Exercise 6 for Number theory III^{1}

Kay Rülling

Exercise 6.1. Let K be a finite extension of \mathbb{Q}_p . Recall that we equip K^{\times} with the topology for which $U_K^{(n)} = 1 + \mathfrak{m}_K^n$, $n \ge 1$, is a fundamental system of open neighborhoods of 1.

- (1) Show that $(K^{\times})^n = \{a^n \mid a \in K^{\times}\}$ is an open subgroup of finite index in K^{\times} , for all $n \ge 1$. (*Hint:* First show that for all $n \ge 1$ there are $i, j \ge 1$ with $\mathfrak{m}_K^j = n\mathfrak{m}_K^i$ and such that the exponential function from Exercise 5.2 is defined on \mathfrak{m}_K^i . Use the properties of exp to conclude that $(K^{\times})^n$ is open. Use Exercise 4.2 to show that the index is finite.)
- (2) Show that any subgroup of finite index of K^{\times} is open.

Exercise 6.2. Let K be a local field which is not \mathbb{R} or \mathbb{C} . Use the Main Theorem of Local Class Field Theory to show that the finite unramified extensions of K are in one-to one correspondence with subgroups of finite index in $K^{\times}/\mathcal{O}_{K}^{\times} \cong \mathbb{Z}$.

Exercise 6.3. Let $p \neq 2$ be a prime number. Show that there are exactly p+1 abelian extensions of degree p over \mathbb{Q}_p only one of which is unramified. To this end proceed as follows:

- (1) Use the Main Theorem of Local Class Field Theory and Exercise 6.1 to show that the number of abelian extensions of degree p over \mathbb{Q}_p is equal to the number of subgroups of $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^p$.
- (2) Show that $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^p \cong \mathbb{Z}/p \times \mathbb{Z}/p$.
- (3) Count the subgroups of index p in $\mathbb{Z}/p \times \mathbb{Z}/p$.
- (4) Use Exercise 6.2 to show that there is only one unramified abelian extension of degree p over \mathbb{Q}_p .

Exercise 6.4. Let K be a local field, which is not \mathbb{R} or \mathbb{C} . Let $k = \mathbb{F}_q$ be its residue field. Recall from the lecture that we have the exact sequence

$$0 \to I(K^{\rm ab}/K) \to G(K^{\rm ab}/K) \to G(k) \to 0,$$

¹This exercise sheet will be discussed on November 28. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

where $I(K^{\rm ab}/K)$ denotes the inertia group and $G(k) \cong \hat{\mathbb{Z}}$ the absolute Galois group of k. We view \mathbb{Z} as a subgroup of G(k) by mapping $1 \in \mathbb{Z}$ to the q-power Frobenius. Denote by d the composition d: $G(K^{\rm ab}/K) \to G(K^{\rm ur}/K) \cong G(k)$. We define the abelian Weil group of K to be

$$W^{\mathrm{ab}}(K) := d^{-1}(\mathbb{Z}).$$

It clearly contains $I(K^{ab}/K)$ and we equip it with the topology for which the open subsets of $I(K^{ab}/K)$ form a fundamental system of open neighborhoods of 1.

Show that the local Artin map $\rho_K : K^{\times} \to G(K^{\rm ab}/K)$ induces an isomorphism of topological groups

$$\rho_K : K^{\times} \xrightarrow{\simeq} W^{\mathrm{ab}}(K)$$

under which \mathcal{O}_K^{\times} is mapped isomorphically to $I(K^{ab}/K)$. (*Hint:* Deduce this from the Main Theorem of Local Class Field Theory using that \mathcal{O}_K^{\times} and $I(K^{\rm ab}/K)$ are both complete.)