Exercise 5 for Number theory III^{1}

Kay Rülling

Exercise 5.1. Let K be a complete discrete valuation field with perfect residue field k (i.e. $K = \operatorname{Frac}(A)$ with A a complete DVR and $k = A/\mathfrak{m}$ is perfect) and fix a separable closure K^{sep} . Show that the maximal unramified extension K^{ur} of K in K^{sep} is a discrete valuation field with residue field k^{sep} the separable closure of k.

Exercise 5.2. Let K be a finite extension of \mathbb{Q}_p and denote by $e = e(K/\mathbb{Q}_p)$ its ramification index and by $v_K : K^{\times} \to \mathbb{Z}$ its normalized discrete valuation (so that $v_K(p) = e$). Denote by \mathfrak{m} the maximal ideal of \mathcal{O}_K and set $U_K^{(n)} := 1 + \mathfrak{m}^n$, $n \ge 1$. Let $\log : K^{\times} \to K$ be the group homomorphism from Exercise 4.4, (4). Show:

- (1) log induces a map log : $U_K^{(n)} \to \mathfrak{m}^n$, for all $n > \frac{e}{p-1}$. (*Hint:* Show that $v_K(z^j/j) > v_K(z)$, for all $j \ge 2$ and $z \in K$ with $v_K(z) > \frac{e}{p-1}$.)
- (2) For $x \in K$ with $v_K(x) > \frac{e}{p-1}$ the series $\sum_{j=0}^{\infty} x^j/j!$ converges, see Exercise 4.4. (*Hint:* If $j \in \mathbb{N}$ is written in the form $j = a_0 + a_1p + \ldots a_sp^s$, with $a_i \in [0, p-1]$, then $v_K(j!) = \frac{1}{p-1}(j - (a_0 + a_i + \ldots + a_s)).$)
- (3) For all $n > \frac{e}{n-1}$ there is a well defined continuous map

$$\exp: \mathfrak{m}^n \to U_K^{(n)}, \quad x \mapsto \exp(x) := \sum_{j=0}^{\infty} \frac{x^j}{j!}$$

(4) For all $n > \frac{e}{p-1}$ the maps $\log_{|U^{(n)}|}$ and $\exp_{|\mathfrak{m}^n|}$ are inverse to each other, i.e. we have an isomorphism of topological groups

$$U_K^{(n)} \cong \mathfrak{m}^n.$$

Exercise 5.3. (1) Show that up to isomorphism there is a unique unramified quadratic extension of \mathbb{Q}_3 and it is isomorphic to $\mathbb{Q}_3(\sqrt{-1})$.

¹This exercise sheet will be discussed on November 21. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math. fu-berlin.de or l.zhang@fu-berlin.de

- (2) Show that $\mathbb{Z}_{3}^{\times}/(\mathbb{Z}_{3}^{\times})^{2} = \{\pm 1\}.$
- (3) Show that up to isomorphism there are two ramified quadratic extensions of \mathbb{Q}_3 and they are isomorphic to $\mathbb{Q}_3(\sqrt{3})$ or $\mathbb{Q}_3(\sqrt{-3})$.

Thus all together we see that up to isomorphism there are only three quadratic extensions of \mathbb{Q}_3 .

Exercise 5.4. Let K be a local field. Let p be the characteristic of its residue field.

- (1) Show that if $\zeta \in \overline{K}$ is an *n*-th root of unity with (n, p) = 1, then $K(\zeta)$ is unramified over K.
- (2) Show that K^{ur} is obtained by adjoining all *n*-th root of unity with (n, p) = 1 to K. (*Hint:* One inclusion follows from (1) the other from Hensel's Lemma.)

 $\mathbf{2}$