j) \in I^2} F(U_{i,j}), \quad (a_i)_i \mapsto (a_{i|U_{i,j}} - a_{j|U_{i,j}})_{(i,j)},$$

and

$$\delta_1: \prod_{(i,j)\in I^2} F(U_{i,j}) \to \prod_{(i,j,k)\in I^3} F(U_{i,j,k}),$$

$$(a_{i,j})_{(i,j)} \mapsto (a_{i,j|U_{i,j,k}} - a_{i,k|U_{i,j,k}} + a_{j,k|U_{i,j,k}})_{(i,j,k)}$$

(1) Show Ker $(\delta_1) \supset \text{Im}(\delta_0)$. Set

$$H^1(\mathcal{U}, F) := \operatorname{Ker}(\delta_1) / \operatorname{Im}(\delta_0).$$

(2) Let $\mathcal{V} = (V_j)_{j \in J} \prec \mathcal{U}$ be a refinement. Take $\tau : J \to I$ such that $V_j \subset U_{\tau(j)}$. Define $\tau^* : \prod_{(r,s) \in I^2} F(U_{r,s}) \to \prod_{(i,j) \in J^2} F(V_{i,j})$ via $\tau^*(a)_{i,j} := a_{\tau(i),\tau(j)|V_{i,j}}.$

Show that τ^* induces a morphism $\tau^* : H^1(\mathcal{U}, F) \to H^1(\mathcal{V}, F)$.

- (3) In the situation above assume we pick another $\tau' : J \to I$ such that $V_j \subset U_{\tau'(j)}$. Show that $\tau^* = \tau'^* : H^1(\mathcal{U}, F) \to H^1(\mathcal{V}, F)$. (*Hint:* For $a = (a_{r,s}) \in \operatorname{Ker}(\delta_1^{\mathcal{U}})$ show first that $a_{\tau(i),\tau(j)|V_{i,j}} - a_{\tau'(i),\tau'(j)|V_{i,j}} = a_{\tau(i),\tau'(i)|V_i|V_{i,j}} - a_{\tau(j),\tau'(j)|V_j|V_{i,j}}$.) (4) Conclude that a refinement $\mathcal{V} \prec \mathcal{U}$ induces a well-defined mor-
- (4) Conclude that a refinement $\mathcal{V} \prec \mathcal{U}$ induces a well-defined morphism $H^1(\mathcal{U}, F) \to H^1(\mathcal{V}, F)$. Hence we can define

$$\check{H}^1(X,F) := \varinjlim H^1(\mathcal{U},F),$$

where the limit is over the directed set of open covers (see Exercise 3.3).

Exercise 3.5. Let X be a quasi-projective variety over a field k and denote by \mathcal{O}_X^{\times} the sheaf of abelian groups given by $U \mapsto \Gamma(U, \mathcal{O}_X)^{\times}$.

- (1) Let L be an invertible sheaf on X/k. Thus there exists a open cover $\mathcal{U} = (U_i)$ such that $L_{|U_i|} \cong \mathcal{O}_{U_i}$. Then the $\mathcal{O}_{U_{i,j}}$ -linear isomorphism $\mathcal{O}_{U_{i,j}} \cong L_{|U_i|U_{i,j}} \cong L_{|U_j|U_{i,j}} \cong \mathcal{O}_{U_{i,j}}$ is induced by multiplication with a section $g_{j,i} \in \Gamma(U_{i,j}, \mathcal{O}_X^{\times})$. Show that $(g_{i,j})_{(i,j)}$ defines a well defined element $\gamma(\mathcal{U}, L) \in H^1(\mathcal{U}, \mathcal{O}_X^{\times})$.
- (2) For a line bundle L which is trivialized on \mathcal{U} denote by $\gamma(L)$ the image of $\gamma(\mathcal{U}, L)$ under the natural map $H^1(\mathcal{U}, \mathcal{O}_X^{\times}) \to \check{H}^1(X/k, \mathcal{O}_X^{\times})$. Show that there is a well defined group isomorphism

$$\operatorname{Pic}(X/k) \xrightarrow{\simeq} \check{H}^1(X/k, \mathcal{O}_X^{\times}), \quad [L] \mapsto \gamma(L).$$

 $\mathbf{2}$