Exercise 9 for Number theory III^{1}

Kay Rülling

Exercise 9.1. Let k be a field and A a central simple k-algebra. We define the *reduced norm* Nrd : $A \to k$ as follows: Let L/k be a splitting field for A and pick an isomorphism of k-algebras $\varphi : A \otimes_k L \xrightarrow{\simeq} M_n(L)$. Then for $a \in A$ set

$$\operatorname{Nrd}(a) := \det(\varphi(a \otimes 1)).$$

- (1) Show that Nrd(a) is independent of the choice of the isomorphism φ .
- (2) Show that Nrd(a) is independent of the choice of L.
- (3) Show that $Nrd(a) \in k$. (*Hint:* Use that one can always find a finite Galois extension L/K which splits A.)
- (4) Show that Nrd(ab) = Nrd(a)Nrd(b).
- (5) For $a \in A$ denote by $\operatorname{Nm}_{A/k}(a) := \det(\mu_a)$ the norm of a (here $\mu_a : A \to A$ is the k-linear endomorphism given by $\mu_a(b) = ab$). Show that $\operatorname{Nm}_{A/k}(a) = \operatorname{Nrd}(a)^n$, where $[A : k] = n^2$.
- (6) For $a \in A$ show that

 $\operatorname{Nrd}(a) \in k^{\times} \Leftrightarrow \operatorname{Nm}_{A/k}(a) \in k^{\times} \Leftrightarrow a \in A^{\times}.$

(*Hint*: Use that $\operatorname{Nm}_{A/k}(a) \in k^{\times}$ is equivalent to $\mu_a : A \to A$ being bijective.)

Exercise 9.2. Let A be a central simple k-algebra and let $e_1, \ldots, e_{n^2} \in A$ be a k-basis of A. Let L be a splitting field for A, which we can assume to be finite over k.

(1) Show that there is a homogeneous polynomial $N \in L[x_1, \ldots, x_{n^2}]$ of degree n, such that

$$\operatorname{Nrd}(\sum_{i=1}^{n^2} \lambda_i e_i) = N(\lambda_1, \dots, \lambda_{n^2}), \text{ for all } \lambda_i \in k.$$

(2) Show that if k is infinite, then $N \in k[x_1, \ldots, x_{n^2}]$. (*Hint:* Use that $N(\lambda_1, \ldots, \lambda_{n^2}) \in k$, for all $\lambda_i \in k$.)

¹This exercise sheet will be discussed on December 19. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

(3) Show that also if k is finite, then $N \in k[x_1, \ldots, x_{n^2}]$. (*Hint:* First use (2) for $A \otimes_k k(y)$ and conclude that N has coefficients in $L \cap k(y) = k$.)

Exercise 9.3. In this exercise we want to prove the following version of the Theorem of Chevalley-Warning:

Let \mathbb{F}_q be a finite field with $q = p^s$ elements and $f \in \mathbb{F}_q[x_1, \ldots, x_n]$ a non-constant homogeneous polynomial of degree $\deg(f) < n$. Then there exists an element $(a_1, \ldots, a_n) \in \mathbb{F}_q^n \setminus \{(0, \ldots, 0)\}$ with $f(a_1, \ldots, a_n) = 0$.

Proceed as follows:

(1) Show that for $n \ge 0$ we have

$$\sum_{a \in \mathbb{F}_q} a^n = \begin{cases} -1, & \text{if } n \ge 1 \text{ and } q - 1 | n, \\ 0, & \text{else.} \end{cases}$$

(Here we use the convention $a^0 = 1$, for all $a \in \mathbb{F}_q$ including a = 0.)

- (2) Show that if $m = x_1^{r_1} \cdots x_n^{r_n}$ is a monomial with $\sum_{i=1}^n r_i < n(q-1)$, then $\sum_{a \in \mathbb{F}_a^n} m(a) = 0$.
- (3) Let $f \in \mathbb{F}_q[x_1, \dots, x_n]$ be as above. Set $V = \{a \in \mathbb{F}_q^n \mid f(a) = 0\}$ and $P := 1 - f^{q-1} \in \mathbb{F}_q[x_1, \dots, x_n]$. Show that

$$P(a) = \begin{cases} 1, & \text{if } a \in V\\ 0, & \text{if } a \notin V. \end{cases}$$

- (4) Conclude from (3), that $|V| = \sum_{a \in \mathbb{F}_a^n} P(a)$.
- (5) Conclude from (2), that $|V| \equiv 0 \mod p$.
- (6) Conclude the statement.

Definition 1. Let k be a field. We say that k is a C1 field if any nonconstant homogeneous polynomial $f \in k[x_1, \ldots, x_n]$ of degree deg(f) < n has a non-trivial zero in k^n , i.e. there exists a vector $(a_1, \ldots, a_n) \in k^n \setminus \{(0, \ldots, 0)\}$ with $f(a_1, \ldots, a_n) = 0$.

C1 are: Algebraically closed fields (clear), finite fields (Theorem of Chevalley-Warning, see above), fields which have transcendence degree 1 over an algebraically closed field (Tsen's Theorem) and complete discrete valuation fields with algebraically closed residue field, e.g. \mathbb{Q}_p^{ur} (Theorem of Lang).

Exercise 9.4. Let k be a C1 field. Show that the Brauer group of k is trivial, Br(k) = 0. (*Hint:* Use Exercise 9.1, (6) and Exercise 9.2 to show that there is no non-trivial central division k-algebra.)

2