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Let X, be a variety over the field € of complex numbers, having isolated quotient
singularities, and let X, be the general fibre of a deformation f: X —S of X,. The
class of rational singularities is stable under deformations (Elkik [1]) and hence X "
belongs to this class. Riemenschneider [9] conjectured that isolated quotient
singularities have a similar property, i.e. that X, has only quotient singularities.
Schlessinger [10] proved that, as soon as dim(X ) >3, the isolated singularities
are rigid. Therefore, the only case to consider is the two dimensional one. In this
note we give an affirmative answer to Riemenschneider’s conjecture (2.5).

The known deformations of quotient singularities often exhibit a bewildering
complexity. We are grateful to Kurt Behnke for illustrating this to us by several
interesting examples; in particular for showing us deformations for which the
order of the group of X, is prime to that of X o For example, a singularity X,
whose minimal desingularization is described by the graph

0 ®
o

1[s9 iyclic of order 5. However, it can be deformed to quotients of order 3 or order 2

Itis well known (see for example [12]) that for each rational surface sin gularity
one can construct a cyclic covering, which has Gorenstein singularities [the
“canonical covering” described in (1.6)]. One approach to study the deformations
?_f » Would be to try to construct the canonical coverings of X, and X, "
simultaneously. That of X, has rational double points (1.7) and the known
deformation theory of rational double points would give a proof of our main result.
For this to work one must show that some power of the dualizing sheaf of
U0=Reg(X o) has a trivializing section, which can be extended to X. In (3.2) we
8lve an example where the obstructions to extending those sections do not vanish
Marc Levine kindly explained the necessary calculations). This means that we can
fot expect the total space X of our deformation to have only quotient singularities.

18 can be seen as one of the reasons for the “complexity” of the deformations
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mentioned above. Nevertheless, we try to deform as many sections of powers of the
dualizing sheaf wy, as possible (Sect. 2) and we try to study the corresponding
cyclic coverings (Sect. 1). The main idea of the proof is explained in (1.9).

We use the usual notations of algebraic geometry as explained in [4], except
that the tensor product (®) is always supposed to be the tensor product of modules
over the structure sheaf (®,,), and that we denote by @Ox(D) the invertible sheaf
associated to a Cartier divisor D on X. We often write .4 (D) instead of # ® 0 (D),
for an arbitrary sheaf .#, and correspondingly A#'(D)=.#'®0O(D) and
M(D)'=MR0(i- D).

Some of the methods used in Sect. 1 can be found in [2, 3, 5, 11]. There,
however, they are discussed in the case of a projective smooth variety. We
reformulate them for singular varieties and their desingularization, in the hope
that they will have general applications in the theory of singularities.

1. Cyclic Coverings of Singularities

Let X be a normal Cohen-Macaulay variety over € and wy its dualizing sheaf. We
are always interested in the affine case, even if we don’t make this assumption. We
choose a desingularization 6: Y- X, such that the exceptional locus of d is a
normal crossing divisor.

(1.1) As is well known [6, p. 501, X has only rational singularities, if one of the
following equivalent conditions is satisfied:

a) R%,0y=0 for ¢>0.

b) 6*wy=wx.

We denote the reflexive hull of the N-th tensor power of the dualizing sheaf by
o= (w})"" and we write v =5*wM/torsion. Of course, v is a coherent
sheaf. )

(1.2) Let A - be an inclusion of sheaves, isomorphic outside of the singular
locus of X. We assume in the sequel that we have choosen & such that both o} and

M = 8* A /torsion are invertible sheaves. 4" and .# are generated by their global
sections, at least if we choose X affine. We have the natural inclusions

N =8, M-

We can find effective divisors E and D with support in the exceptional locus of 0
such that .# (D)= w(E)".

(1.3) Definition. For 0<i< N we define
sreron [

For simplicity we write £ instead of ..
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Here [I—NB] is the largest divisor (with coefficients in Z) satisfying
i-D]|_i-D .
el [P ity
[N]= N Since ( )
. i-(D+N-F)]_. i-D
z-(E+F)—[—————N ]_,.E_[N]

for all effective divisors F, the sheaf #{? does not depend on the divisors choosen.

(14) The invertible sheaves Z{’ appear in a natural way in the following
construction of a cyclic cover. Assume that X is affine and let t: Oy — 4" be a general
section. We take s: Ox— ! to be the induced section and s¥ : o} -0y to be its

dual. We consider the 0x-algebra

. N-1
o= DA/ = @ ol
and X’=Specy, ().

By construction the zero divisor of s is non singular over Reg(X). Hence X’ is
non singular over Reg(X), as one sees writing down local parameters (see also [2]).
Moreover ./ is reflexive as an @ y-module and therefore &/ and X" must be normal.
Let Y’ be the normalization of Y in the function field €C(X") and Z be a
desingularization of Y’. The induced morphisms are denoted by

Z5H Yy x

S b

Yy -4, X.

(1.5) Lemma. Using the notations introduced above one knows:
i) Y’ has rational singularities.

1
i) 7,0, = 7,05~ @ 29
i=0
“ee N - 1 »
iii) y,0,=m, 0y = P 0, @LP.
i=0
iv) the higher direct images R%  (wy® Z)=0 for ¢>0 and i=0,...,N—1.
V) 6,29 " is reflexive for i=0,...,N—1.
vi) X” has rational singularities if and only if X' is Cohen-Macaulay and
5*(0).1/@.?}1’) is reflexive for i=0,...,N—1. ‘
vii) X’ has rational singularities if and only if R%, %P '=0 for ¢>0 and
i=0,..,N—1.
Proof. By construction n, Oy is the normalization of the Oy-algebra

= @ ol Ko™

W_hc?re 0: Oy—w'M is the pullback of s and ¢ its dual. If we choose the effective
_dxvxsqr E, supported in the exceptional locus of 4, large enough, we have an
Inclusion w{f!—wy(E), and thereby we obtain a section

o’ gy—"a)y(E)N=ul{(D) .
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The 0y-algebra
B = @0 wy(E)"KaY)

is contained in %, and both algebras are isomorphic over an open subvariety. Since
m, Oy. is normal over Oy, it must be the normalization of %’ as well.

The section ¢’ can also be described in the following way: 0* realizes HO(X, .4)
as a subspace of H(Y, .#). This subspace generates .# and ¢’ is obtained from a
general member of it. Bertini’s theorem [4, III, 10.9] guarantees that the zero
divisor of ¢’ is of the form B + D, where B is non singular, Oy(B)=.# and B+Da
normal crossing divisor. We may apply [2, Lemme 2], where the normalization of

A’ is described. Using that [l_@ﬁﬂ)“):l = [I—ND—:' we obtain

N-1 . lD N—-1 Sy
mOr = @ or) '®‘”Y<[—N—D -R%

Since B+ D contains the ramification locus of Y’ over Y, we know from [11] or [2,
Lemme 1], that Y’ has at most rational singularities. Especially

R%é"-1),0,=R%,0y. and RYJ - 1), ;=R wy .
iii) follows from ii), using the duality for finite maps, saying
Tt; wyf = e%%@y(n; 0Y" wy) .

iv) is nothing but the Grauert-Riemenschneider vanishing theorem, applied to
¢’ -7, since for g>0
N—-1

0=n,RY(S 1), 0;= (—BO R% (0y®@ZLP).
In fact, this also can be obtained from the global vanishing theorem for “integral
parts of @Q-divisors” [5, 11] as described in [11, (2.3)].
v) just says that (6"-7),0,=0y. and — along the same line — vi) and vii) are
nothing but translations of the two equivalent descriptions of rational singularities
given in (1.1). For example, from duality for finite morphisms we know that

N
My Wy = Home, (A, 0x) = @1 o
N

and X' has rational singularities if and only if r,0, 7,0, =n,0, wy. is equal to
n,wyx-. In other words 4,(LP®wy) must be equal to w§** for i=0,..., N—1.

(1.6) Lemma and Definition. Assume that dim(X)=2 and that X has only rational
singularities.

a) For somev e N the sheaf oY is invertible. The minimal number v >0 with this
property is denoted by Ind(X), the index of X.

b) Assume that Ind(X) divides N and choose A" =Y. Let X, be an affine oper
subvariety of X. Then the covering X'— X , considered in (1.4) is étale over Reg(X 1)
and X' is Gorenstein. We call X’ a (local) canonical covering of X of degree N.
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Proof. @) In [8] it is shown that for each singular point pe X the scheme
U=Spec(Ox,,)—{p} has only finitely many non-isomorphic invertible sheaves.
Therefore some power of wy, is isomorphic to 0.

b) Wemay assume X At,o be affine and X’ to be a covering of X. Then by duality

for finite maps 7wy = ) wlfl It contains the s/-module generated by w!¥"! and
i=1

since both are reflexive and isomorphic outside of the singular locus, they must be
equal. Therefore wy. is invertible.

Interpreting (1.5) in the situation described in (1.6), we obtain a character-
ization of quotient singularities:

(1.7) Proposition. Let X be a surface with at most rational singularities. Assume
that Ind(X) divides N and choose & =, Then the following properties are
equivalent :

a) X has only quotient singularities.

b) All local canonical coverings X’ of X of degree N have rational singularities.

) 0,(LV V®wy) is reflexive.

- , D D D

d) The divisors E and D (see (1.2)) satisfy E< {N} where {N} = [ N:l.
Proof. We may assume X to be affine. The equivalence of a) and b) is well known:
If X” has rational singularities, then it has just rational double points. Those are
known to be quotient singularities. Therefore — after replacing X and X’ by small
neighbourhoods of the singularity — we find a non singular cover W of X,
unramified outside of the singular locus. Analytically this is just the universal
covering of Reg(X) and hence it is a Galois cover. Therefore X has a quotient
singularity.

On the other hand, if X has quotient singularities, we may assume that Wis a
Galois cover, unramified over Reg(X). The normalization W’ of Wx ;X' is a
branched cover of W, étale outside of a finite number of points. By “purity of the
branch locus” W is étale over W and therefore non singular. By construction of W’
the surface X’ is obtained as a quotient of W’ by a finite group.

From (1.5, vi)) we know that b) implies c). The sheaf § ("~ V® wy) is reflexive
if and only if it is equal to w{" or if and only if

-1
wgzN]=w’}'(N~E—D)C55""“”®wy=“’¥((N—1)‘E_[EN—‘DD'
Comparing the divisors on both sides, we get the equivalence of c) and

N-1 D
E<D- . ={=
so-|% D] {N}
N_

1
Assume now that c) is satisfied. 6,7, wy =8, ( P LPQuy |is an A =n,0x
i=0

i=

module. The invertible ¢y submodule §,(¥™ Y®wy) already generates a
lreﬂ.exive &/ module and therefore d,,7;, wy. must be reflexive itself. Moreover, since
X’is a normal surface, it is Cohen-Macaulay, and we can apply (1.5, vi)) to obtain
b). Of course, one could also use the inequality d) to show that the assumption of
(LS, vi) is satisfied.
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(1.8) Corollary. Assume that X is a surface having at most quotient singularities,
Ind(X)IN. Let /" Cw¥" be any subsheaf, isomorphic to " outside of the singular
locus of X. Then this inclusion factors over

K8 (D@0l

Proof. Since A" is a subsheaf of 0,.# it is enough to construct an inclusion of ./
into N~ Y@ wy. We may choose the divisors E and D big enough to obtain a
factorization

M >N > (E)N.
If we denote the divisor given by the first inclusion by D,, that of the second

inclusion by D,, we have D=D, +D,. (1.7, d)) guarantees that E< {%—2} and

hence EZ {%} We obtain

N-E-D<(N—1)-E— [ﬁ%—l-p],

which just means that /# = wy(E)®0Oy(— D) is a subsheaf of Z¥  V@w,.

(1.9) Remark. Comparing (1.7,c)) and (1.8) one can already guess how we are
going to prove the conjecture of Riemenschneider. We have found a certain
construction, attaching to a subsheaf A of «{' another subsheaf:
3L IRy,

A) If X has only quotient singularities, then 6, (Z{ ~ V®wy) is larger than the
sheaf 4" we started with.

B) If X has rational singularities other than quotient singularities, then
3.( LY VRwy) + P, even if we start with 4 =P,

In the next section we just have to verify that B) can not happen for the general
fibre of a deformation, as soon as A) is true for the special fibre. To this aim we need
a method to lift sections from the special fibre to the total space of the deformation.
The vanishing theorem (1.5, iv)) turns out to serve this purpose.

2. Deformations of Quotient Singularities

Let é: Y- X be a desingularization of the normal Cohen-Macaulay variety X such
that the exceptional locus of & is a normal crossing divisor and such that
oM = 5*w{V/torsion is invertible. We consider a reduced Cartier divisor X, in X
and its proper transform Y, in Y (later X, will be the special fibre of a deformation
with total space X). We assume in addition that we have choosen & such that
0*(Xo)=Y,+F is a normal crossing divisor. The natural morphisms are
denoted by
Y, 5 Y
&ol Jl
Xo - X.
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@.1) Lemma N o=1*oP'=0'@0Oy, is torsionfree and the sheaf
Mo=08 N o/torsion is isomorphic to 1*wi.

Proof. The first statement is true for the restriction to X, of any reflexive sheaf #
on X, which is locally free on a subvariety i: W— X with codim(X —W)=2.In
fact, let iy : Wo=WnX,— X, and & ,=1*%. Since X, is a Cartier divisor we may
use the projection formula to obtain

i*(i*g'-(— Wo)) = i*("*g'_®i*@x( —Xo)= (i*i*y)®(ox(—xo) =F(—X,).
Applying i, to the exact sequence
0-i*F (— W) »i*F i F -0
we obtain
0-F (—Xg)2F —ip,i§F .

Hence &, is a subsheaf of the torsionfree sheaf iy, i§ % o.
Now, let £ be the torsion part of §*wl. We have exact sequences

A — 1*6* o — ¥l — 0

I
63./‘/0 — ./”0 *-‘**)0.

1*A" is supported in the exceptional locus of d, and therefore it is a torsion sheaf.
The induced map 1"”*#"— 4, has to be the zero map. We obtain a surjection
1*oM— # . The first sheaf being invertible, this must be an isomorphism.

(22) Let R be a discrete valuation ring with residue field C, S=Spec(R) and
f: XS aflat morphism. We write g=f- § : Y-S and take X, to be the special fibre
of f. Keeping the notations introduced above, the special fibre of g is Y, + F. The
general fibres are denoted by X, and ¥,. Let U be the largest open subvariety of X
which is smooth over S. We assume that X-Uis proper over S and that X, is
normal. We refer to those conditions by saying that X, is a deformation of X,.
S being affine and non singular, we identify wg with O and thereby wy,s With wy
and wy s with wy. The normal sheaves of the special fibres of f and g can as well be
identified with the structure sheaves and we can write wy,=0x®@0y, and

Wy, =wy(—F)®0y,=0y(Y)) ®Oy(— Yo—F)®O0y,.

Of course, we also have wy —wx®@xﬂ and wy, =wy®O0y,.

The sheaf A= a)E, I®0x, 15 tors1onfree and restricted to
Uo =UnX,=Reg(X,)itis 1somorphlc to wl . Therefore it is a subsheaf of wyY,
lsomorphlc to it outside of the singular locus of X, and we can define £ on Y,

usmg (1 3)
(2.3) Lemma. L0y, = L.

Proof. As in Sect. 1 we write @M=} (N - E— D). By construction Y, meets E, D
and F transversally and therefore the divisors E,=EnY,, Dy=DnY, and
Fo=Fn Y, are normal crossing divisors. Moreover the multiplicities in D, can not
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be larger than those occuring in D which implies that [l : Al; °:| = [%] NY,. We
have #,=w} (N-Eq+N - Fy—D,) and

20— o, (i (EotFo)— [’—A’f—]) =w§,<i-E—— [’—NE]) ®0y,.

Using the notations introduced in (1.4) the Lemma (2.3) is saying that 7'~ ()
is normal and can also be obtained as the cyclic cover corresponding to a general
section of A,

(2.4) Proposition. Assume that X, is a surface with at most quotient singularities,
and assume that Ind(X ) divides N. Then there exists an inclusion

‘/V‘o-'bé*(g(N‘- 1)®wy)®@xo )
inducing an isomorphism outside of the singular locus of X,,.

Proof. The generalized Grauert-Riemenschneider vanishing theorem (1.5, iv))
implies that
R'$(LVV@wy(—Yo—F)=R'6,(L V@wr)®0x(—X)=0.
Therefore we have exact sequences
0 3 (LN VRO~ Yo—F)) = (LN VQuy(—F)) = o (LF, P ®wy) — 0
Il ) N
0— 5.(2‘"‘“@(0,)@(9,((—-)(0) - 5*($(N_”®wy) e 5*(-90'_“@0’}'0”)—’ 0
and obtain thereby an inclusion from d,,(Z# " P ®wy,) into
0LV VR0y, ) =08,(LV VRwy) @0y, .
Now (2.4) follows from (1.8). .
Proposition (2.4) enables us to prove the main result of this note.

(2.5) Theorem. Assume X , to be a surface with quotient singularities, and let X, be
the general fibre of a deformation of X, over a discrete valuation ring. Then X, has
quotient singularities.

(2.6) Remark. a) In the proof of (2.5) we will also obtain some information about the
sheaf A4}, and #,, saying that

Ho= (50.(,5,”%; ”@wyo)-

b) Of course, the arguments used in the proof of (2.5) also apply to an analytic
deformation of X, over a disc and show that all “nearby” fibres X, have quotient
singularities.

¢) In the proof of (2.5) we will use for simplicity Elkik’s result on deformations
of rational singularities. However, the arguments given below could be used for
N =1 to prove that (1.1) forces X, to have rational singularities.

Proof of (2.5). We know from [1] that X, has rational singularities. Hence
Ind(X,) and Ind(X,) are defined and we choose some N divisible by both of
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them. Let € be the cokernel of the inclusion of §,(Z" Y®w,) into
o™: Restricting the corresponding exact sequences to X, one obtains

5 (LY VR Oy, 5 N> ER Oy, 0.

We know from (2.4) that the left hand side contains .4, and we thereby find a
map o: No— Ao, isomorphic outside of the singular locus. The induced map
NV > N' Y between invertible sheaves must be the multiplication with a
unit and hence a must be an isomorphism. Therefore, § is surjective and
¢Q0x,=0.

The support of € is closed in X| since % is coherent, and it is contained in the
non-smooth locus X — U. Hence the support of € is proper over S. This is only
possible for =0, i.e. if §,(LN "V ®wy) is reflexive. Regarding this on the general
fibre we find 6,(£™~ Y ®wy,) to be reflexive and (1.7, ¢)) implies that X, has only
quotient singularities.

The remark (2.6,a)) follows from the fact that the isomorphism « factors by

construction over -
No=0o( LD VQwy ) Ny

and that the sheaf in the middle is torsionfree.

3. Concluding Remarks and Examples

Keeping the notations introduced in Sect.2, we assume f:X—S to be a
deformation of the quotient singularity X ,. We denote by U the largest subvariety
of X which is smooth over S. If Ind(X ) and Ind(X,) divide N, we may assume —
replacing X by an affine neighbourhood of the singularity — that wg, = Oy, and wy,
=0y, . It seems natural to expect that w} = @y, in other words, to expect that the
trivia]izing section of wgj, can be extended to U. Unfortunately this is in general not
the case, even if we replace N by some multiple and even if we assume X ,tobenon
singular.

(3.1) The first order obstruction to deform “trivializing sections” (Levine, [7]).

Let N be any multiple of Ind(X,) and n,: X5— X, the canonical cover of
degree N. We write p: g {(Uy)= Uy~ U, for the restriction of 7y, If 5o : Oy, @,
18 an isomorphism, then p*(sq) =t for t,: Oy, wy;. The deformation f gives an
element g€ H(U,, @) and the evaluation of p*(g) on t, is

pe=<p*(0), to) € H'(Uo, 24y,
Differentiating and multiplying with t§ ~* we find
ve=to - du e H'(Up, wf)
and
v,=tracey; y,(v)) € H' (U, 0f,).

In[7]itis shown that v, is the obstruction wanted. Especially,v,+ 0 implies that s,
€an not extend to a trivializing section of w}.

Let i: X~ A" be an embedding and t: A*—X, be the Galois cover with
Galois group G, étale over U,. Then the first order deformations of X, are
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described by Ty,, the kernel of the map

HI(UO, @Uo) =H1(A2 - {0}5 @Az—(O})G
SH(A— {0}, %% ) [12).

The fibre product Uy x y (A%—{0}) is the disjoint union of several copies of
A?—{0}. In order to calculate v,, we can consider u, and v, on one of those
A’—iO} and identify t, with dx A dy, where (x, y) denotes a coordinate system
on A%
(3.2) Example. Let G={a) be the cyclic group of order three acting on C[x, y] by
o(x)=e-x and o(y)=e- y for a third root of unit e. Let X ,=Spec(C[x, y]°). The
inclusion i: X,—A* is defined by the invariants x3, x?-y, x- y?, and ).

Ty, is generated as an 0y -module by
0

-1,

-y -1 O -
01=X l.y 1.&. and 0,=X l.y _afy"

We find
ox’

=(dxAdy)¥ ted(x "ty tedy)=—x"2.y" . (dx Ady)Y

vm=(dx/\dy)N"-d<x‘1-y“~—a— dx/\dy>

and similarly

Ve, =x"1 yT 2 (dx ndy)N.

Both are independent elements of H'(U,, wp,) and therefore v,+0 for all
nontrivial g € Ty,. Of course, we may choose g to be the infinitesimal deformation
corresponding to a smoothing of X,.

(3.3) Remark. It is not too surprising that v, may be non zero. If we return to the
notations of (2.2) we see that the sheaf w[é[’,] is larger that o}, in general. The
arguments given in [7] in order to show that v,=0 can only work for sections of
powers of dualizing sheaves. Nevertheless, our calculation in $2 gives some
conditions for sections to be deformable. The sheaf ¥} is the sheaf generated by all

deformable sections of ) and (2.6,a)) gives the condition that
H(X o, /) =H(X o, 0,(£Fs P ®wy,).

Even if we don’t see at the moment how to interprete this condition, it seems to say
that .4}, can not be too small compared to wQ’.

If one tries to use the methods of our note, i.e., the use of vanishing theorems for
integral parts of @-divisors (and related results), to the global problem considered
in [7], one finds a similar description of the sheaf of deformable sections of powers
of dualizing sheaves. It would be interesting to reprove the results from [7]
using this description. .

On the other hand the obstruction classes explained in (3.1) seem to contail
some information on .#,. Maybe, if one is able to define and to calculate those
classes not only for the fibres X, but also for fibrecomponents ¥, and their
infinitesimal neighbourhoods, this could give another more direct approach t©
describe A4, and to reprove (2.5).
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