1. December 2014

Exercise 8 for Number theory III^{1}

Kay Rülling

Exercise 8.1. Let k be a field and V a finite dimensional k-vector space. Let φ be a k-linear endomorphism of V. We view V as a k[x]module by setting $x \cdot v := \varphi(v), v \in V$. Show that V as a k[x]-module is simple if an only if the characteristic polynomial of φ is irreducible.

Exercise 8.2. Let k be a field and denote by $M_n(k)$ the k-algebra of $n \times n$ -matrices. Show that $M_n(k)$ has center equal to k and is simple as a k-algebra, i.e. it has no non-zero proper two-sided ideals.

Exercise 8.3. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$. Show that the following statements are equivalent:

- (1) $\exists (x, y) \in k^2$ with $ax^2 + by^2 = 1$.
- (2) $\exists (x, y, z) \in k^3 \setminus \{(0, 0, 0)\} \text{ with } ax^2 + by^2 = z^2.$ (3) $\exists (x, y, z, w) \in k^4 \setminus \{(0, 0, 0, 0)\} \text{ with } z^2 ax^2 by^2 + abw^2 = 0.$
- (4) $\exists \gamma \in k(\sqrt{a})^{\times}$ with $b = \operatorname{Nm}_{k(\sqrt{a})/k}(\gamma)$.

(*Hint*: For (3) \Rightarrow (4) show that if $\sqrt{a} \notin k$, then $\operatorname{Nm}(z + \sqrt{ax}) =$ $bNm(y + \sqrt{aw})$ and conclude.)

Exercise 8.4. Let k be a field of characteristic $\neq 2$ and $a, b \in k^{\times}$.

(1) Show that there is a unique (non-commutative) k-algebra A(a, b; k)with generators α, β satisfying

$$\alpha^2 = a, \quad \beta^2 = b, \quad \alpha\beta = -\beta\alpha,$$

whose underlying vector space is the 4-dimensional k-vector space with basis $1, \alpha, \beta, \alpha\beta$ and whose center is equal to k.

(2) Show that if there are no elements $x, y \in k$ with $ax^2 + by^2 = 1$, then A(a, b; k) is a divison algebra (or skew field), i.e. any nonzero element has a multiplicative inverse. (*Hint:* Use Exercise $8.3(1) \Leftrightarrow (3).)$

¹This exercise sheet will be discussed on December 12. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

(3) Show that if there exist $x, y \in k$ with $ax^2 + by^2 = 1$, then A(a,b;k) is isomorphic as a k-algebra to the ring of 2×2 -matrices with coefficients in k, i.e. $A(a,b;k) \cong M_2(k)$. In particular A(a,b;k) is not a division algebra.

(*Hint*: If $\sqrt{a} \in k$, show that

$$\alpha \mapsto \begin{pmatrix} \sqrt{a} & 0\\ 0 & -\sqrt{a} \end{pmatrix}, \quad \beta \mapsto \begin{pmatrix} 0 & b\\ 1 & 0 \end{pmatrix}$$

defines an isomorphism $A(a, b; k) \cong M_2(k)$. If $[k(\sqrt{a}) : k] = 2$ denote by V the k-vector space $k(\sqrt{a})$, by $\mu_x : V \to V$ the multiplication by x map, i.e. $\mu_x(v) = xv$, let $\sigma \in G(k(\sqrt{a})/k)$ be the non-trivial element and take $\gamma \in k(\sqrt{a})$ with $\operatorname{Nm}(\gamma) = b$ (see Excercise 8.3). Then show that there is a unique isomorphism of k-algebras $A(a, b; k) \xrightarrow{\simeq} \operatorname{End}_{k-v.s.}(V) \cong M_2(k)$ satisfying

 $1 \mapsto \mathrm{id}_V, \quad \alpha \mapsto \mu_\alpha, \quad \beta \mapsto \mu_\gamma \circ \sigma.)$

Remark 1. A k-algebra of the form A(a, b; k) as above is called a *quaternion algebra*. The divison algebra (!) $\mathbb{H} := A(-1, -1; \mathbb{R})$ is called the quaternion field of Hamilton.

2