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Liouville’s theorem asserts that for every algebraic number o of degree d =2
and every ¢>0 there exists a constant c¢(a, &) such that

oc—3‘>q““s for all BeQ with g=c(a, &).
q q

Whereas this result was obtained by considering the value of the irreducible
equation of a at a point E, one had to consider two approximations (2—1, B—z—)
q 1 42
and auxiliary polynomials in two variables in order to replace the exponent d
by
d

5 +1 (Thue)

. d .
Mln{m+s, s—-O,...,d—l} (Siegel)

V2-d (Dyson and Gelfond).
Finally Roth, [9], obtained

a?t >q %"t forall ZEQ with g=c(a, &),
q
by considering auxiliary polynomials in several variables, having a zero of high
order at (a,...,a) and a zero of low order at (%,,Sﬂ) Unfortunately the
1 n

constant c¢(a, ) is not effectively computable, except in Liouville’s inequality.
In order to obtain effective bounds for approximations by rational numbers
of generators of certain number fields, Bombieri, [1], reconsidered and general-
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ized Dyson’s approach in handling auxiliary polynomials in two variables. In
this article he posed the problem of the generalization of Dyson’s Lemma to
the several-variable case. More precisely, in a latter dated December 2, 1981,
Bombieri formulated it in the following way:

(0.1) Let feC€[x,,...,x,] be a polynomial of multidegree d=(d,,...,d,), ie.:
deg, (f)<d;. In order to measure how badly a given point {eC" occurs as a
zero of f, we define for teR ,, and ga=(ay,...,a,)eR% 4:

ot
(0.2) Definition. f has a zero of type (a,t) at { if éxil—faxin(C)=0 for every
n IR n
n-tuple i=(i,, ..., i,) of natural numbers with Y i, -a, <t.
v=1
Of course, it is enough to consider only the n-tuples i with i,<d,, v
=1,...,n. Hence the number of equations we have to look for in (0.2) is

approximately

dy-...-d,-Vol(I(d, g, 0))=d, -...-d,- | d& A..nrd¢E,

Id,a,1)

where I"={(£,)eR"; 0=¢,<1} and

1(d, a, t)={(€v)€1"; i d, év'aét}-
v=1

(0.3) Bombieri’s problem. Assume that there exists f +0 of multidegree d such
that f has a zero of type (a,t,) at the point {,eC", for u=1,...,M. Under
which conditions on {{,; p=1,...,M} and {(@",t,); p=1,...,M} can one find
an inequality

M
2. Vol(Id, g%, t,))<1+e(d)
p=1

such that g(d) is small for d;>d,>...>d,>0.
The main result of this article is:

(0.4) Theorem. Assume that

a) (= 15> Cun)s for u=1,...,M, are M points in €" such that {, .+, ,
for ux£yand v=1,...,n.

b) geR?%, (independently of u) and t,eR;, for p=1,..., M.

c) deN" such that d, 2d,=...2d,>0.

Then, if there exists feC[x,,...,x,] of multidegree d having a zero of type
@®,t,) at , for u=1,...,M, one has the inequality

M n n

Y, Vol g )< [T (1+00-2) 3 1)

u=1 j=1 i=j+1dj
where M' =Max {M, 2}.

Without assumption a) or b) the inequality fails to be true (see the end of § 10
for more remarks concerning this point).
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If we consider (0.4) for n=2 we find on the right hand side
1+(M'=2)-d,-d;t.
In fact, one is able to improve the inequality (see § 10) to obtain

(M'—2)-d,

M
(0.5) Y. Vol(ld,a,t,) <1+
P 2-d,

This is finally the inequality known as “Dyson’s Lemma”, [2], (under the
additional assumption that 0<t<Min{d,-a,, d,-a,}) and it was obtained in
the form stated above by Bombieri, [1], using Wronskian-determinants. Viola
({14]) found the first proof of (0.5) avoiding the use of Wronskian-deter-
minants. His arguments are based on a careful local and global analysis of the
singularities of reducible algebraic curves. In some way the proof of theorem
0.4 - using methods from the complex projective geometry - is close in spirit
to Viola’s approach. In fact, the first tool, the positivity resuits for direct
images of dualizing sheaves (see § 6), were developed in order to be applied in
the classification theory of higher dimensional varieties ([3], [7], [12], [13]).
The second tool is the generalized “Kodaira-Vanishing-Theorem” for integral
parts of divisors with coefficients in @ (see (4.6), [8], [10]) which we already
applied to “zeros of polynomials” in [5].

We are grateful to Enrico Bombieri who suggested this problem to us in a
letter and who explained to us, as non-specialists, a lot about problem (0.3)
and its applications in the theory of approximation of algebraic numbers.

(0.6) The first two sections give the translation of (0.2) in terms of ideals of
C[xy,...,x,] (§1) and of ideal-sheaves on (IP')" (§2). We study the powers of
these ideals (1.9) and some combinatorial conditions (2.7), (2.9) on the (2-n+1)-
tuples (d, a, t,) imposed by the existence of the polynomial f of (0.4). It is there,
where we need the assumptions a) and b) made in (0.4). In § 3 we study the
behaviour of the ideal-sheaves under “blowing-ups”. To this end we consider
(locally) certain coverings of (IP')", a construction which is used again in § 7. § 4
starts with a crash-course on weakly positive coherent sheaves. This notation is
just made to study direct images of certain sheaves in § 6, but mostly used in
this paper in the case of invertible sheaves, where it serves as a convenient
notation avoiding to many “limit-processes”. At the end of this section we
present the first tool the proof of (0.4) is based on, the generalized “Kodaira-
Vanishing-Theorem” for integral parts of divisors with coefficients in Q. This
tool was already used in [5] in order to study zeros of polynomials. In the
next section we formulate the Main Lemma (5.3) and we use it together with
(2.9) to prove that a certain sheaf is arithmetically positive (5.4). At the end of
§ 5 we show how this implies Theorem (0.4). It seems, that (5.4) is just the
“sheaf-theoretic version of Dylon’s Lemma”. In §6 we discuss the second tool,
the weak positivity for the direct images of certain sheaves (6.2). This theory is
based on Kawamata’s results [7], applied to certain coverings (see [3], [4],
[11] and [12] for a general discussion of cyclic coverings). Whereas the first
tool, the Vanishing-Theorems, can be obtained by interpretating the symmetry
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of the Hodge-numbers of projective varieties and the closedness of global
logarithmic differential forms (due to Deligne), the proof of Kawamata’s Main
Theorem is based on Griffith’s theory of variations of Hodge-structures and
the Nilpotent-Orbit-Theorem (due to W. Schmid). Somehow the analytic
theory replacing the Wronskian determinants used in [1] is hidden behind (6.1)
and (6.2). At the end of § 6 we reformulate (6.2) using (4.5) in a quite technical
lemma, needed in § 8. The following section reformulates the Main Lemma in a
slightly more general set-up and in form of an induction step. This finally is
proved in §8, using again a covering construction (made at the end of §7).
Even if it is well known to the specialists, we indicate in §9 how to obtain the
theorem of Roth using (0.4) (for a,=d; !). §10 contains a discussion of possible
ameliorations of the inequality of (0.4). For example, if one knows the decom-
position of the polynomial f into irreducible factors, one can improve the
inequality. In the general case one can replace the constant (M’'—2) by a
slightly smaller constant. We explain this only in the two-variable case and
prove the inequality (0.5).

(0.7) Notations. In this paper we are using the “standard notations™ of alge-
braic geometry, as they can be found for example in [6]. Special notations are:
— If D is a Cartier-divisor on an algebraic variety X, we write 0,(D) to be the
associated invertible sheaf.

— If # is any sheaf on X, we write #°=% ®* for the tensorproduct and % (D)
=F @04(D). In order to create confusion: F(D)=F°®04(D) but F (D)
=(F 04D

— The invertible sheaf of degree one on IP! is denoted by Up:(1) and the sheaf

n

Opiy(dy,....d,) on (IPYY' is &) pr¥ Op.(1)™, where pr, denotes the projection on

the v-th factor.
— If f: X >(IPY)" is any morphism and & a sheaf on X, then

Fly,erd)=F Qf* Ogupdy, ...,d,).
Again F(dy, ..., d) = F Qf* Ogun(d,, ...,d,) and
Fd,y,...d)y=(Fd,,..d))\

— We write h(X,#)=dimg(H (X, #)) and for an invertible sheaf ¥ we
define the “.¥ dimension”

K(X, L) =K(ZL)
trdg(@ HY(X, L) -1 if HY(X,Z)=+0 for some i>0,
— i>0

— 0 otherwise.

— All varieties are supposed to be nonsingular, irreducible, projective and
defined over the field of complex numbers C, if not explicitely other properties
are given. An open subset is an open subvariety, which is always supposed to
be not empty (even if we sometimes forget to mention it).
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. . . . . dim(X)

— The canonical sheaf of a nonsingular variety X is written wy,= A Q4 and

if f:X-Y is a morphism between nonsingular varieties we write wy,y

=wy® f*oyt.

§ 1. The ideals of polynomials with zeros of type (a,?)

Using the notation introduced in (0.1) we consider a polynomial
feClx,,...,x,] of multidegree d, having a zero of type (a,t) in {eC". The set of

iwith ) a,-i,<t remains the same after replacing a by ¢’ and ¢ by ¢’ as long

v=1
as 0<a,—a,<¢ and 05t —t<e for a very small perturbation ¢>0. Since
Id,a.t)=1d,a',t'"), one can assume that (g,t) is a (n+ 1)-tuple of non negative
rational numbers, or, multiplying by the same integer, that it is a (n+ 1)-tuple
of non negative integers.

(1.1) In the rest of this paper, one has (a,t)eIN"*! for the type of all zeros
considered.

(1.2) Definition. For a given type (g,t) and a given point {=({,,...,{,)eC" we
define #{*" to be the ideal generated in C[x,,...,x,] by all the monomials
(cy =) (x,— ) such that a, - iy +...+a, - i,=t.

(1.3) If f has a zero of type (a,t) in {, then fem{". Even if the converse is not
true, because we allowed in (1.2) monomials at the boundary (for which a, -i,
+...+a,i,=t), we will say “f has a zero of type (a,t)” instead of saying
f Em(gﬂ’”. n

Moreover, if f= ) o;-(x; —{,)"-...-(x,— ()" is in ", all the monomials
ieNn
with ¢, 40 are in the ideal.

If a given d is to small, m?’t) can not be generated by monomials of
multidegree d.

(1.4) Definition. For a given type (g,t) and a given point {=({,,...,{,)eC" we
define /%¢" to be the ideal in C€[x,, ..., x,] generated by those monomials
(g =)o (x, — L) out of " for which 0<i,<d, for all v.

(1.5) For NeNlN, one has the inclusions
m(gg,t)”__)még,lv't)
/(Ké.g.t)N __,/(CN’Q,Q,N-I)'
In order to have equalities we need some additional assumptions which are

always fulfilled after replacing (d,t) by (s-d, s-t), i.e. after replacing the poly-
nomial f of (0.4) by f*.

(1.6) Assumption on (a,t): For all v, n-a, divides .

In other words, the edge points of {(év)e]R"go; Y av-év=t} have coor-
dinates in n- N, v=1
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(1.7) Consider the (n—1)-dimensional polygon

v=1

F(d,g,t)={(fv)elk"; 0<¢,=d, and Zn: av~£v=t}.

Let E, ..., E, be the edge points of I'(d, g,t) (see figure (1.12)). The coordinates
of an edge point are all 0 or d, but one and satisfy the equality Y a,-¢ =t. Of

v=1
course, they are all rational numbers. The edge points of the polygon
I'(s-d,a,s-t) for a given positive integer s are multiplied by s. Hence we may
assume (1.8).

(1.8)  Assumption on (d,a,t)eIN*"*!: the edge points E, ..., E, have coordinates
inr-N.

(1.9) Lemma.

i) Assume that (a,t) satisfies (1.6). Then one has m&"" = &N for all NeN.

ii) Assume that (d,a,t) satisfies (1.8). Then one has /&4 =/{N4eN0for gj]
NelN.

Proof. Of course #{" is of the form /" for some big d. In this case, the n
edge points of the polygon corresponding to »{*" have coordinates in n- N by
assumption (1.6). So i) is a special case of ii). .

We write for simplicity {=(0,...,0). Let x}-...-xi» be any generator of
¢NEeND e 0<i,<N-d, for all v and Y a,-i,=(N+¢)-t for some £¢20. We

v=1

have to present this monomial as a product of N elements of /{#¢". By
induction on N and the definition of the ideals it is sufficient to find n-tuples

and
(k)el(1+e)-d,a,(1 +e)-)nZ"

such that j, +k,=i, forv=1,...,n.
Let E, ..., E, be the edge points of I'(d, g, t), as in (1.7). The point (i,) can be

written as (i,)= Y, o, E, for (ay,...,2,)€[0,N+¢] and ) a=N+e.

s=1 s=1

Claim. There exist natural numbers f such that

(1.10) ocs—(1+8)§%§Min{as,N—1}
and
(1.11) i ﬁ—s=N~—1.

Proof. If [ ] denotes the integral part of a real number, we have the inequalities

N+4e=< i (B—‘;—ﬂ—i-l)

s=1 r
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and

N-1<Yy Min{[“;’r],N—l}gNﬂ.
s=1

For B.=Min{[a,-r], (N —1)-r} the condition (1.10) is fulfilled. In fact the
second inequality follows from the choice of f; and the first from a, <N —1+1
+e¢and o, <[a,-r]-r~! +1. Assume that (1.11) is not true. Then

o B 1
PsS(N=1)+=
sgl r_(N )+r
and

Xr: (as—ﬁ)gl—%s—%.

s=1 r

B;o

. . 1
We can find some index s, such that f; >0 and o, ——*<1+e——.
r r

If we replace B, by f; —1, we have another solution of (1.10) such that
y PBonoi

s=1
We are allowed to repeat this step until we have found the r-tuple S,
satisfying both conditions, (1.10) and (1.11).

Bs
r
(1.11) we have in addition that ) (as—%) =1+e.

s=1

(1.10) guarantees that —e[0, N—1] and as—%e[0,1+s]. Moreover, from

Hence

G,)= Z 'BS‘ESGT((N—l)'d,g, (N—-1)-1)

s=1 r
and

(k)= (as—ﬁS) E,el((14+)-d,a (1+8)-1)

s=1 r

From (1.8) we know that (j,) is a point with integer coordinates, and hence (k,)
too. By construction j, +k, =i,.

(1.12) In the following figure we consider

2.t t 2.t

“=3g YT, MO BT,

The monomials generating /{#*" are corresponding to integer points inside of
the box, but over the dotted hypersurface. In other words, we show the image
of I(d,a,t) under multiplication with (d,,d,,d,).
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§ 2. Homogeneous polynomials and some combinatorial conditions

(2.1) Let i: C"—>(IP')" be the embedding of C" into the multiprojective space
such that i(B,,..., B,)=((B1,1), ..., (B, 1)

Any polynomial feC[x,,...,x,] of multidegree d gives rise to a polynomial
F(X.,Y,....X,,Y,), homogeneous of degree d, in X, Y, for all v, such that
F(x,1,...,x,, 1)=f(x,...,x,). We may as well consider F as an element of
HO((IPYy", Opiy(dy, ...,d,)) and in the sequel we don’t distinguish polynomials and
sections.

(2.2) Let { be a point of C" (where we denote i({) again by (). We consider
m®) and /%29 (see (1.2) and (1.4)) as ideal sheaves on C" and we denote
i 22" 0 Oy (and i, /&0 A\ Op1y) again by #" (and /%" respectively).

(2.3) Remark.
i) m®? can also be defined by the following property: Let (
=((A,,11)---,(4,,n,) and choose a second point {'=((4},7)),...,(4,,1,)) such

that (4,,#%,)%(4,,#,) for v=1,...,n. Then for all n-tuple d=(d,, ...,d,) of natural
numbers the vector-space

HO((PY)", Oprp(dy, ..., d,) Q")
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has a basis given by the monomials

[T O Xy =2y X (e Xy = Ay XY
v=1

such that Y i,-a,2t and 0<i,<d, for all v.

v=1

ii) The description given above shows that
HO((PY)", (829®0pi(d,, ..., d,))
=H(P'), &' Q@0 giydy, ..., d,)).
Moreover, /%9 is the uniquely determined subsheaf of " such that
(E49YQ0giy(d,, ..., d,) is generated by its global sections. In fact, if we choose

{'=((1,0),...,(1,0)), the basis given in i) is just consisting of the multihomo-
geneous monomials corresponding to the generators of [é‘—"g’” in (1.4).

(24) The volume introduced in the introduction can now be described in the
following way:

i) For NeIN—{0}, Vol(I(d,a,t))=Vol(I(N -d,a, N - t))
ii) Vol(I(d,a,t))= lim (N"-d,-...-d,)"!
N-o oo

B

| 1 |
: I(I(c_i,g,t)md—l‘w-Z(-BdZ.N'ZGB...@dn_N'Z)

where | | denotes the number of elements.
In other terms,

dy-...-d,-Vol(I(d.a,1)

= lim N~".

N-oo

V=

{(év)el"; 0<¢(,<N-d,and Y, av-£v<N~t}
1

=lim N~"-(N-d,+1)-...-(N -d, +1)

N-oo

— (P, mENIQO (N -y, ..., N -d,)))
=d,-...-d,— lim N="-hO(PY", (M 4N OQ Oy (N -dy, ..., N -d,).

N-oo
i) If 4 is a second n-tuple of natural numbers and d)=d,,
dy2d,,...,d,2d,, then the first equality shows that
dy-...-d,-Vol(Id',a,t))2d,-...-d,-Vol(I(d,a,t)).

The zero-set of the ideal /%" is in general not concentrated in the point {.
For example in the situation described in figure (1.12) in §1, this zero-set
contains V(X,) and V(X,, X,).
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(2.5) Lemma. Let C&%9=coker(¢/4*Y—0Op.), then the support of C%%? is
¢ { @ ¢
exactly |) S; for

Ieil,...,n}

o if Ya,dzt

SI= vel
V(anv_)‘va? V¢I) lf Zav‘dv<t'
vel

Proof. We may assume that {=((0,1),...,(0,1)). From (2.3, ii)) we know that (for
=((1,0),...,(1,0))) the sheaf /‘4 “Q0piy(dy,...,d,) is generated by

H X Y&~ for all i with Z a,-i,2tand 0<i,<d, for v=1,.
v=1

If for some I<={1,.. n} one has ) a,-d,<t, then every n- tuple i with
n vel

Z a,-i,=t must have i,%0 for at least one v¢l. Hence /*? is contained in

(Xv, v¢I) or S, CEe",
On the other hand, if P is any point in the support of C{*", we can choose
Je{l,...,n} to be the set of all v such that PeV(X,). Then the monomial

[T1X%-T] Y, being non-zero at P, can not be one of the generating mo-
v¢J veJ

nomials and ) a,-d, <t.
v¢J

(2.6) For the rest of this section we consider for u=1,....M the points {,
= 1>---» ()@Y where {, ,=(4,,,n,,)elP'. We fix t,eN, a®eN", for u
=1,..., M, and we write

M M
r_ (@), 1) "d) (d, a,1,)
.//l—ﬂm;u ol L _,401/{:“ st

p=1

For simplicity, if d is fix, we write ' =%'@. As in (23,ii) we have
H(PY, #4'(d,,...,d,)=H((IP'Y, #¥'d,,...,d,), but for M =2 it is no longer
true that ¥'d,,...,d,) is generated by its global sections. We assume in the
sequel that

HO(PY. A'(d,,....,d,)+0

which (see (1.3) and (2.2)) just means that there exists a non-zero polynomial
feClx,,...,x,] of multidegree d having a zero of type (a",t,) at {, for all p.
We also have to assume that ¢ =g, independent of p.

(27) Lemma. Let 1=y, ySM and p=y. Assume that {, .+, for v=1,....n.
Then

n
Proof. Of course, we may assume that

Cu:‘((oa 1)5 "'>(0, 1)) and Cy=((1’0)9 >(190))

||V
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n

If F=Y o [] X Y~ is a non-zero section of .#'(d,,...,d,) and if i is any

i v=1 n )
n-tuple with o, +0, the monomial [| X% Y ~" must be one of the generators
N v=1 n
given in (2.3,1)) for HO((IP')", »{“"* ®Cg1(d;, ...,d,). Hence ) a,-i,2t, and
n v=1

(exchanging p and 7) ) a,-(d,—i)=t,. Adding up both inequalities we find
(2.7). v=1

(2.8) Lemma (see [1], Lemma 4). Under the assumption of (2.7)
Supp(C&4") Supp(CS"—'"“) ={.

Proof. Again we assume that

{,=(0,1),...,(0,1)) and {,=((1,0),....(1,0)).

If (2.8) were wrong, (2.5) would show the existence of subsets I, and I, of
{1,...,n} such that

Y a,-d,<t, and ) a,d,<t,
vel, vel,

and such that V(X ;vél)nV(Y,; v¢l)+0. Of course, for any v, we have
V(X,)nV(Y,)=0 and therefore [,UI,={1,...,n}. Then

n
Zlav-dvg Y a,d+ Y a-d<t,+t,

vel,, vel,
in contradiction to (2.7).

As we mentioned already in (2.6) the sheaf ¥'(d,,...,d,) is in general not
generated by its global sections. We can not even exclude the case, that all
sections are zero along (IP')"~' regarded as a subvariety of (IP')" by the
inclusion j, given by

](P19 "'7Pn—1)=(-P1a "',Pk_l’CstB(’ '~'9R|_1)

for a fixed pair s,k. If the subvariety j((IP')"~"') does not meet CE*"), for us,
we can forget about the other points and use (2.3,1i)) to produce sections of
*&'d,,...,d,).

(29) Lemma. Using the notations introduced in (2.6) we assume that all the
(2-n+1)-tuples (d,a,t,) satisfy (1.8) and that {, ,*(,, for p#vy and v=1,....n.
Let ke{1,...,n} and se{l,..., M} be fixed numbers such that V(n, - X;— 24, Y)
is not contained in the support of C&%%). We write d=(dy,...,d,_,dy 11, --->d,),
2=(ay, ..., @1, G4y .00, a,), T,=t; and 1,=Max{0,t,—a,-d,} for p+s.

M
On (IP)y*=" we consider &= () £&:>™ for
=1

el (FRTRN SN AT TR G
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Then
) ZL"=Im(* L' >0piyn-1)

il) (L"®@0pipn-1(dy,...,dy_y,dy4q,...,d,)" has a non trivial section for some
N big enough.

Proof. We may write k=1 and s=1 and {;=((0,1),...,(0,1)). From (2.8) we
know that the supports of C%ﬂ"“’ are disjoint for different y. Hence in order to
prove i) we can consider each point separately.

J*(E2Q0p(d,, ..., d,)) is generated by the monomials

X X Yfamia. . Y
n

with Y a,-i,2t,. In fact, j* is right exact, and all the other generators written
V=2
down in (2.3, ii)) are mapped to zero under j*. If {, is another point, let’s say u

=2 and {,=((1,0),...,(1,0)), then *(/L*?®0p:.(d,,...,d,) is generated by

the monomials X%~%.. .. X&~=k.yit.y2. Y with a,-d,+ Y a,-i,2t,,
using the same argument, and in both cases we verified i). v=2

Renumbering the points we may assume that t,2¢,=...2ty. If a,-d, 2¢t,,
then 7,=0 for y=2,...,M and Z"=/g’ﬂ”“. The non trivial section exists by
(2.3, ii)). Therefore, we may assume that 7,=¢,—a,-d,;>0. Let F be a general
section of #’(d,,...,d,) and c the largest number such that X{ divides F.

Consider the polynomial G=j*(F-X7°).

G has a zero of type (o, 7, —c-a,) at {; and a zero of type (&, t,+c-a,) at {,
for u=2,...,M.

For example, if {,=((1,0),...,(1,0)) and

F-X1”0=Zﬂi.xil.'“,Xin, Yldl_il’...'Ynd"_i",

then
G=Zﬁ£X'22“X;n. dez—iz'.,,-y;ld"“in

where the second sum is taken over all i with i; =0. For those i the coefficient

n n
B; can only be non-zero if a,-c+ Y a,-i,2t; and a;-(d;—c)+ Y a,-(d,
n v=2 v=2
—i)zt,. For w= ) a,-d, we know from (2.7) that w—t, 2t,—a,-d, =7,>0.
V=2 n
Consider H=G"~"- ] X¢*%. At (|, H has a zero of type (o, (w—t,)-(t,
v=12
—c-a;)+c-a;-w)and at {, for u+1 a zero of type (o, (w—t,)-(z,+c-ay)).

The multidegree of H is (w—t,;+c-a,;)- 9.

We have (w—t,)-(t;,—c-a,)+c-a,-w=(w—t,+c-a,) 1, since t,=1,, and
w—ty)-(t,+c-a))=(w—t,)-1,+(W—t;)-c-a, and this is bigger than or equal
to (w—t,+c-a;)-7,. Hence for N=w—t, +c-a, we found the section needed
in ii).

§3. A covering construction

In this § we want to study the behaviour of the ideals /%" and »{" under
certain blowing up’s. To this end we consider certain coverings. This con-
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struction is going to appear again in §7. Some general remarks about cyclic
coverings can be found at the end of the §.

(3.1) Generalities on blowing up’s. Let X be a variety and ¢ a sheaf of ideals.

The blowing up of # is a morphism n: X'>X such that zn~'¢-0,

=Im(n*J—0,.) becomes invertible and such that = is universal for this proper-

ty ([6], p. 164). The variety X' is nothing but Proj(@ #%). Moreover, © is
dz0

birational and is an isomorphism on the open variety on which ¢ is invertible.
The blowing up of #' is the same as the blowing up of ¢ for all integers /> 0.

(3.2) We define E to be the effective divisor such that n=' ¢ 0y =0 (—E).
The divisor —E is relatively ample and - by the theorems of Serre ([6], p. 228)
- one has R'n, 0y.(—1-E)=0 for all i>0 and all />0 big enough and the
natural inclusion #'—n, 0y (—1-E) becomes an equality for | big enough.

We take a disingularization ¢: Y- X' (possible after Hironaka’s construc-
tion, see [6] p. 391 for references) and set t=mwo0g: Y5 X.

(3.3) Definition. The sheaf of ideals # is said to be full if the natural inclusion
F—-1,0%0(—E)=1,Im(t* F-0y)
is an isomorphism.

Using the projection formula ([6], p. 124) one sees that this definition is
independent of the chosen desingularization Y. Coming from the possible non
normality of X', (3.2) does not imply that ¢’ is full for ! big enough.

In order to prove that our ideals mgf"’ and /gl"—"” are full, we use the
following numerical conditions.

(3.4) 1) Assumption on (a,t)e N"*': q_ divides t.

ii) Assumption on (d,a,t): Let (£,)eR%, be any solution of the equation
Y a,-&, =t such that &, is either 0 or d, for all v but one. Then (&) is a point
v=1
of IN".
(3.5) Proposition. Under the assumptions (3.4)

i) @ is full,

i) /&9 is full.
Of course, i) is a special case of ii). We prove here that i) implies ii) and prove
i) in (3.6).

Choose 7: Y—(IP')" “big enough” such that both sheaves s =1""m®"- 0,
and /=1"1/%%". 0, are invertible. One has the inclusions (3.5 1))

(a0 1 (>, m=m®.

If the first inclusion is not an equality, we choose an embedding C"—(IP")" for
which the restriction of this inclusion is not an equality. In other words, there
is a polynomial f which is in 7,¢|g. but not in /{*|g.. One can assume that {

=(0,...,0)eC". Every monomial x}-...-x’ appearing in f must satisfy the

n
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inequality a,-i;+...+a,-i,=t. After permuting the variables, one can assume
that there is one monomial such that for some k=1

iy >dy, i >dy, G, S g.ni
and

4 oxtelyiks1, L xing pldat)
XY, et X X XL | o

k n
In other words, one has Y a,-d,+ Y a,-i,<t
v=1 v=k+1

Let j: €*~*—C" be the inclusion given by

JO g5 oo ) =By s B X s o5 Oy)
for a point (f,,..., B,) in general position. One has

JELEeO= @40 for {'=(0,...,0),

k
ad=a,-a)hd = ,y,....d)and '=t—) a,-d,.

v=1
From (3.5,1)) one has again j*(f)ej*/—m&".
But (3.4.1i)) is just formulated to make (3.4,1)) true for (a t). However, j*(f)

n
contains the monomial H xi whereas ) i,-a,<t— Z d,-a,.
v=k+1 v=k+1 v=1
(3.6) The proof of (3.5,1)): If méﬂ’” is a power of the maximal ideal of the point
(, ie. if a,=a for all v, then it is well known. So the idea is to come back to
this situation. Since »{" is invertible outside of {, we may assume that the
situation is local and consider #{*" in the affine space where {=(0,...,0).

(3.7) Let p: X—C" be any finite covering, such that X is smooth and the
discriminant 4(X/C") is contained in the coordinate-axes V(x,-...-x,). Assume
that for every point nep~'({) one can find a local parameter system (u,...,u,)
such that u}*- f,=x, where «,€NN and f, is a unit at n. Define », to be the ideal

generated by [] u/* such that Y j,- %;t.

v=1 v=1 v

(3.8) Lemma. One has the inclusion p* sV~ ne=AN" and a commutative
diagram PO

t .t
mgg )L)p*JV/*’m(gﬂ )

( I

O¢n= p, Ox = Ogn

where the second row consists of the natural splitting given by the natural
inclusion and the trace map.

Proof Near #,p*m®" is the ideal generated by Hu“v “.f& such that
v=1
Z i, a —2>t. Hence the first inclusion is obvious.

v=1 v
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We have the natural inclusion mg—“">—+p*m ', compatible with Og.—~p, Oy.
So we have only to show that the image of p, 4" under the trace map is
contained in #{*". To this end, one can assume that p~'(t)=# and suppose
O¢» and Oy to be complete. Write X =Spec C[u,,...,u,]. Then f,=1 and the
trace map is just the sum of the conjugates under the operation of the Galois
group G=Z/o, x ... xZ/n,. The ideal A" is invariant under G. So the image is
generated by the G-invariant elements of A", this means by the G-invariant

n

monomials [ u}. This implies that [,=a,-m, for v=1,...,n and that

v=1

M=

[\

L.

a n

V__
l,-==Y m,a,
v=1 %y w21

(3.9) Now let N be any positive integer divisible by the smallest common
N-a

v

multiple of the edge points t/a, (which are integers by (3.4,i)). For o, =

and X =SpecCl[uy,...,u,]>C" for u?>=x, the ideal »
N-th power of the maximal ideal of the point #=0 in X.
We know that », is full. Choose a diagram of non singular varieties

, 1s nothing but the

v
Z—C"
o’ p

Y ——(C"

such that 7, 7" are birational, v ', 0,=A4" and t~'w®"-Oy=.4 are in-
vertible.
We have the natural inclusions

PEM =T (p* ) O N
and
M=p p Mo N

Hence, 7, .# is contained in p 7, A" =p, »,. Moreover the image is G-invariant
and from (3.8) we find

(a,1)
‘C*ﬂc—*mc L—-’T*ﬂ.

(3.10) Let D be any effective divisor on the non singular quasiprojective
variety Y and D=Zyj~Ej the decomposition into prime components. For all
integers i=0 and N >0 we write

(22l

where [ ] denotes the integral part of a real number.
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(3.11) Notation. D is called a normal crossing divisor if the E; are non singular
and intersect transversally. This means that for all points of Y one can find a

local parameter system (u, ...,u,) such that near the point the equation of D, 4
isug-...oug=0.

The integral parts of divisors are compatible with blowing up’s (simple
exercise, or see [10], 2.3 and 2.4):

(3.12) Lemma. Let t: Z—Y be a birational morphism of non singular varieties
such that D and D' =1t*D are both normal crossing divisors. Then one has

e[ 2)-o )
o[ [7])-or0r([2])

i-D
(3.13) The divisors [%\I—] occur in a natural way in the following con-

and

struction. If i= N, we replace D by r-D and N by r- N for r big enough and we
keep the same i. So we assume i<N. Assume that there exists an invertible

sheaf ¥ such that #V=(@(D), where D is a normal crossing divisor. The
N-1

section of &V, whose zero-set is D, defines on the ¢y-module o/ = @ £~ an
i=0

(y-algebra structure. Let T be any desingularization of Spec/ and p: T—>Y

the corresponding morphism. Then one has

N-L o TiD
pr=® 27 ([57])
and

N-1 . i-D
pear=8 o0 (-[ 7).

For the proof and some applications of this construction, see [4].

§ 4. Positivity and vanishing theorems

In this section we introduce and discuss the notations of weakly positive sheaves
and arithmetically positive invertible sheaves, and we formulate the generalized
“Kodaira-Vanishing-Theorem”.

(4.1) Notation. Let & be any coherent, torsion-free sheaf on a nonsingular
quasi-projective variety Y.

i) Let U be an open subvariety of Y. We say that & is generated by its
global sections over U, if there is a map@0,— %, surjective over U. This is
equivalent to the fact, that for all yeU we can find elements in H°(Y, #) which
generate & near y.
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ii) Let i: V—Y be the biggest open subvariety of Y such that i*# is locally
free. Then we define for >0 S#(F)=i, S/(i*#), where S# denotes the usual
symmetric product.

(4.2) Definition. Let & be a coherent torsion-free sheaf on Y and # a set of
open subvarieties of Y, closed under intersections (i.e. U,,U,e% implies
U nU,e%).

i) & is called weakly positive with respect to ¥ if

a) Z |y is locally free for some Ue%.

b) For all ample invertible sheaves # on Y and all >0 there exist some
B>0 and some U’e# such that S*#(F)Q@#* is generated by its global sections
over U'. (In a) and b), we assume - of course - U and U’ to be non-empty.)

ii) If % is the set of all open subvarieties of Y, we say & to be weakly
positive instead of “weakly positive with respect to ™.

iil) If % ={U}, we just say that & is weakly positive over U.

The notation “weakly positive” was introduced to study direct images of
certain sheaves under surjective morphisms (see §6). In §7 and §8 we apply
this notation to invertible sheaves and to a quite special class of open sub-
varieties. This is nothing but a convenient way to avoid too many “limit-
processes”. General properties of weakly positive sheaves are discussed in [11],
[12] and [13]. The most important are:

(4.3) Properties of weakly positive sheaves. Let X, Y and Z be nonsingular
quasiprojective varieties, % a set of open subvarieties of Y, closed under
intersections, and # and % coherent, torsion-free sheaves on Y, locally free
over some Ue.

1) If &# is weakly positive with respect to # and # —% a map, surjective
over some Ue%, then ¥ is weakly positive with respect to %.

2) Let ¥, and ¥, be any invertible sheaves on Y. Assume that for all
y>0 there is some p>0 such that S"*(F)RF*®L, is weakly positive with
respect to %. Then & is weakly positive with respect to %.

3) If # and ¥ are weakly positive with respect to %, then # ®Y, det(#F)
and S$?(#) (for all y>0) are weakly positive with respect to %.

4) Let t: Z—Y be any morphism and & be weakly positive with respect to
%. If either 7 is flat or & locally free, then t*% is weakly positive with respect
to t 1 (X)={t"Y(U); Ue¥}.

Moreover, if 7 is a finite covering (and hence flat), then: t* % is weakly
positive with respect to T~1(%) if and only if & is weakly positive with respect
to .

5) Let 7: Y—>X be a birational morphism and # weakly positive with
respect to %. Then v, F is weakly positive with respect to {t'(U)nV; Ue%}
where V is the biggest open subvariety of X such that |-, is an isomor-
phism. More precisely we can say that for all ample invertible sheaves # on X
and all «>0 there is some f>0 such that §*#(F)®1*(#?) is generated by its
global sections over v (V')A U (or equivalently that 7, S*#(#)®@#" is gener-
ated by its global sections over V nt'(U)) for some Ue%.
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6) Assume that & is locally free and that Y is projective. Then & is weakly
positive over Y, if and only if for all curves C, for all morphisms j: C—Y and
for all invertible quotient sheaves & of j* % one has deg (£)=0.

Proof. 1) follows immediately from the definition and 3) is proven in [13], 3.2.
If # is an invertible sheaf (and this is the only situation where we need 3))
then 3) is obvious. 6) can be found in [117, 1, 10.

2) Let # be any ample invertible sheaf on Y and «>0. For § big enough
both #°®.%;! and #°®.L;' are ample. We can find u>0, by our assump-
tion, such that $*?* ¥ F)R L*®.¥, is weakly positive with respect to %. For
some >0 and Ue#, F| is locally free and

SIS HINRL T RLIRA T RL T RARL
is generated by its global sections over some Ue%. Then
S*Zﬁﬁ-wu(g;’)@”ﬂ-é'u-i—é'ﬂ and S‘Z'ﬁ-ém'a(g)@%}ﬂ'é-u

as well are generated by their global sections over U.

4) For # ample on Y and y>0 we can find some x>0 that §"*(F)®Q #*
is generated by its global sections over some Ue%. We may assume that & is
locally free over U and each of the assumptions gives an inclusion of
*(STHF)Q A in SrE(T* F)RQ T A and hence a
map@(Oz—»SAV"‘(t*gf)(@t*%“, both surjective over 17 }(U). The sheaf ®O, is
weakly positive over Z and from 1) and 2) we obtain the weak positivity of
t*%. The other direction - if 7 is finite - is in [11], 1.7: 7*# is ample and if
t*F is weakly positive we can find for given o some >0 such that
S2eb(e* F)Qt* AP is generated by its global sections over t~}(U) for some
Ued. We hence have maps, surjective over U,

OH*R1,0,-S**HF)QH P R1,0,~S* N F)QH .

For f big enough, the first sheaf is generated by its global sections.

5) For given # and o we have to find Ue# and >0 such that
r;§“‘ﬂ(ﬁ)®%” is generated by its global sections over V' nt'(U). This sheaf
does not change, if we replace Y by its biggest open subvariety on which & is
locally free. By 4) we may replace Y by any birational Y'—>Y and assume that
7’ is just a sequence of blowing-ups (see for example [6], V.5.6.1). Then - as in
(3.2) - there is an effective divisor E with support in the exceptional locus of 7',
such that Oy(—E) is relatively ample. In other words, for some y>0 the sheaf
T* #?(—E) is ample.

Hence for §’ big enough and some Ue# $*7#(F)® (' *#'(—E)F is gener-
ated by its global sections over U. This sheaf is included in
SerF(F)R1'*#7F, isomorphic over V, and for f=7-f we get 5).

(4.4) Definition. An invertible sheaf & over a projective nonsingular variety Y
is called arithmetically positive if one of the following equivalent conditions is
fulfilled:
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a) % is weakly positive over Y.
b) For all curves C in Y we have deg(Z|-)=0.

In fact, if j: C—Y is any non trivial morphism and s the degree of C over
J(C), one has deg (j*¥)=s-deg;(Z|;() and the equivalence of a) and b) is
(4.3, 6)).

For arithmetically positive invertible sheaves one has the following vanish-
ing theorem - using the notation introduced in (3.10).

(4.5) Theorem. Let Y be a nonsingular projective variety, D a normal crossing
divisor and & an invertible sheaf on Y. We assume that for some N >0 the sheaf
LN(— D) is arithmetically positive, and we fix i>0 and p>0. Then

(o (-[2])our)

if one of the following conditions if fulfilled:
i) The selfintersection number c¢,(£~(— D))*™¥ >0,
i) The “%L-dimension” 1(£Y(—D))=dim(Y).

iii) N>i and the “%-dimension” « ($N‘i (—— [NN l-D])) =dim(Y).

This theorem was proven by Kawamata in [8] and independently in [10]
and [4]. The conditions i) and ii) are equivalent and - replacing N by /- N and
D by I- D, if necessary - they imply iii) (see [10], 2.2, 3.1 and 3.2). One possible
proof of (4.5) uses the covering-construction indicated in (3.13), the symmetry
of Hodge-numbers of projective varieties and the closedness of global logarith-
mic differential forms.

{4.6) Corollary. Let Y and X be nonsingular projective varieties and t: Y—>X a
birational morphism. For a normal crossing divisor D and an invertible sheaf &
on Y we assume that £N(—D) is arithmetically positive for some N >0. Then for

all i>0 and ¢>0
. i-D
Rq‘t* (wy/x®gl (— [EN_]>) =0.

Moreover, if one of the conditions of (4.5) is fulfilled,
. i-D
b (xos, (om0 (=[] @) -0

Proof. The second statement follows from the first one and (4.5). In fact, the
Leray-spectral-sequence gives

(1 (<[ 7o) (ks om0 2 (- [F ] o)

for p>0.
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In order to show the vanishing of the higher direct images of T we can use the
projection formula ([6], p. 253) and replace ¥ by L ®t*# for any ample
invertible sheaf # on X. Especially we may assume that x(#"(—D))=dim(Y),

that
. i-D
Rz, (“’WW (‘ [—I\"]))@)w"‘

is generated by its global sections and that

(e oo ([0 o)

for all p>0 and ¢=0. In this situation the Leray-spectral-sequence gives

(e (=[5 o) =1 (v, fonne (=[] o))

Hence from (4.5) both sides must be zero and we obtain (4.6).

(4.7) Corollary. Using the notations from (4.6) we assume & to be arithmeti-
cally positive itself. Then there exists a polynomial P(l) of degree at most
dim (Y)—1 such that for all 20

h\(X,1, L)< P().

Proof. Let H be a very ample divisor on Y such that O,(H)®@wy' is ample.
From (4.5) (or from the usual “Kodaira-Vanishing-Theorem™) we know that
HYY, #'(H)) is zero for ¢>0. h°(H,%'(H)|,) is bounded by a polynomial of
degree dim(H)=dim(Y)—1 and using the exact sequence

0— L' > L (H)— L'(H)|3—0

we find h'(Y, £’ to be bounded by the same polynomial. The Leray-spectral-
sequence gives an inclusion H'(X, 7, £)—H'(Y, &").

§5. The Main Lemma and the proof of (0.4)

(5.1) Let d be a n-tuple of natural numbers satisfying d, =2d,=...=2d,. Using
the notations and assumptions made in (2.6) we choose a birational morphism
:IP—(IPY)" such that IP is nonsingular and projective and such that
M =1Im(t* M’ — Op) is invertible (see (3.2)). Of course we can choose 7 to be an
isomorphism on T~ Y (IPY)* —{(,, ..., {m))

Again in this section we have to assume that g =g for all u and we want
(a, t,) to satisfy (1.6) and (3.4, i)).

In order to distinguish the different factors of the (IP!)" we number them:
(IPY)"=1P! x IP} x ... x IPL. For every subset I={iy, ..., i} ={l, ..., n} we write

np: P x Py x ... x P} - IPL x IPL x ... x PL =(IP*)

for the projection, n;=n;" 1, T, =7y, and m, =7y,.
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(5.2) Notation. An open subvariety of IP is called a product open set if it is of
the form t=!(U; x U, x ... x U,) for non-empty open subvarieties U, < IP}.

Instead of saying that some sheaf is weakly positive with respect to the set
of product open sets, we just say that the sheaf is weakly positive over some
product open set.

In §7 and §8 we are going to prove (remember that we assume
My, ...,d,) to have a non trivial section!):

{5.3) Main Lemma. In addition to (5.1) we assume that for y+u and v=1, ..., n
we have {, ,+(, ,. Let M'=Max {M, 2} and

dizdi+(M =2 Y d;

j=i+1

Then the invertible sheaf M (d\, ...,d,) is weakly positive over some product
open set.

(5.4) Corollary. Under the assumptions of (5.3) we assume that (d', a, t,) satisfies
(1.8) and (3.4, ii)) for all p.

Let ') be the sheaf introduced in (2.6) and 1': P’ —(IP!)" be a birational
morphism of nonsingular projective varieties, such that 1’ is an isomorphism over
some product open set, the fibres of w1’ are normal crossing divisors for all v
and L=Im(t'* L9 > Op) is invertible. Then £(d,,...,d,) is arithmetically
positive.

We start the proof of (5.4) with:
(5.5) Claim. £}, ..., d;) is weakly positive over some product open set.
Proof. 1f one of the t,=0 we can leave away the point {, and replace M by
M —1. Therefore we can assume that

0<t=Min {tb ...,tM}

and that there exists some y>0 such that y-t=¢, for u=1, ..., M. (2.7) implies

Ya, dyzY a,d2t,+t forall p
v=1 v=1

M n
The polynomial H=[] [] (.. X,—4, " Y,)* has multidegree M-d' and a
u=1 v=1
zero of type (g, t,+1) at {,. Moreover, in {,, H is in the ideal £4"* %+,
For a>0 given, (4.3, 5)) applied to (5.3) shows the existence of some >0
such that

My, Y POy, . ) =1y (M(d, ..., d) P @ Up(dy, ..., d,))

is generated by its global sections over a product open set.
These sections of multidegree («- f+ f)-d' have zeros of type (g, - f§-t,) at
{,. Multiplying them with the fixed polynomial H? # we get sections, generat-
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ing the sheaf over some product open set, of
M ’
ﬂ /C(£G+v+ “'5'4’9’(””"3"“”'ﬂ")(@@ﬂpl)n(d’l, e d;,)(”M'” -8B,
n=1

This is contained — isomorphic over a product open set — in

LY, ... ) FRFP
for

F=(L ) QOgp(ds, ..., d) M.

©'* being right exact, we find that £ (d}, ..., d,)* *@(t'* #)? is generated by its
global sections over a product open set, and hence it is weakly positive over
this set. (5.5) now follows from (4.3, 2)).

(5.6) Claim. If M =1, then (5.4) is true.
Proof. From (2.3, ii)) we know that in this situation
LAy, . d) =22V R Opiy(dy, ..., dy)

is generated by its global sections and hence the same is true for £(d, ..., dy).

In the general case we prove (5.4) by induction on n. For n=1 there is
nothing to prove. For simplicity we write t=1', P=IP’ and n,=mn} - 7. Let C be
any curve in IP. We have to show that

(5.7 dege(L(d), ..., dy)lc) 2 0.
Case (5.8). n,(C)=1IP! for all v.

This just means that C meets every product open set U. If not, C would be
contained in one of the irreducible components of IP—U, which are com-
ponents of ;! (P) for some PelP!. From (4.3, 6)) applied to (5.5) we find for all
a>0 some >0 such that

Ly, ..., ) PRQUp(B, ..., B
has a section, which is non-zero in some points of C. Hence
o f-dege(L(dy, ..., dy)lc)2 —B-dege(Cc(l, ..., 1))
for all >0 and we find (5.7).

Case (5.9). Using the notation introduced in (2.5) assume that t(C) is con-
tained in the support of C¢"#* for some s.

(2.8) guarantees that 7(C) does not meet the support of C£" " for u+s and
degc(Z(dy, ..., dy)lc) =degc(Im (t* 42" %% - Op) ® Oc(d], ..., dy)).
We get (5.7) directly from (5.6).
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Case (5.10). For some ke {1, ..., n} one has n,(C)=PelIP} and
©(C) & Supp (CE )
for any u.

7 induces a morphism C — (IP!)" which factors over
j: C»m~ Y (P)~(P)"— 1,
Over some open subset of C
FLD D)1y Ocldy, . dy)
is surjective and the image is nothing but #(d}, ..., d,)|c. As we have seen in
(2.9) the sheaf &', . (p is again of the form (Aﬁ‘fgf' 2w (on (IPY)" ') and
p=

(¥9d,, ...,d")ln;(—l(P))N has a nontrivial section. Replacing £ (d}, ...,d,) by
some power, we may assume that («,71,) and (J, «, 7,) satisfy the numerical
conditions (1.6), (1.8) and (3.4) and that N=1.

Let Y be the proper transform of ;= *(P) in IP.

By the induction hypothesis we know that #(dj, ..., d;)|y is arithmetically
positive, and we get

degc((L(d), ..., d)ly)lc) =degc (£ (d), ..., dy)lc) 2 0.
(5.11) The proof that (5.3) implies Theorem (0.4).

As we have seen in §1 and §2, the existence of f in (0.4) guarantees that
HO(IP, .#(dy, ...,d,))%0. The conclusion of (0.4) remains the same if we replace
d by N-d and t, by N-t, (see (2.4,1)) and we can assume that (1.6), (1.8) and
(3.4) are fulfilled. Choosing t': IP’ — (IP!)" as in (5.4) — which is possible by (2.5)
— we find that £(dy, ..., d;) is arithmetically positive for

di=di+ Y (M'=2)-d;.
j=i+1

By (3.5) and (4.7) we know that for some polynomial P'(N) of degree n—1
hi((IPYy", £'9)d,, ..., d)Y)SP'(N) for all N>0.

M

Let C™M= @ C{¥'¢-# Nt From (2.8) we get the exact sequence

p=1

0= L, ..., d)" = Ogip(dy, ..., d)) > CV@Ogin(dy, ..., dy)¥ —0,
(5.12) We find
(N-dy+1)-..-(N-d,+1)
SHO((IPYY, CN@Op(ds, ..., d)")+hO(P), £y, ..., d)Y)
<(N-dy+1)-...-(N-d\+ 1)+ P'(N).
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For some se{l, ..., M} we forget the points {, for p=s i.e. we replace t, by 0
for u=s and find using (5.12) that

RO(PYy', C 42 N QOgin(dy, ..., dy)Y)
is bigger than

_ho((Pl)n7 /gg,’ @ N.tS)®(9(]P‘)“(d/l9 AERE) d:l)N)
H(N-di+1)-(N-dy+1)-...-(N - d,+1).

Altogether we obtain for some P(N) of degree n—1

M
Ndy-oodyz Y (dy-...dy- N
pu=1

___hO((]Pl)n, fg(,lj.g"g' N.l“)®(9(ﬂ’l)"(d'1¢ sees d;l)N))
+hO((PY, £, ..., d)") = P(N).

Using (2.4) we get slightly more than requested in (0.4):

(5.13) Under the assumptions made in (0.4) one has

M M
Yodiody-Vol(Id, g, t,))< Y dy-...ody - Vol(I(d, g, 1))
n=1 pu=1
<dy-....d,— lim N="- hO(PYY, ' (dy, ..., )NV <d) ... d..

N—w

§6. Weak positivity for direct images of certain sheaves

(6.1) Theorem. Let V and W be nonsingular quasi-projective varieties and
f: V=W a surjective projective morphism. Assume that for some open subvariety
W, of W

a) The restriction of f to f ~*(W,) is smooth.
Then f, wyy is weakly positive over W,,. Moreover, if

b) W— W, is a normal crossing divisor.
Then f, wy,y is locally free.

Let r=dim(V)—dim(W). Studying the variation of Hodge-structures on
R f, Cl;- 1w, and its degeneration along W—W,, Kawamata proved (6.1) in
[7], Theorem 5, under the additional conditions:

¢) f~1(w) is connected for we W,

d) V and W are projective,

e) the local monodromies of R"f, |-y, around the components of
W — W, are unipotent.

In fact, he obtained the weak positivity of f, wy,w over W itself (using
(4.3, 6)). Choosing good compactifications, we may always assume that d) is
satisfied. Replacing W by a finite covering and V by the normalization of the
fibre-product we may assume that each component of V satisfies c) and e) (see
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[7] and [12], §4). (6.1) follows from a careful analysis of the behaviour of
f« wyw under fibre-product and normalization ([3], Lemme 13 and [12], 3.2)
and the properties (4.3, 4) and 5)) of weakly positive sheaves. The details can be
found in [12], §4.

(6.2) Corollary (see also [12], 5.1). Let f:V—W be a surjective projective
morphism of nonsingular quasi-projective varieties, D an effective normal crossing
divisor on V. Assume that for some invertible sheaf & and some N >0 one has an
inclusion 0y(D)— &V, surjective over f~'(U) for some non-trivial open sub-
variety U of W. Then, for all i>0,

oo (7))

is weakly positive over an open subvariety Y of W.

Proof. If iz N we replace D by v-D and N by v- N for some v>0, and hence
we may assume that i<N. By (3.12) we are allowed to replace V by any
“blowing up”, as long as D remains a normal crossing divisor. In this way we
can assume that #"=(y(D’) for a normal crossing divisor D' > D. The natural

inclusion . (www® o (_ [%]» S f, (a)v/w® & (— [%D)

is surjective over U and using (4.3, 1)) we may assume that D'=D. As we have
seen in (3.13) we can find p: T— V such that T is nonsingular and such that

N-1 . i+ D

pror= @ oy ® L' (— [ITD (6.1) applied to f- p gives the weak positivity
i=0

of f, pywrw and using (4.3,1)) the weak positivity of the direct summand

. i-D
Jx (a)V/W®,Sf” (— [IW—])) over an open subvariety of W.

(6.3) We want to lift the positivity statement of (6.2) from the base to the
total space, using (4.5), in the following situation:

Let p: C— T be a surjective, flat morphism of nonsingular projective va-
rieties, k=dim(C)—dim (T). Let .# be an ideal-sheaf and & and X invertible
sheaves on C. We fix open subvarieties X of C and Y of T and some N >0. We
assume:

a) (L¥®.F)" is generated by its global sections over X np~!(Y) for some
1130,

b) A is generated by its global sections for some u,>0 and the “.%
dimension” k(% |,-:4) =k for a point teT in general position.

¢) For teT in general position let x and x' be two different points in
p~'(t)nX. The there exists an effective divisor 4 on p~!(f) such that xeA,
x'¢ A and such that @,-.(A4) is numerically equivalent to .

d) Let t': V- C be any birational morphism such that

71 - 0p=0y(—B)
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. .. B . . .
for a normal crossing divisor B. Then 7, wy,c (— [——]) — 0¢ is an isomorphism

over X. N

(6.4) Proposition. Under the assumptions made in (6.3), there exists an open
subvariety Y'cT such that LQA* ' '®wcyr is weakly positive over
P H{Y)nX.

Proof. It is enough to find Y'= Y and making X smaller if necessary we may
assume that X < p~!(Y). Further replacing .# by #**'#2 and N by u; -y, N,
we may assume that y, =1 and that u, divides N.

By a) we can find a subsheaf #' of .#, such that #'|y= 7|y and such that
FN®.#' is generated by its global sections on C. Since d) is independent of the
blowing up chosen (3.2), one can define ' such that ¢'~!' 4.0, =0(—B) for
a divisor B’ containing B. Then t* #¥® 0y (—B') is generated by its global

’

sections over V and by d) one has 7}, wy ( - [ﬁ]) =wc over X.

Let s be a general section of 7* L¥N@t* AV ¢+ VRO, (—B). V(s) is re-
duced, intersects B’ properly and V(s)UB’ is a normal crossing divisor (use the

‘B'+V ‘B’

theorem of Bertini [6], III 10.9). We have therefore [J—ﬁ]=[—] and
N N

from (6.2)

Py T (f/*g®fk+l)®(9v (— [ﬁ]) ®wV/T)

B/
ruror 1000 e - [5])

is weakly positive over some Y'< Y= T. We have natural maps
* k+1 ’ Bl ap k+1
PP (ZRA T NRwcr® Ty \wyic | — ~l) LRA T @ugr
’ B *2 k+1
Ot (wvic | — N )) —— LA Qawgr.

From (4.3,4)) we get the weak positivity of the image of a=a, a; over
p~*(Y’). o, being an isomorphism over X (6.4) follows from

(6.5) Claim. Making Y’ smaller — if necessary — «; is surjective over
p~HY)NX.

Proof. (6.5) is just saying that for te Y’ in general position the sheaf

B,
LA Que, @114 ((UV,/C, (" [’ﬁ]))

is generated by its global sections over X,, where the index “t” just denotes the
restriction to the fibre C,=p~1(t) and V,=1"~1(C)).

Let xeX, be a point and p: C;— C, the birational morphism obtained by
blowing up the maximal ideal of x (3.1). Let E, be the reduced exceptional
divisor of p. From [6], II, Ex. 8.5 we know that wcye,=0¢; (k—1)- E,).
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(6.6) Claim. p* #}*'(—k- E,) is arithmetically positive and
k(p* A} (—k- E,)=k.

Proof. Since w(A;)=k(p* )=k, it is enough to show that p* 4 (—E,) is
arithmetically positive.

In fact, k(p* #;)=k is equivalent to the fact that p* 2#;® contains an ample
subsheaf for some >0 (see for example [12], 6.3). Hence

p* AL (p* A (— k- E)Y
contains an ample subsheaf. Now let I' be any curve in C;. If p(I')=x, then
degr(p* #:(—E,))=degr(Oc,(—E,))>0.

If p(I')#x, then there exists by c) an effective divisor A4,, numerically equiva-
lent to A; such that p(I')§& 4, and xeA,. Hence degr(p* #(—E,)=TI"(p* A4,
—E,)=0 since p* 4, —E, is an effective divisor not containing I'.

In order to finish the proof of (6.5) we may assume that V; factors over
n:V,- Ci, i.e. 1;=pn. Write F,=n*E,. The sheaf

LA TR0y, (~(N-k)- F.—B)

is arithmetically positive and of “.% dimension” k. We hence can apply (4.6)
and we get a surjection

H°(C,, Z@ 4 ' ®@wc)—H(C,, #)
where

B/
Z =Coker (r;* (a)wct (—k -F.— [ﬁ])) —-»(QCl) RLA M Raug,.
By the assumption d), #|x has its support in the point x. If # |y were zero,

B!
e [2)

for an effective divisor E with 1;(E)=x.
We would obtain a relative canonical divisor of the form

=(9z;‘1(xt)(E)

¥ 1(Xy)

B)
E+k-F,.+ [—’]
x N
which contains the proper transform of E, under n with the multiplicity at
least k, contradicting the description of ¢y, given above.
Hence for some non-trivial sky-scraper sheaf %, concentrated in x we get a
surjection

HO(CH $t®1/tk+1®wct)__,H0(cb Fy)
and hence (6.5).
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§ 7. Reformulation of the Main Lemma and another covering construction

In §5 we formulated the Main Lemma under the conditions introduced in
Theorem 0.4. In this section, we consider a slightly more general situation.

(7.1) Using the assumptions and notations introduced in (5.1) and (5.2), we
define
Mv=Max {2a I{C#,V; u= 1> sees M}|} -2

We consider (n+ 1)-tuples (a*, t,)eIN"*+1.
If two points have the same v-th coordinate, i.e. if {, ,=(, ,, for =%y, we
assume :
u

bt

a(vu) - a’

We assume moreover that the (n+ 1)-tuple satisfies (1.6). Under this condition,
one knows ((1.9) and (3.5, 1)) that .#'" is full for all N>0.

(7.2) Generalizing the notations introduced in (0.7), we write & (a—l, . &) in
the following case: r r

a) all the g; are integers and if a;+0, there exists an invertible sheaf J#;
such that 0x(0, ..., 1, ..., 0)=#7.

b) Under this condition F (“7‘ f’—) —FRQH®D.. QK
r

(7.3) Main Lemma. Under the assumptions and notations of (7.1), assume that
for dy=zd,=...d,=2, the sheaf #(d,, ...,d,) is weakly positive with respect to
Uy. Then

e%(dl +M1 'dk+1, cees dk+Mk'dk+1> dk+1a ceey d,,)

is weakly positive with respect to U+, where %U, is defined by
U= {t" YUy x ... x Ue_y x V); U;< 1P} open and V,<IPi x ... x IP} open}.
(7.4) Corollary. If #(dy, ...,d,) has a non trivial section, then M (d}, ..., d,) is

weakly positive over some product open set, where di=d;+M;- Y. d;.
j=i+1

Proof of the corollary. For k=1, %, is nothing but the set of all open
subvarieties T~ !(V) for any open V in (IP!)". Especially, %; contains all open
sets in PP—t7'({(y,...,{m}). The given section induces an injection
Op—>MHd,y,...,d,). So H#{d,,...,d,) is weakly positive with respect to %;.
Now, (7.3) is just the induction step from k to k+ 1.

For k+1=n, one sees that %, is by definition the set of all product open
sets. Hence, (7.4) is true.

In order to prove (7.3), we need the following proposition, which is a kind
of “semi-stable reduction” in our special situation.

(7.5) Propesition. For v=1,...,n, we choose a point z,€IP} in general position
and write U,=TP} —{{, ,,...,{rm.v» 2,}. Take an integer r>0. Then, there exists a
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commutative diagram of non singular varieties

, C U SN T
C=C;x..xC, a o’
N

Pl x.. xP'— 5B, x...xP!
such that

1) p,: C,»IP} is a finite covering, p=py X ...Xp,, T =041, n the pro-
jection, & is birational and ¢’ is generically finite.

2) There is an invertible sheaf A on C, an inclusion ¢ =1 4" Oc— N, for all
[>0, which is surjective over o~ Y (U, x...xU,) and such that the following
diagram

N T

]

(Q(Pl)n 0* (OC (O(]Pl)n

is commutative (as in (3.8) the second row consists of the natural inclusion and
the trace map).

3) r divides the degree of p,. In other words, for all £,€{0,1}, there is a sheaf

¢ (8—18—)
r r
4) p is flat with reduced fibers.

5} o is étale over Uy x ... x U,.
6) There is a natural inclusion

1 1
wC/T_)(DC (M] +;, ...,Mk+;',0, ,O)

which is surjective over ¢~ (U, x ... x U)).
The construction depends on r.
(7.6) Claim. One may assume that r=1.

Proof. For a fix ve{l,...,n}, we set S,={(,, ., 2} if {,.,={,,, for u=1,.... M
and S,=1{{,,,,, {4} for two distinct points {,, , and {,, , otherwise. We can
find cyclic coverings h,: IP!>IP! of degree r, where IP! =IP!, which is totally
branched over S, and étale outside of S,. Set h=h, x ... x h,.

For arbitrary points p,eIP!, one has

h*@([pl)n(al, .‘.,Sn)'—:@(][)l)n(r‘ﬁl ‘P, ...,r'sn‘p,,),

for ¢,€{0, 1}. Hence, 3) is true for every finite covering factorizing over h. The
set h=1({{,.,; u=1,..., M} —S,) consists of M,=r- M, points. So, in 6), we may
assume that r=1.
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By construction, h is étale over U; x ... x U,. So, in 5), we also may assume
that r=1.

Now, let {{}; y=1,..., M}, be the points of h=*({{y, ..., {5}). One has
"
h* ' < () w"
y=1
where, if h({})={,, the (n+1)-tuple (b, 1,) verifies 7,=r-t, and

(1) 1
por I if £,,,€S,
Y r-a®  otherwise.

By (3.8), one knows that there is a commutative diagram

M
e/{r h* m mg(v),f./) ‘%/
l i }.
Opiypp——  hyOpryn  —— Opipn.
Hence, in 2), we can also assume that r=1.

(7.7) We define a non singular cyclic covering p,: C,—»IP} by the following
condition:

) 4 . e N-a®
p, is ramified in {,, with the ramification order

*. where N is the

. t s
smallest common multiple of a(—‘;), u=1,.., M, v=1..,n

This is possible by assumption ((7.1) and (1.6)). Moreover, one may assume
t

that p, is étale over U,. In fact, choose a divisor D1=Z -(%'Cu,v, where the
aV

sum is taken over the different {, , on IP!. Choose an # such that D=D; +7"z,
is a divisor of degree [ - N for [eN. Applying the construction (3.13) to £ =04 )(1)
and &N =0 (D), we get p,. .

Set p=py x...xp,and C'=C; x... x C,. One has the inclusion

P (Y

where the intersection is taken over all { in p~'({,) and »; is the maximal
ideal of {'.

Set A= N »y. Then, one has the inclusion p*.#'—.4", and
Cep™ 1({C1s . nlnr))
from (3.8) we know that for every blowing up of C' making A" invertible, say

3: C»Cyx...xC,and § ' A" Oc= A, we have the property (3.8) for 6=p- 5.

(7.8) Claim. Let C'=X x Y be the product of two smooth varieties of dimen-
sion k an (n—k) respectively and p': C'>Y be the projection. Let S be a finite
subset of points c=(x,y) of C'. For all ¢ of S, one considers a parameter
system near x in X and near y in Y, say (xy,..., %) and (x4, ..., X,), such that
the divisors which are globally defined by x; =0 are smooth.




Dyson’s Lemma 475

Define 4., by V(x,)x Y if v<k and by X x V(x,) if v>k. Similarly define
4., by Vix,) if v>k.

Set
a= ) 4., 4= | 4.,
ceS ceS
v=1 n v=k+1,..., n

Denote by wc{4) the sheaf of n-holomorphic forms with logarithmic poles
along the normal crossing divisor 4.

Then there exists a commutative diagram of smooth varieties

c—Lt-T

C—F—Y
such that
1) 6-'4, & 'A" are normal crossing divisors *wc{A4>=wc{d '4),
F*wy{dd =51 4.
2) 8, &' are birational, p is flat and has reduced fibers.
3) d is an isomorphism outside of A.

4) For each point ceS, 6" s, -Oc is invertible, where s, is the sheaf of
maximal ideal at c.

Proof. Define &': T—Y to be the blowing up of all the reduced points y such
that there exists x such that (x,y)eS. Call E, the corresponding exceptional
divisors. Define p: C—»X x T to be the blowing up of all reduced varieties
(x,E,) such that (x,y)eS. Now we may assume the following conditions to be
true.

a) Y =Spec(B), where B is a local ring at y.
b) T =Spec (B [xk”,

Xk+1 "Xt
¢) X =Spec(4), where 4 is a local ring at x such that (x, y)eS.

d) C is either i) Spec (A@B [ﬁ,...,xk“ Xer2 ]) or

Xn

]) E, is defined by Xys1.

b > b
X1 X1 Xk+1 Xi+1
.. X1 Xk Xk+2 Xn
ii) Spec (A®B[ sy , Yoy .
Xk+1 Xk+1 Xk41 Xk+1
11 41 xk+2 Xn :
Now, 6’714’ is defined by x4, 1+ | Xks1- e Xkt and is a normal
Xk+1 Xk +1
crossing divisor as well as 6~ 14 which is defined by either i)
X2 Xk+1 Xk+1 Xk+2 Xg+1  Xp
xl' xl._‘ Tt xl' : xl. f— Tt xl.——"—_"—
X1 X1 X1 Xg+t X1 Xk+1
or by ii)

X1 X1 . Xi+2 Xn
Xk+1" e Xkt "Xp+1" X+t et WXt T
Xk +1 Xk+1 Xk+1 X4 1
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This computation shows moreover that 6~ !s,- O is generated either by x; or
by x;,: and that & wy{4"> is generated by

X Xp
d (xk+1‘"ﬁ“2‘) d (xk+1' )
A

A(Xk+1) A Xk+1 Xk+1
Xk+1 Xk+2 Xn
Xk+1° X1
Xk +1 Xk+1

which is a local generator of wy<d ~14".

One sees similarly that the inverse image by 6 of a local generator of
we{A) is a local generator of wc{d~'4). Since p has obviously reduced fibers,
the only point to show is that p is flat. So, one can assume B to be complete:
B=C[x41,..-,x,]. Then, one has C=C;xSpec(CLxys2,....,%,]), T=T,;
x Spec(C[ X425 ..., Xull), p=Pp1 X identity.

Since Tj is 1-dimensional, p, is flat, as well as p.

(7.9) We prove that (7.8) implies (7.5). We take
p:Y=Ciyx..xC,—»IBL x...x P!,
X=C/x..xC, and S=p '{,....0 m (24, ..., 2,)}.
For a point ceS, write c=(cy,...,¢,) and define
4,,=C;x..xc,x...xC, and 4;,=Cpyyx...xc,%x...xC,.

We consider the divisors

M n
D={) UD,.,uD,
pu=1 v=1
where
1 1 1 1
D, =P x...xP_ x{, ,xPyx..xIP
n
D,=)B'x..xP'yxz,x P4, x...x B}
v=1
and
M n
p=\{)  n'D,,uD,
p=1 v=k+1
where

Since D and D’ contain the discriminants of p and p’, one has

wc'<p—1D> =p*wapl)n<D> =p*(9(xp1)n(lwl ‘+‘ 1, ...,Mn+ 1)
and

ADCyerix... xC,,<p/_ 1D,> =p/*60m>1)n—k<D,> =p,*@(]p1)n—k(Mk+1 + ]., ceny 1\4,,+ 1)
By construction, one has p~'D=4 and p'~!D’'=A'. One has the inclusions

wero0c{d7 4D @p* w14y
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from (7.8, 2), and

Cl)C/T“'*5*(60(:'<A>®p’*a)ck+ 1X s XCH<A,>”1)=U* (O(]pl)n(lwl + 1, ey A/Ik—i— 1,0, vee ,0)

from (7.8, 1). Hence, (7.5, 6) is satisfied and the other points of (7.5) are trivially
fulfilled.

§8. The proof of the Main Lemma 7.3.

We return now to the situation considered in (7.1), (7.2) and (7.3).

(8.1) Claim. In order to prove (7.3) we may assume that .#(d,—1,d, —1,...,d,
—1) is generated by its global sections over some Ue%,.

Proof. For all >0 we find — by (4.3, 5)) — some B>0 such that .#*#(a-B-d,
+8,...,a- B-d,+ p) is generated by its global sections over some Ue%,.

If we consider .4 =.#** and d,=a-f-d,+p+1 for v=1,...,n, the sheaf
Al(dy, ...,d,) fulfills the condition we ask for in (8.1). If, however,

t%_(d_l +M1.d_k+1"--’d_k+Mk.d_k+l,d~k+17~'~sd:l)

=Mdi+M; dii, .., di+ My digq,diiq, ., dy) P
®@]P(l’ tees 1)ﬂ+1®(9]P(M1’ "'3Mk’0» ""0)B+1

is weakly positive with respect to % ., we obtain (7.3) from (4.3, 2)).

We choose a birational morphism g: Z—1IP, Z nonsingular, such that for a
normal crossing divisor D the sheaf g*.#(d, —1,...,d,—1)®0,(—D) is generat-
ed by its global sections. After (8.1) this is possible and moreover we can
choose D in such a way that g(D)sP—-U for some Ue%,. Of course,
g*¥ My, ...,d,)RQ0,(—D) is also generated by its global sections and moreover
of “.¥ dimension” n.

(8.2) Definition. We write

D
Cn=Supp (Coker (t*g* (a)z,mn)n®(02 (—— [ﬁ])) —>(Dm>1,n)

and &, =Min{N=1; (IP")"— Cy contains a product open set}.
(83) Claim. 5k+1 édk+1.

Proof. Of course Cy< Cy: for N'<N, and we have to prove that (IP')"—C,,,,
does contain some product open set.

Assume this is not the case. Then we can find an irreducible component C
of C,,., such that (IP')"—C does not contain any product open set, and we
can choose C in such a way that dim(C) is maximal. Let us prove first, using
the notation of (5.1):

(8.4) Claim. There exists a subset I ={l,...,n} such that
1) {k+1,...,n} &1
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2) mjlc is generically finite over (IP')! (this means just that |I|=dim(C) and
7(C)=(IP")).

Proof. We have the inclusions C<t-g(D)<(IP')" —t(U) for some Ue%,. Hence
C is contained in the union of ! ,(B) with fibres of =, for v=1,...,k—1 for
some divisor B in IB! x ... xIP!. C meets every product open set and, being
irreducible, it must lie in 7wy ! ,(B). There exists some v;e{k+1,...,n} such
that dim(C)=dim(7n{;, _ »—,)(C)). Otherwise, for v=k+1,...,n, one could write
C=C,xIP! for C,c(IP!)itm=0 and C would be of the form C'xIBY, x ...
x P! for C’e(IP!)i*~*, For dimension reasons this is only possible if B=P
xBL; x ... xIP! for a point PelP!, contradicting the assumption, that C meets
every product open set. Using a similar argument, we can find — if necessary —

step by step subsets

.....

{L..,n}2, .o 2{v, 2112 2{v,},
such that
dim(C)=dim(nfy, . py—(v;,...v(C)  for s=2,...,n—dim(C).

(8.5) We write I'={l,...,n} —I and — for a sufficiently general point Pe(IP!)!
we have (IPY) ~n;"!(P)~nj'(P) since we assumed 1! to be an isomorphism
outside the points {y,...,{y. Let Y=g 11t ;"1 (P) and denote g- 1|y =j.

We have:

A) g*ddy,....d)ly=j*Opyr(d,,...,d;)=0vd;,, ..., d;) if
I'={j,....jsh

B) Oy(d;,,...,d;)®0y(—Dly) is generated by its sections and Dy=D|y is a
normal crossing divisor.

C) Cq,. l@yr contains the isolated points C|p:yr.

We choose some #>0 such that y-dyy;=d;, for v=1,...,s—1. By the
choice of I in (8.4) we have j;=k+1 and di,;=d; . Hence it follows from B)
that Oy(n-diy 1,1 dkst1s M- diy1, A1) ®0y(— Dy) is also generated by its glo-
bal sections. Moreover, P being in general position, this sheaf has the “.#
dimension” s. (4.6) applied to the exact sequence

. D
0= Oy, -, 1, )@@y @y Oy @y (.. [d : ])
1
”’(9(11’1)"('7,-'-,71, 1)@60([?1)1/—),?/7—»0 e+

gives a surjection
HY(@®PY, Opyr(n =2, ...,n—2, —=1))> H°(P)", &).

By construction Supp(#)=C,,, |p - contains some isolated points, hence &
contains a sky-scraper sheaf and H°((IPV", #)+0. However,

(9@1)1'(?]“‘2, ..,,?]—2, —1)

can not have non-trivial sections and this contradiction proves (8.3).
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(8.6) For a fixed r'=k+2 we set r=r"?-8,,, and we take

/C _—t— T
C'=C1X...XC,, 4 a’

R

Plx.. xP'—-PB,, x...x P

to be the diagram (depending on r) of (7.5). Let U, x... x U, be the product
open set over which ¢ is étale. The choice of §,,; allows us to choose a
product open subset U of (U, x ... x U)n((P')"—Cs, . ).

We write X =0~ '(U). From (7.5, 2)) we have an inclusion

o=l M (dy, ... dy) O N(dy, ..., dy)

and this is an isomorphism over X.

(8.7) Claim. Let c,=(M,+k+3)-6,,,. Then there exists an open subvariety
Y’" in T such that

c c
N (d1 + M- Orpy +r—}s coon it My Sy +r":,dk+1> "-adn)

is weakly positive over X np~}(Y").

Before we start to prove (8.7) we want to show that (8.7) implies (7.3): We
may assume that Y'=¢'~1(V) for some open subvariety V of IBL; x ... x P!
From (4.3, 5)) we know that for every a>0 there exists some >0 such that

(NT(r-dy+ M-S g rtey 1Oy P di+ My Oy o7
+ et Opprs T digrs ~--»V'dn))2'a'ﬂ®(96(1, S b
is generated by its global sections over X np~(Y’). Using (7.5, 2)) we find a
map, surjective over Uz~ (V),
@U*@Cﬁ(ﬂ"(r-dl +M1-5k+1-r+cl~r'~5k+1,...,r~dk
My TP Syt digt, 1 ) PR Ui B, ., B).
For f big enough the sheaf P, Oc@Upiyn(B, ..., ) is generated by its global
sections and, applying t*, we find that
(f/%'(r'dl+M1-5k+1~r+cl'r/-5k+1, ...,I"dk+1\4k'5k+1-r
et Sty o digr, o T d) P Q0p(L, . 1)
is generated by its global sections over t~*(Unn'~*(V)), which is an element of
%Im-i-
By definition (4.2) the sheaf
M+ My Sypqy s et My Oy g, diyr, o dy) T
®@E’(C1’ "wckaoa 7O)r"6k+!
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is weakly positive with respect to %, and using (4.3.2)) we obtain the weak
positivity of #(dy+ M, 0xiq, -, di+ My s1,dxs1,-..,d,) with respect to
e y1-

By (8.3) dx41 Sd;,; and we get (7.3).

We return to the situation described at the beginning of this section. We
can find sections s;,...,s, of g*.#(d;—1,...,d,—1) such that V(s,)=D+V(s})
for sections s, generating the sheaf g*.#(d, —1,...,d,—1)®0,(—D). These sec-
tions induce sections of A4"(d; —1,...,d,—1) under the natural inclusion

HYZ,g*M(d,—1,...,d,—1))
=HO((IP1)n9 ’ﬂl(dl - la [EERY dn - 1))__’H0((Ipl)n’ Oy t/t/‘(dl - 1’ seey dn - 1))
and we choose .# to be the ideal-sheaf on C such that A4'(d,—1,...,d,— 1)®.F
is generated exactly by the global sections obtained in this way.

(8.8) Claim. Let v': V= C be any birational morphism such that ' ~!.#- Oy

B .
=(c(— B) for a normal crossing divisor B. Then T} (wy/c (-[6 ]))q(yc is
an isomorphism over X. k+1

Proof. From (3.12) we know that (8.8) is independent of the birational mor-
phism 7' choosen. We therefore can assume that we have a commutative
diagram

Z—5 (P

Over 7'~ 1(X) one has B=¢"*(D) and for simplicity we can assume that both
are equal everywhere. Moreover we can choose V such that ¢”|. -1y, is étale.
Then we have @, -1(xyx=0"* Wz p1ylr -1(x) and

Pt [t Pl
5k+1. v 7 H(X) 5k+1

We apply “flat base change” ([6], I11.9.3) to obtain

« D
g (T . g)* COZ/(]P!)n (— ["'——6k 1]) X
+

s D , B
=T 0 “WOzyenyn | — '5‘;: )X=T*COV/C - 6k+1

By the choice of X, o(X) does not meet Cj;,,, which implies (8.8).
(8.9) We define (for r=r2-8,,,)

r"’(X)-

X

F=0 ( My | k+2 Me (KF2 0)
¢ Oy r -1 r T Gy ¥ Y
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and
y—Min{”; N(dy, ..., d,)®F* %1 is weakly positive with}

respect to {X np~'(Y); Y= T open, Y= {}
This definition makes sense. In fact, if we consider
Mdi+n, ... g+, dyy, ..., dy)  for >0,
then this sheaf is generated by its global sections over
it (U X x Uy).

Therefore A'(d;+n, ...,dy+n,di+1, ..., d,) is generated by its global sections
over X for #>0.

The sheaf A'(dy, ...,d,)®F " %+ is weakly positive with respect to the set
of open subvarieties of the form X np~'(Y). Hence some power of the sheaf
(N (dy, ..., d)@F " 1) 1-1x0(1,...,1) is generated by its global sections
over X np~1(Y), for some open Yin T.

In fact, Oc (1, ..., 1) is ample and we can apply (4.3, 5)) to the morphism A
By our choice of .# some power of

(N (dys s Y@F TP QA (A, o, d) B S
=('/1/(d1s '--7dn)®97y'(5k+‘”“)ék+x®j

is generated by its global sections over X np~1(Y).

1 1
Let us choose A =0, (—, B ¢ A 0), where the first zero occurs on the
(k+1)—st place. r 4

(8.10). Claim. If we take N=6,,., and L=A4"(d,, ..., d)QF ®+1=1 then
the assumptions made in (6.3) are satified.

Proof. We just verified a), and b) is obvious by the choice of .#. The condition
d) in (6.3) is nothing but (8.8). Hence we are only left with c).

Let x and x' be two points out of p~1(t)~C, x ... x C, for sufficiently
general teT. We can find some ve{l, ..., k} and x,, x,€C, such that x,#Xx, and

XEC; X ...xxXyX...xXC,, XeC;x..xxi,x..xC.

By the choice of % we have dege,(|¢c,)=1 and (up to numerical equivalence)
A" is equal to the sum of C;x...xx,x...x C, and some divisor in general
position.

So we can use (6.4) and we find some open subvariety Y’ of T such that
LA ®wcr is weakly positive over p~1(Y')nX. From (7.5, 6)) we get an
inclusion, isomorphic over X,

k+2 k+2
(DC/T®%I‘+1-—>(QC(M1 +“‘::‘—‘—, ...,Mk+—-:‘,0, ,0)
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and wgr@ A ™*H 1 > F %+ isomorphic over X. In other words,
VAT AL TR M
is weakly positive over X np~(Y’), which by definition of y is only possible if
P Okr1—D+1 01> =11 or y<('+1)-drys.
Hence

W(dla s dn)®y(r'+l)‘5,2(+l

My '+ 1) 0cry  (kK+2) (1) Our
- 72 s s

My-(F+1)- 8001 (k+2)-(F+1)-8
M (r ,./) k+1+( ) (7"’,2 ) k+1,dk+1,...,d,,)

d,

is weakly positive over X np~!(Y’). However

M, -(r+1 k+2)-(r+1 M, +k+2 k+2
(r’ )+( )rz(r )=Mv+ . +0

M, +k+3
is smaller then M‘.+—%+— for ¥’ 2k+2 and we obtain (8.7).

§9. Roth’s Theorem

It’s well known to the specialists how to obtain Roth’s theorem assuming (0.4):
one constructs by a “pigeon-hole-principle” (or Siegel-type-lemma) an auxiliary
polynomial fe®[X,,..., X,] with an high order vanishing at the point
(o, ...,o) and a relatively small height. Dyson’s lemma, applied in all the

conjugates of (a, ..., %) and in an approximation point (p—l, e &) says that

q1 qn
the vanishing order of f at the approximation point has to be small.

Recall that (dy-...-d, - Vol(I(d, g, t))) expresses pointwise the number of con-
ditions for f to be of multidegree d and to have a zero of type (g, ). One needs
the following technical estimation of it.

(9.1) Lemma. Under the assumptions

one has
VOI(I(da a, t))éexp( —6-n: SZ/C)

1 & 1\?
where t =(1/2 —s)-n and c= Y (l—l-d—) .
v=1 v
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Proof. (copied from a manuscript by M. Mignotte, Publications d’Orsay n°® 77—
74). As in 2.4, ii), one writes

Vol(I{d, a,t))= lim (d,-...-d,)" - J(d)

dy—

where J(d) is the number of integral points i verifying

0<i,<d, and ) ;—v§(%—s)-n.
If one replaces i, by d,—i, one finds J(d) to be also the number of integral
points i verifying

0<i,<d, and Y, —;Y—g(%-i—s)-n.

d, ‘v 1
For F,(u)= Z exp (u- (%——E)) and F(u)=F;(u)-...- F,(u) one finds for u>0
i,=0 Y

that J(d) - exp(s-u-n)<F(u).

h 2
Adding up and using 1 < i—vilﬁgexp (%), one gets

ra=n (555 ) b))

u'(d‘,+1))' 2-d,
u-

§(dv+1)-sh(

2-d, d,+1)
s (20 1),

12-
For u= S

one finds the inequality wanted.

¢
From now on we consider a fixed number field K of degree d=2. In [1],
page 279, one finds:

(9.2) Siegel’s Lemma. Let N, M and d be positive integers verifying N>d - M.
Consider M linear forms l; with coefficients in K. Then there exists a non-zero
vector xeQ¥ such that I,(x)=0 for i=1,..., M and

d
d-M

hx)<c-(c- N)F=4 7 . (ﬁ h(l»)”""“
i=1

where h is the height and c depends only on K.

The proof is a “box” or “pigeon-hole” principle applied to the conjugates
of the forms ;.

(9.3) Corollary (see [1], Lemma 6). Take a,, v=1, ..., n, such that K=Q(a,) for
all v, and call A(a,)=logh(a,) the logarithmic height. Take (d, a, t) such that
d-Vol(I(d,a,t))<1. Then there exists a polynomial feQ[X,,..., X,] of multi-
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degree d having a zero of type (a,t) in E=(oy, ..., a,) verifying

d-Vol(I{d, a, t)
Hf)=loe ) =10~ 2. 0)

(Zd Ala,) +(log2)- Z )+od1+ +d,).

v=1 v=

To prove it (see [1]), one applies Siegel’s lemma to the number of poly-
nomials N=(d,+1)-...-(d,+1) of degree d and the number of conditions M
=d,...-d," Vol(I(d, g, t)).

Keeping the notations (9.3), we take a=a;=...=a,. Let k be a positive
number such that

(9.5)

has infinitely many solutions. Here | | denotes the usual absolute value in € and
we fix an embedding of K in €. Roth’s theorem, as stated in the introduction
says that x<2.

For any nelN and a given constant Q > 1 we can choose solutions El, e Pn
such that we have 4 n

(9.6) Assumption

1) q'l n- 1—‘gqng

N
ii) For all natural numbers N=2-log(qg,) let d,= [m], a,=d; ! and d,
=d,+(d—1)" Y d;. Then we assume that

i=v+1 1
dv <2. log(qv—l)

dv— 1 - log (qv)
the second half of this paragraph we prove:

ii) can be fulfilled since one has , independently of N. In

(9.7 Lemma. Assume that for t>1
d-Vol(I(d, g )=1 5.
2-n!
Then one has the inequality
1
—k-t—1D=—n-4-n! (Ae)+log2)+log(loaf+2))  ———.
(=1)Z =n-(4-nt (i) +log ) +log (ol +2) 1o

The assumption on ¢ is verified for n big enough. On the other hand,

n 1
vol (1 (¢.a. 3))=

and d =2, which implies tgg. (9.1) gives

1

1
e = < .21
i 3 dnl Vol(I(d, g, t))<exp(—6-n-s*-c 1)
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or (if d is big enough and 6=c¢)

10(1 1)
E\d 2 d

(9.7) being true for all Q we have

v

n.(l t)2
2 n/’

A
HV

=111 1_V o (1 1 )
n=2nﬁ E\a 2 am)
The limit for n— oo gives k< 2.

Proof of (9.7). Let f be the polynomial of (9.3), applied to the data d, g and ¢,

introduced in (9.6). f has a zero of type (g, t) at (o, ..., ) for all the conjugates
o' of a. Let 7 be the biggest real number such that f has a zero of type (g, 7) at
(p_,’ p,,) Theorem 0.4 gives

q1 qn

d,-...-d
Vol(I(d, a, 1) 2N _vol(1(d, ¢, 1) d S~
dl'---'dn “n!

and hence 7 <1. This means that we can find ie N" such that Z —v—rgl and
C=4if (3—1«, . l—)ﬂ) #+0 where we use the notation =
q1 qn
1 5L

fi= —_— .
ll"ln! axlf'...'ax;"

By (9.6,ii) we have i,—d,= —d,= — N-log(q,)~!. 4! does not introduce
new denominators and hence

(©.8) |Clz gy~ gy h(f)" ' Zexp(—n-N)-h(f)~.

On the other hand, the Taylor expansion at (a, ..., ) of Af gives

C=) AAf(y: (——oc)jl'...' (&—oc)jn.

Jenn

Let j be a n-tuple with 44 4'f(2)+0. Then

and (9.5) implies

D1
a——

91

3 ...'la——J (gl g Sexp(—x - (t—1) (N —log(gn)
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For R= Y |4 Aif(a)| we obtain
JelN"
©.9) |C|sexp(—k-(t—1)-(N—log(gn))- R.
In order to bound R we consider ||f|, the polynomial obtained from f by

replacing the coefficients by their absolute value, the Taylor expansion of || f|
at |g|+1=(a|+1,...,|a|+1) and the Taylor expansion of 4| f| at |a|:

1/ 102l +2)= 3 4| f1(el+D)

kelNn

24| fll(el+1)= 3 44| fl(ehzR.

JjelNn
On the other hand || f||(J«| +2) is bounded by
AU - (o] 4 2) %
S+ 1) @t 1)) - (] 20
Hence (9.8) and (9.9) imply
—k-(t—1)- (N —log(g.)+A(f)
+log(la)+2)-(dy+...+d)+o(dy+...+d)= —n- N—A(f).

Using (9.3) and replacing d-Vol(I(d, g, 1)) (1 —Vol(I(d, g, t)))"! by the upper
bound 2-n! we obtain

n-N—k-(t—1)-(N—log(g,)+o(d,+...+d,)

= —(4-n!- (Ax)+log(2)+log(la|+2))- Y d,.
v=1
Our choice of d gives N - I——I———gdv for all v and the right hand side of the
inequality is bigger than 0g(Q)

—N-@4-n! (M) +1og(2))+log (o] +2))-n-

1
log(Q)’

These inequalities are true for all N=2-log(g,) and hence we obtain (9.7).

§ 10. Remarks about possible ameliorations of (0.4)

In the proof of (0.4) we did not try to obtain the “optimal” inequality. In this
section we want to give just some hints how one might obtain a better bound
for the volumes if the points are in special positions. We work out further
improvements in the two variable case. In the higher dimensional situation one
would have to do quite a lot of calculations to get similar improvements and —
since we do not see any applications where this would be of any advantage —
we did not try to do them. At the end of this section we discuss the necessity
of assumption a) and b) in (0.4).
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(10.1) In the proof of (7.3) in § 8 we introduced some number §, ., and it was
only at the end (after (8.7)) that we replaced ;. by the bigger number d, .,
(see (8.3)). Moreover in the definition of J,,, in (8.2) it is enough to take:

Sx+1=Min {N =1; (IP})"— Cy contains an element of %, ,}.

Nevertheless it seems to be quite difficult to improve the inequality for 6., in
special cases. Only for k=1 we have:

(10.2) Claim. Assume that the polynomial f in (0.4) has the decomposition

f=h(x1) - g1(xq, ..., x)™ ... go(xy, ..., X,)™ where the g; are irreducible and
two by two distinct, then

6, —1=m=Max{m,, ..., my}.

Proof. We just have to show that (IP')"—~C,,,; contains an element of %,, i.e.
an open set of the form U x V where U< P! and V<IP} x ... xIPL.

We can take, for example, U=1P! —V(h(x,)) and

V= n22. n)(Sing (Dred))
where D is the zero-set of f in (IP*)™.

In (7.3) (for k=2) we can replace d, by m+ 1 or copying the limit process of
(8.1) even by m (Just replace f by f¥, and m+1 by N-m+1). As in §5 one gets

(10.3) Corollary. Under the assumptions of (0.4) one has

M
. Vol(I(d, a,1,))
pu=1

é(1+(M'—2)-£+.§3(M'_2).£11) ] (1+(M'~2)~_ i di)

di/ 3 i—7+1 4d;

~(dy ..t dy)™ ' lim N™T RO, L9, ., d)Y).
N>

Of course, one can replace the obvious bound m=d, by a better bound
only if one knows something about the position of the points {;, ..., (.

In the proof of (0.4) we replaced the term
lim N="-hO((IPY), "9 d,, ..., d,)")

N—-
by zero. One can do better, as we want to explain in the proof of
(104) Theorem (see [1]). Assume that for n=2 the assumptions of (0.4) are
satisfied. Then
M -2 d,

M
Y Vol a t)s1+222. %
=1 2 d1

"

Proof. Let P, eIP} be a point in general position.
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If, using the notation introduced in (2.5), =" *(P,) meets the support of
C# ¢ then a,-d, <t,. We may (replacing f by some power of f) assume that
a, divides t, and d, and we can find some natural number s such that a, - d;
=t,—a,'s and (x, —{, ,)* divides f The polynomial f_=f~(x2—-Cy, 2}~ % is of
multidegree (6; =d,;, d,=d, —s) and has a zero of type (g, t,) at {,, where 1,
=t,—s'a, and 1,=t, for p&y. We have a, ' 6, =1, and (using (2.7)) a, 9,271,
for u#y. After the description of the volumes in (2.4, ii)) this implies that for u
Fv

316, Vol(I(g, g, 7,))=d, " d,-Vol(I(d, g, t,))

and moreover
0165 Vol(I(g, g, t,)=d,d, Vol(I(d, g, t,) —sd;.

Together we find that the inequality (10.4) for the tuples (4, g, t,) implies the
inequality for (d, g, t,).

Hence we may assume that the support of C ¢ does not meet 7y '(P)
for u=1,..., M. Using the notations of (5.4) the sheaf £(d},d;) on P is
arithmetically positive. By (4.7) (or [10], 3.1), for ¢>0, hi(IP, L(d, d5)") is
bounded from above by a linear polynomial in N and the Riemann-Roch-
Theorem for surfaces implies that (see [6], p. 362)

lim N~=2-hO((IPY)?, &9 (d,, d5)")
N-w
= lim N=2-ho(IP, L(d}, d)") =% ¢, (L (d, d2))*
N-
where c¢;()? denotes the selfintersection-number.

The arithmetical positivity implies that ¢, (£ (d}, d3))- B=0 for every effec-
tive divisor B on IP.

Let H=1~'7}"!(P). The condition on the support of C# ¢ implies that
c1(Z(dy, d3)) H=d,=d,. f induces a section of £(d}, d5) whose zero-set is of
the form B+(M'—2)-d,- H for an effective divisor B. Hence

e (L(dy, d2))* z ¢y (L1, do)) - (M'=2)- dy- H)=(M'~2)- d3.
The inequality given in (10.3) or (5.13) implies therefore (10.4).

(10.5) In Theorem (0.4) we made two quite restrictive assumptions:

a) the coordinates {, ., ..., {y, , must be two by two distinct,
b) the hyperplanes are given by a®¥ =g for all p.

The “weak positivity statement” (5.3) or (7.4) was obtained however under
the hypothesis

a') if {,, ,={,, . for u£vy and some v, one has
a® t,=a? 1,
without using b).

Simple examples (for n=2 one can take polynomials of the form
f1(x1) " f2(x,)) show that neither (5.4) nor the inequalities (0.4) or (5.13) remain
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true if we replace a) by a’) or if we leave out the assumption b). The reason is
that in the proof of (5.4) (case (5.9) and case (5.10)) we had to use the
combinatorial statements obtained in §2. To be more precise, the arguments
given in § 5 show

(10.6) Proposition. Using the notations introduced in (2.6) we assume that the
hypothesis a') given above is satisfied and moreover that

i) For p=y Supp(C¥ %)~ Supp(CE ") =4,

i) For any subset I={iy,...,i;}<{l,...,n} and for any point
Qe(P)t-m=1 Jet B=B; o: (IP}) - (IP')y" be the natural embedding. Then we
assume that

HO(PY, Im(B* LD - Opi1y) @ Ogpiy(d,, ..., d; ) *0.

Then for
Mv=Max{2a |{£u,v; ,U=1, aM}|} -2

and d;=d; + Z M; - d; one has the inequality

j=i+1
M
Y dy-...-d, Vol(I(d,a®, t,)) <d - ...-d,.
n=1

However, even if the hypothesis a) given in (10.5) is satisfied, the only cases
where one can verify (10.6) i) and ii) without using (2.8) and (2.9) are:
— Ifa®-d,>¢, for all vand p, ie. if #'=2L"9.
— Ifa®W=gfor u=1,...,M—1 and if t is very small.

The assumption (10.6, i)) is not only used in (5.9) but also in (5.11) where it
enables us to count the dimension of a certain cokernel pointwise. Hence
without this assumption one can not expect to find an inequality similar to
(0.4) or (10.6). The reason is, that without (10.6, i)) the conditions which force a
polynomial to have a zero of type (g, t,) at the point {, depend too much on
those for the other points.

The argument given in (9.7) carries over to the case where one considers
good approximations of different algebraic numbers a;, ..., «,eK, as long as
each of them is a generator of K (this just implies the condition a) in (0.4) or
(10.5)). In order to use good approximations of «y, ..., % to bound approxi-
mations of o, ..., @, one would like to get rid of this condition and to be
able to consider numbers out of smaller numberfields too. In this special case,
the dependence of the conditions, mentioned above, also appears in Siegel’s
Lemma (see (9.2) and [1], page 279) where the rank of the map @ defined by
the linear forms / and all there conjugates can be bounded by a constant
smaller than d- M (using the notation of (9.2)). Hence in order to generalise
(9.7), it might be easier to try to use (7.4) and arguments similar to the ones
given in §5 to bound the sum of the rank of @ and the volume corresponding
to the zero of f at the approximation point directly.

If one wants to obtain the theorems of W.M. Schmidt about simultaneous
approximations in a way similar to our proof of the theorem of Roth, one
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seems to have to consider (IP")" instead of (IP')", and to generalize Dyson’s
Lemma to this situation. The problem turns out to be (6.2) where one would
need a description of the open subvariety Y.
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