Exercise 10 for Number theory III^{1}

Kay Rülling

Exercise 10.1. Let k be a field and A a not necessarily commutative ring with 1 and equipped with an injective ring homomorphism $k \hookrightarrow A$. Show that the following conditions are equivalent:

- (1) A is a central simple k-algebra.
- (2) There exists a finite Galois extension L/k and an isomorphism $A \otimes_k L \cong M_n(k)$, for some $n \ge 1$.

Exercise 10.2. Let K be a local field (not \mathbb{R} , \mathbb{C}), denote by $v_K : K^{\times} \to \mathbb{Z}$ the normalized discrete valuation and by \mathcal{O}_K , \mathfrak{m} , k the ring of integers, the maximal ideal and the residue field, respectively. Let D be a central division algebra over K and write $[D:K] = n^2$.

(1) For $\alpha \in D \setminus \{0\}$ set

$$v_D(\alpha) := \frac{1}{[K(\alpha):K]} v_K(\operatorname{Nm}_{K(\alpha)/K}(\alpha)),$$

where $\operatorname{Nm}_{K(\alpha)/K} : K(\alpha)^{\times} \to K^{\times}$ is the norm map. Show that this defines a valuation on D extending v_K , i.e. a multiplicative map $v_D : D \setminus \{0\} \to \mathbb{Q}^{\times}$ with $v_D(\alpha + \beta) \ge \min\{v_D(\alpha), v_D(\beta)\}$ and $v_{D|K} = v_K$.

(2) Show that $v_D(D \setminus \{0\}) \subset \frac{1}{n}\mathbb{Z}$. We set $e := [v_D(D \setminus \{0\}) : \mathbb{Z}]$ and get $e \leq n$.

Set

$$\mathcal{O}_D := \{ \alpha \in D \setminus \{0\} \mid v_D(\alpha) \ge 0 \} \cup \{0\}, \\ \mathfrak{m}_D := \{ \alpha \in D \setminus \{0\} \mid v_D(\alpha) > 0 \} \cup \{0\}.$$

- (3) Show that \mathcal{O}_D is a finite free \mathcal{O}_K -module of rank n^2 and $D = \mathcal{O}_D \otimes_{\mathcal{O}_K} K$.
- (4) Show that $\mathfrak{m}_D \subset \mathcal{O}_D$ is a two-sided ideal and that $k_D := \mathcal{O}_D/\mathfrak{m}_D$ is a finite commutative field extension of k. (*Hint:* Use Exercises 9.3, 9.4 and that k is a finite field.)

(5) Set
$$f := [k_D : k]$$
. Show $f \le n$.

¹This exercise sheet will be discussed on January 9. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

- $\mathbf{2}$
- (6) Show that $\mathfrak{m} \cdot \mathcal{O}_D = \mathfrak{m}_D^e$. (7) Show that $n^2 = ef$.
- (8) Conclude that e = n and f = n.

Exercise 10.3. Let K, D be as in Exercise 10.2.

- (1) Show that there exists a subfield $L \subset D$ with [L:K] = n and such that L/K is unramified. (*Hint:* Lift a generator of k_D/k to D.)
- (2) Show that

$$\operatorname{Br}(K) = \bigcup_{L/K \atop \text{fin. unramf. Gal.}} \operatorname{Br}(L/K) = \operatorname{Br}(K^{\operatorname{ur}}/K),$$

where L/K runs through the finite unramified Galois extensions and $K^{\rm ur}$ is the maximal unramified extension of K.