Exercise 9 for Number theory III

Kay Rülling

Exercise 9.1. Let k be a field and A a central simple k-algebra. We define the reduced norm $\operatorname{Nrd}: A \rightarrow k$ as follows: Let L / k be a splitting field for A and pick an isomorphism of k-algebras $\varphi: A \otimes_{k} L \xrightarrow{\simeq} M_{n}(L)$. Then for $a \in A$ set

$$
\operatorname{Nrd}(\mathrm{a}):=\operatorname{det}(\varphi(a \otimes 1)) .
$$

(1) Show that $\operatorname{Nrd}(a)$ is independent of the choice of the isomorphism φ.
(2) Show that $\operatorname{Nrd}(a)$ is independent of the choice of L.
(3) Show that $\operatorname{Nrd}(a) \in k$. (Hint: Use that one can always find a finite Galois extension L / K which splits A.)
(4) Show that $\operatorname{Nrd}(a b)=\operatorname{Nrd}(a) \operatorname{Nrd}(b)$.
(5) For $a \in A$ denote by $\operatorname{Nm}_{A / k}(a):=\operatorname{det}\left(\mu_{a}\right)$ the norm of a (here $\mu_{a}: A \rightarrow A$ is the k-linear endomorphism given by $\left.\mu_{a}(b)=a b\right)$. Show that $\operatorname{Nm}_{A / k}(a)=\operatorname{Nrd}(a)^{n}$, where $[A: k]=n^{2}$.
(6) For $a \in A$ show that

$$
\operatorname{Nrd}(a) \in k^{\times} \Leftrightarrow \operatorname{Nm}_{A / k}(a) \in k^{\times} \Leftrightarrow a \in A^{\times} .
$$

(Hint: Use that $\operatorname{Nm}_{A / k}(a) \in k^{\times}$is equivalent to $\mu_{a}: A \rightarrow A$ being bijective.)

Exercise 9.2. Let A be a central simple k-algebra and let $e_{1}, \ldots, e_{n^{2}} \in$ A be a k-basis of A. Let L be a splitting field for A, which we can assume to be finite over k.
(1) Show that there is a homogeneous polynomial $N \in L\left[x_{1}, \ldots, x_{n^{2}}\right]$ of degree n, such that

$$
\operatorname{Nrd}\left(\sum_{i=1}^{n^{2}} \lambda_{i} e_{i}\right)=N\left(\lambda_{1}, \ldots, \lambda_{n^{2}}\right), \quad \text { for all } \lambda_{i} \in k
$$

(2) Show that if k is infinite, then $N \in k\left[x_{1}, \ldots, x_{n^{2}}\right]$. (Hint: Use that $N\left(\lambda_{1}, \ldots, \lambda_{n^{2}}\right) \in k$, for all $\lambda_{i} \in k$.)

[^0](3) Show that also if k is finite, then $N \in k\left[x_{1}, \ldots, x_{n^{2}}\right]$. (Hint: First use (2) for $A \otimes_{k} k(y)$ and conclude that N has coefficients in $L \cap k(y)=k$.)
Exercise 9.3. In this exercise we want to prove the following version of the Theorem of Chevalley-Warning:
Let \mathbb{F}_{q} be a finite field with $q=p^{s}$ elements and $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ a non-constant homogeneous polynomial of degree $\operatorname{deg}(f)<n$. Then there exists an element $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n} \backslash\{(0, \ldots, 0)\}$ with $f\left(a_{1}, \ldots, a_{n}\right)=$ 0 .
Proceed as follows:
(1) Show that for $n \geq 0$ we have
\[

\sum_{a \in \mathbb{F}_{q}} a^{n}= $$
\begin{cases}-1, & \text { if } n \geq 1 \text { and } q-1 \mid n \\ 0, & \text { else }\end{cases}
$$
\]

(Here we use the convention $a^{0}=1$, for all $a \in \mathbb{F}_{q}$ including $a=0$.)
(2) Show that if $m=x_{1}^{r_{1}} \cdots x_{n}^{r_{n}}$ is a monomial with $\sum_{i=1}^{n} r_{i}<$ $n(q-1)$, then $\sum_{a \in \mathbb{F}_{q}^{n}} m(a)=0$.
(3) Let $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be as above. Set $V=\left\{a \in \mathbb{F}_{q}^{n} \mid f(a)=0\right\}$ and $P:=1-f^{q-1} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$. Show that

$$
P(a)= \begin{cases}1, & \text { if } a \in V \\ 0, & \text { if } a \notin V\end{cases}
$$

(4) Conclude from (3), that $|V|=\sum_{a \in \mathbb{F}_{q}^{n}} P(a)$.
(5) Conclude from (2), that $|V| \equiv 0 \bmod p$.
(6) Conclude the statement.

Definition 1. Let k be a field. We say that k is a C1 field if any nonconstant homogeneous polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ of degree $\operatorname{deg}(f)<$ n has a non-trivial zero in k^{n}, i.e. there exists a vector $\left(a_{1}, \ldots, a_{n}\right) \in$ $k^{n} \backslash\{(0, \ldots, 0)\}$ with $f\left(a_{1}, \ldots, a_{n}\right)=0$.

C1 are: Algebraically closed fields (clear), finite fields (Theorem of Chevalley-Warning, see above), fields which have transcendence degree 1 over an algebraically closed field (Tsen's Theorem) and complete discrete valuation fields with algebraically closed residue field, e.g. $\mathbb{Q}_{p}^{\text {ur }}$ (Theorem of Lang).
Exercise 9.4. Let k be a C1 field. Show that the Brauer group of k is trivial, $\operatorname{Br}(k)=0$. (Hint: Use Exercise 9.1, (6) and Exercise 9.2 to show that there is no non-trivial central division k-algebra.)

[^0]: ${ }^{1}$ This exercise sheet will be discussed on December 19. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

