Exercise sheet 2 for Algebraic curves and the Weil conjectures

Kay Rülling

Exercise 2.1. Let k be a perfect field, \bar{k} a fixed algebraic closure and X/k be an affine k-variety with coordinate ring A = k[X]. Show

- (1) X/k is connected \iff the only idempotents in A are 1 and 0, i.e., if $e \in A$ satisfies $e^2 = e$, then $e \in \{0,1\}$. (Hint: Show that X is not connected iff there are two proper non-trivial radical ideals $I, J \subset A$, which are comaximal, i.e., I + J = A, and use the Chinese Remainder Theorem.)
- (2) X/k is irreducible \iff A is a domain. (*Hint:* Show that X is not irreducible iff there are two proper non-trivial radical ideals $I, J \subset A$ with $I \cap J = 0$ iff A is not a domain.)
- (3) Let $x \in X = X(\bar{k})$ be a point and $x_0 \in (X/k)_0$ the associated closed point as defined in the lecture (in particular x_0 is a finite subset of X). Show that the set x_0 is closed in the Zariski topology of X/k and that it is the closure of x. (Hint: Use Exercise 1.2, (3).

Exercise 2.2. Let k be a perfect field and fix an algebraic closure k

- (1) Set $X := Z(x^2 + y^2) \subset \mathbb{A}^2(\bar{k})$. Show that the k-variety X is irreducible if char(k) = 2. If $char(k) \neq 2$, then it is irreducible iff -1 is not a square in k[X]. In particular, it is never irreducible over k.
- (2) Set $Y := Z(x^2 + y^2 + z^2)$. Show that the k-variety Y is always irreducible. (Hint: Show that Y is irreducible over \bar{k} by using the Eisenstein irreducibility criterion from algebra. Note that k[x,y] is a UFD.)

Exercise 2.3. Let k be a perfect field of characteristic $\neq 2$ with algebraic closure k. Consider the polynomials

- (1) $f_1 = x^2 (x^4 + y^4);$ (2) $f_2 = x^2y + xy^2 (x^4 + y^4).$

Set $X_i := Z(f_i) \subset \mathbb{A}^2(\bar{k})$ and denote by $\overline{X} \subset \mathbb{P}^2(\bar{k})$ the closure of X. Decide whether X_i or \overline{X}_i is smooth and if not compute the singular locus, i.e., the set of singular points.

Exercise 2.4. Recall that a discrete valuation ring (DVR) is a domain A with a discrete valuation on its function field K, i.e., a map $v: K^{\times} \to \mathbb{Z}$, with v(ab) = v(a) + v(b), $v(a+b) \ge \min\{v(a), v(b)\}$, $a, b \in K^{\times}$, such that $A = \{a \in K^{\times} \mid v(a) \ge 0\} \cup \{0\}$.

Let C be a smooth affine curve/k (i.e. it is an irreducible smooth 1-dimensional affine k-variety). Let $x \in (C/k)_0$ be a closed point and $\mathcal{O}_{C,x_0} := k[C]_{\mathfrak{m}_{x_0}}$ the localization of the coordinate ring of C at the maximal ideal $\mathfrak{m}_{x_0} \subset k[C]$ corresponding to x_0 (see Exercise 1.2). Show that \mathcal{O}_{C,x_0} is a DVR. (*Hint*: Use that \mathcal{O}_{C,x_0} is a regular local ring.)