21. October 2016

Exercise sheet 1 for Algebraic curves and the Weil conjectures

Kay Rülling

Exercise 1.1. Let \mathbb{F}_q be a finite field with $q = p^n$ elements and fix an algebraic closure $\overline{\mathbb{F}}_q$. Let X/\mathbb{F}_q be a quasi-projective variety/ \mathbb{F}_q with $X \subset \mathbb{P}^n(\overline{\mathbb{F}}_q)$. Recall that we defined in the lecture the sets $X(\mathbb{F}_{q^n})$ of \mathbb{F}_{q^n} -rational points and $(X/\mathbb{F}_q)_0$ the set of closed points. For a closed point $x_0 \in (X/\mathbb{F}_q)_0$ we define $\deg(x_0) = [k(x_0) : \mathbb{F}_q](=$ vector space dimension of $k(x_0)$ over \mathbb{F}_q), where $k(x_0)$ is the residue field associated with x_0 . The aim of this exercise is to is show

(1.1)
$$|X(\mathbb{F}_{q^n})| = \sum_{\substack{x_0 \in (X/\mathbb{F}_q)_0 \\ \deg(x)|n}} \deg(x_0).$$

To this end proceed as follows:

- (1) Show (recall) that $k(x_0)/\mathbb{F}_q$ is a finite Galois extension, for all $x_0 \in (X/\mathbb{F}_q)_0$. In particular, $k(x_0) = \mathbb{F}_{q^d}$ with $d = \deg(x_0)$.
- (2) For x_0 and d as above, show that $|x_0| = d$ (here we view x_0 as a subset of $X(\bar{\mathbb{F}}_q)$).
- (3) Given d, n, then: $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n} \iff d|n$.
- (4) Show (1.1).

Exercise 1.2 (*). Let k be a perfect field with algebraic closure k and X/k an affine variety/k, i.e. $X = Z(I) = \{a \in \bar{k}^n \mid f(a) = 0 \forall f \in I\}$, where $I \subset k[x_1, \ldots, x_n]$. Set $A := k[x_1, \ldots, x_n]/I$ and $\bar{A} = A \otimes_k \bar{k} = \bar{k}[x_1, \ldots, x_n]/I \cdot \bar{k}[x_1, \ldots, x_n]$. Denote by $\varphi : A \hookrightarrow \bar{A}$ the natural inclusion and by Max(A) the set of maximal ideals of A.

- (1) Show that there is a well defined homomorphism φ^{-1} : Max $(\bar{A}) \to$ Max(A). (*Hint:* Note that $A \hookrightarrow \bar{A}$ is an integral extension and use the going-up theorem from commutative algebra.)
- (2) Let $x = (a_1, \ldots, a_n) \in X$. Hence $\langle x_1 a_1, \ldots, x_n a_n \rangle \in$ Max (A) and denote $\mathfrak{m}_x := \varphi^{-1}(\langle x_1 - a_1, \ldots, x_n - a_n \rangle)$. Show that A/\mathfrak{m}_x is the residue field k(x) of x as defined in the lecture.

(3) Show that the map $X \to Max(A), x \mapsto \mathfrak{m}_x$ (notation as above) induces a bijection

$$(X/k)_0 \xrightarrow{1:1} \operatorname{Max}(A).$$

Exercise 1.3. Give a product formula for $\zeta(\mathbb{A}^n/\mathbb{F}_q, s)$ and $\zeta(\mathbb{P}^n/\mathbb{F}_q, s)$.

Exercise 1.4. Let X/\mathbb{F}_2 be the affine variety/ \mathbb{F}_2 given by

$$X = Z(x^2 + x + y^2 + y + 1) \subset \mathbb{A}^2(\bar{\mathbb{F}}_2)$$

and denote by \overline{X} its closure in $\mathbb{P}^2(\overline{\mathbb{F}}_2)$. Let $Z(X/\mathbb{F}_2, t) \in \mathbb{Q}[[t]]$ be the power series defined by $Z(X/\mathbb{F}_2, 2^{-s}) = \zeta(X/\mathbb{F}_2, s)$. Show

- (1) $Z(X/\mathbb{F}_2, t) = 1 + 4t^2 + \text{higher terms}...$ (2) $Z(\bar{X}/\mathbb{F}_2, t) = 1 + t + 5t^2 + \text{higher terms}...$

2