Exercise 8 for Number theory III[

Kay Rülling

Exercise 8.1. Let k be a field and V a finite dimensional k-vector space. Let φ be a k-linear endomorphism of V. We view V as a $k[x]$ module by setting $x \cdot v:=\varphi(v), v \in V$. Show that V as a $k[x]$-module is simple if an only if the characteristic polynomial of φ is irreducible.

Exercise 8.2. Let k be a field and denote by $M_{n}(k)$ the k-algebra of $n \times n$-matrices. Show that $M_{n}(k)$ has center equal to k and is simple as a k-algebra, i.e. it has no non-zero proper two-sided ideals.

Exercise 8.3. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$. Show that the following statements are equivalent:
(1) $\exists(x, y) \in k^{2}$ with $a x^{2}+b y^{2}=1$.
(2) $\exists(x, y, z) \in k^{3} \backslash\{(0,0,0)\}$ with $a x^{2}+b y^{2}=z^{2}$.
(3) $\exists(x, y, z, w) \in k^{4} \backslash\{(0,0,0,0)\}$ with $z^{2}-a x^{2}-b y^{2}+a b w^{2}=0$.
(4) $\exists \gamma \in k(\sqrt{a})^{\times}$with $b=\operatorname{Nm}_{k(\sqrt{a}) / k}(\gamma)$.
(Hint: For $(3) \Rightarrow(4)$ show that if $\sqrt{a} \notin k$, then $\operatorname{Nm}(z+\sqrt{a} x)=$ $b \mathrm{Nm}(y+\sqrt{a} w)$ and conclude.)

Exercise 8.4. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$.
(1) Show that there is a unique (non-commutative) k-algebra $A(a, b ; k)$ with generators α, β satisfying

$$
\alpha^{2}=a, \quad \beta^{2}=b, \quad \alpha \beta=-\beta \alpha,
$$

whose underlying vector space is the 4 -dimensional k-vector space with basis $1, \alpha, \beta, \alpha \beta$ and whose center is equal to k.
(2) Show that if there are no elements $x, y \in k$ with $a x^{2}+b y^{2}=1$, then $A(a, b ; k)$ is a divison algebra (or skew field), i.e. any nonzero element has a multiplicative inverse. (Hint: Use Exercise $8.3(1) \Leftrightarrow(3)$.)

[^0](3) Show that if there exist $x, y \in k$ with $a x^{2}+b y^{2}=1$, then $A(a, b ; k)$ is isomorphic as a k-algebra to the ring of 2×2 matrices with coefficients in k, i.e. $A(a, b ; k) \cong M_{2}(k)$. In particular $A(a, b ; k)$ is not a division algebra.
(Hint: If $\sqrt{a} \in k$, show that
\[

\alpha \mapsto\left($$
\begin{array}{cc}
\sqrt{a} & 0 \\
0 & -\sqrt{a}
\end{array}
$$\right), \quad \beta \mapsto\left($$
\begin{array}{ll}
0 & b \\
1 & 0
\end{array}
$$\right)
\]

defines an isomorphism $A(a, b ; k) \cong M_{2}(k)$. If $[k(\sqrt{a}): k]=2$ denote by V the k-vector space $k(\sqrt{a})$, by $\mu_{x}: V \rightarrow V$ the multiplication by x map, i.e. $\mu_{x}(v)=x v$, let $\sigma \in G(k(\sqrt{a}) / k)$ be the non-trivial element and take $\gamma \in k(\sqrt{a})$ with $\operatorname{Nm}(\gamma)=b$ (see Excercise 8.3). Then show that there is a unique isomorphism of k-algebras $A(a, b ; k) \xrightarrow{\cong} \operatorname{End}_{k-\mathrm{v.s} .}(V) \cong M_{2}(k)$ satisfying

$$
\left.1 \mapsto \mathrm{id}_{V}, \quad \alpha \mapsto \mu_{\alpha}, \quad \beta \mapsto \mu_{\gamma} \circ \sigma .\right)
$$

Remark 1. A k-algebra of the form $A(a, b ; k)$ as above is called a quaternion algebra. The divison algebra (!) $\mathbb{H}:=A(-1,-1 ; \mathbb{R})$ is called the quaternion field of Hamilton.

[^0]: ${ }^{1}$ This exercise sheet will be discussed on December 12. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

