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Für Friedrich Hirzebruch, mit Zuneigung und Bewunderung.

Abstract. A. Bolibruch showed that every irreducible representation of the

fundamental group of the complement of finitely many points in P1
C is realizable

as the solution of a Fuchsian type differential equation. In this note we give a
higher genus analogue of his theorem.

Introduction

In this note, we make an attempt to understand the meaning of Bolibruch’s
theorem for curves of higher genus.

Theorem 0.1 (Bolibruch [1]). Let

ρ : π1(P1
C − Σ) −−→ GL(N, C)

be an irreducible representation of the fundamental group of the complement of
finitely many points Σ 6= ∅. Then there is a logarithmic connection

∇ : O⊕N −−→ Ω1
X(log Σ)⊗O⊕N

such that the local system ker(∇|X−Σ) on P1
C − Σ is defined by ρ.

Bolibruch’s proof is very analytic, but Gabber ([2]) gave a more algebraic ap-
proach, which we recall in section 1 (see also [4]). Using his construction, we
interpret Bolibruch’s theorem in the following way.

Theorem 0.2. Let X be a curve over an algebraically closed field k of charac-
teristic 0, and let ∅ 6= Σ ⊂ X(k) consist of finitely many points. Let

∇ : E −−→ Ω1
X(log Σ)⊗ E

be a logarithmic connection on a vectorbundle E of rank N such that for all sub-
sheaves {0} 6= F ⊂ E with rank(F ) < N ,

∇F 6⊂ Ω1
X(log Σ)⊗ F.
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Then for any p ∈ Σ, there is a semistable vectorbundle E′ of degree 0 and a loga-
rithmic connection

∇′ : E′ −−→ Ω1
X(log Σ)⊗ E′,

with (E′,∇′)|X−{p} = (E,∇)|X−{p}.

Any semistable bundle E′ of rank N and degree 0, has a canonical filtration
(see (3.3)), the graded bundles griE

′ of which are direct sums of stable ones. Due to
the Narasimhan-Seshadri correspondence [5] over C, there is a unitary connection
di on grE′

i which is uniquely defined.
The curious point is that, over k = C, we associate to an irreducible represen-

tation of the fundamental group

π1(X − Σ) −−→ GL(N, C)

of the open curve X − Σ, unitary representations of the fundamental group of the
compact curve

π1(X) −−→ U(Ni, C), where
∑

i

Ni = N,

via theorem 0.2 and the Narasimhan-Seshadri correspondence.
Conversely it is easy to associated such unitary representations of π1(X) an

irreducible representation π1(X − Σ) → GL(N, C):

Proposition 0.3. Let X be a curve over C let E be a semistable bundle on X
of degree 0 with graded bundles gri(E) for the canonical filtration.

1) There is a connection ∇ : E → Ω1
X ⊗E respecting the canonical filtration

on E, such that gri(∇) = di.
2) There is a constant σ ≤ 3 depending only on E such that for any reduced

divisor Σ with deg(Σ) ≥ σ, there is a connection

∇ : E −−→ Ω1
X(log Σ)⊗ E

such that for all subsheaves {0} 6= F ⊂ E with rank(F ) < N ,

∇F 6⊂ Ω1
X(log Σ)⊗ F.

This way of going back and forth between representations of the projective and
the open curve is very lose. On both sides one has parameters. It is not clear
whether one should think of this really as a correspondence. It is also not clear how
to interpret this in terms of compactification of the moduli space of stable bundles
of degree 0.

1. Gabber’s construction

We explain Gabber’s construction, transposing it to the algebraic context of
theorem 0.2. Hence we consider a projective curve X over k, a divisor Σ > 0 and
a logarithmic connection

∇ : E −−→ Ω1
X(log Σ)⊗ E

on a vectorbundle E. We fix a point p ∈ Σ and denote by

Γ = resp(∇) : E ⊗ k(p) −−→ E ⊗ k(p)

the residue of ∇.
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For 0 6= w ∈ E ⊗ k(p) define E′
w to be the inverse image of kw under the

restriction map E → E ⊗ k(p), and Ew = E′
w(p). Then E ⊂ Ew ⊂ E(p) and

deg Ew = deg(E) + 1.
The connection ∇ extends to ∇w on Ew if and only if w is an eigenvector of

Γ. More precisely, let (w, e2, . . . , eN ) be a basis of E ⊗ k(p) in which Γ = (γij) is
triangular, that is γij = 0 i > j. Then in the basis (w

t , e2, . . . , eN ) of Ew ⊗ k(p) the
residue resp(∇w) = Γw = (γ′ij) fulfills:

γ′ij = γij for i ≥ 2, j ≥ 2

γ′11 = γ11 − 1

γ′1i = 0 i ≥ 2.

Thus the roots of the characteristic polynomial of Γw, are γ11 − 1, γ22, . . . , γNN .

Definition 1.1. We say that (E′,∇′) is obtained from (E,∇) by an elementary
G-transformation at p if there is an eigenvector 0 6= w ∈ E ⊗ k(p) of Γ such that
(E′,∇′) = (Ew,∇w).

Theorem 1.2 (Gabber). Let ∇ : E → Ω1
X(log Σ)⊗ E be any connection, and

M ∈ N. Then there is a connection

∇′ : E′ −−→ Ω1
X(log Σ)⊗ E′

with (E′,∇′)|X−{p} = (E,∇)|X−{p} such that
1) the characteristic polynomial of Γ′ = resp(∇′) has no multiple zeros,
2) if λ, µ are 2 eigenvalues of Γ′, with λ− µ ∈ Z, then |λ− µ| ≥ M ,
3) (E′,∇′) is obtained from (E,∇) by at most N3M

2 elementary G-transfor-
mations at p.

Proof. One orders the roots of the characteristic polynomial of Γ in subsets
I1, . . . , I`,

Ij = {λj,1, . . . , λj,mj}, where
∑̀
j=1

mj = N

such that 0 ≤ λj,i+1 − λj,i ∈ N, and λj,s − λj′,s′ 6∈ Z for j′ 6= j. By taking an
eigenvector e1 ∈ E ⊗ k(p) for λ11 and replacing E by Ee1 , one transforms I1 to

I1 = {λ1,1 − 1, λ1,2, . . . , λ1,m1}.
Repeating this m1M times, one replaces I1 by

I1 = {λ1,1 −m1M,λ1,2, . . . , λ1,m1}.
Since λ1,1 −m1M 6= λ1,2, there exists an eigenvector e2 with eigenvalue λ1,2, and
repeating the same transformation (m1 − 1)M times with e2 instead of e1 one
transforms λ1,2 to λ1,2 − (m1 − 1)M , without changing the other roots of the
characteristic polynomial. After m1(m1−1)

2 M steps, one has

I1 = {λ1,1 −m1M,λ1,2 − (m1 − 1)M, . . . , λ1,m1−1 −M,λ1,m1}.
Repeating this for I2, . . . , I`, one needs at most

(
∑̀
j=1

mj(mj − 1)
2

)M ≤ N3

2
·M

steps to satisfy the first and second condition in 1.2. �
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2. The proof of theorem 0.2

Let E0 = 0 $ E1 ⊂ E2 ⊂ . . . ⊂ Em = E be the Harder-Narasimhan filtration
[3] of a rank N vector bundle E, uniquely determined by the two conditions:

µi = µ(Ei/Ei−1) < µi−1

and Ei/Ei−1 semistable, where µ(F ) = deg(F )/rank(F ) for any vector bundle.
In order to prove theorem 0.2 we are allowed to replace E by E(`p) for ` ∈ Z.

In fact, ∇ stabilizes E(`p) and the residue Γ of ∇ in p is replaced by Γ − `Id. In
particular this does not change the difference between two eigenvalues of Γ. Thus,
replacing E by E(`p), we may assume that −1 < µ(E1) ≤ 0 and consequently that
deg(E) ≤ 0.

Lemma 2.1. If ∇ : E → Ω1
X(log Σ)⊗ E does not stabilize any subbundle, and

−1 < µ(E1) ≤ 0, then

−N −N2(2g − 2 + σ) ≤ deg(E) ≤ 0

where g = genus of X, and σ = |Σ|.

Proof. Let i0 to be the minimal i such that the map

η0 : Ei −−→ Ω1
X(log Σ)⊗ E/Em−1

is not 0. Since ∇ does not stabilize any subbundle, i0 ≤ m − 1, thus η0 is linear
and factors through Ei0/Ei0−1. This shows that µi0 ≤ µm + (2g − 2 + σ). By
assumption ∇ does not stabilize Ei0−1. Hence there exists some minimal number
i1 ≤ i0 − 1 such that

η1 : Ei −−→ Ω1
X(log Σ)⊗ E/Ei0−1

is not trivial. Then η1 factors through a linear map

Ei1/Ei1−1 −−→ Ω1
X(log Σ)⊗ Ej1/Ej1−1

for some j1 with i0 ≤ j1 ≤ m. Consequently

µi1 ≤ µj1 + (2g − 2 + σ) ≤ µi0 + (2g − 2 + σ) ≤ µm + 2(2g − 2 + σ).

One obtains inductively

−1 ≤ µ1 ≤ µm + m(2g − 2 + σ),

and, since µ(E) ≥ µm and N ≥ m, the inequality of lemma 2.1. �

Finally, one proves theorem 0.2 in the following more precise form:

Theorem 2.2. Let (X, E,∇,Σ) be as in theorem 0.2. Assume that

−1 < µ(E1) ≤ 0,

that the characteristic polynomial of Γ = resp(∇) has no multiple zeros, and that

|λ− µ| ≥ M = N + N2(2g − 2 + σ)

for different eigenvalues λ and µ of Γ with λ− µ ∈ Z.
Then there is a semistable vector bundle E′ of degree 0, and an extension ∇′

of ∇ to E′, such that (E′,∇′) is obtained from (E,∇) by at most M elementary
G-transformations at p.
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Proof. We argue by induction on −deg(E) which is smaller than or equal to
M by lemma 2.1.

If deg(E) = 0, µ(E1) = µ(E) = 0 as µ(E1) ≥ µ(E). Thus E1 = E and E is
semistable of degree 0.

Assume now that deg(E) < 0. If µ(E1) < 0 as well, then for any elementary G
transformation at p, and any subsheaf M ⊂ Ew, one has

deg(M) ≤ deg(M ∩ E) + 1 ≤ 0,

thus
deg(Ew) = deg(E) + 1 and − 1 ≤ µ((Ew)1) ≤ 0.

Otherwise, µ(E1) = deg(E1) = 0. We set F = E1 for notational simplicity and
denote by Q the quotient Q = E/F . We consider an elementary G transformation
at p such that the eigenvector w ∈ E ⊗ k(p) maps non-trivially to Q ⊗ k(p). One
obtains an exact sequence

0 −−→ F −−→ Ew −−→ Qw −−→ 0.

Let (Ew)1 be the first bundle in the Harder-Narasimhan filtration of Ew. One
certainly has

−1 ≤ µ(E1) ≤ µ((Ew)1).
The inequality µ((Ew)1) ≤ 0 is equivalent to the property that deg(M) ≤ 0 for all
subsheaves M ⊂ Ew. Consider M ⊂ Ew and M ⊂ M ′ ⊂ Ew, where M ′ is the
inverse image of M/F ∩M under the projection Ew → Ew/F ∩M . As F ∩M ⊂ F ,
one has deg(F ∩M) ≤ 0. Thus

deg(M) ≤ deg(M/F ∩M) = deg(M ′) + deg(F ) = deg(M ′).

By definition of E1 = F , one has µ((E/F )1) < 0 and

deg((M/F ∩M) ∩Q) ≤ −1.

This shows that

deg(M) ≤ deg(M/F ∩M) ≤ deg ((M/F ∩M) ∩Q) + 1 ≤ −1 + 1 ≤ 0.

Thus again
deg(Ew) = deg(E) + 1 and − 1 < µ((Ew)1) ≤ 0.

By induction we obtain the theorem. �

3. Existence of connections

In this section we lift the unitary connections of the graded pieces of the canon-
ical filtration.

Lemma 3.1 (Compare with [6], lemma 3.5). Let X be an algebraic variety over
a field k,

0 −−→ S
ι−−→ E

p−−→ Q −−→ 0
be an extension of vector bundles given by u ∈ H1(X,Hom(Q,S)). Let dS and dQ

be connections on S and Q, respectively.
Then there exists a connection ∇ on E lifting dS and dQ if and only if 0 =

du ∈ H1(X, Ω1
X ⊗ Hom(Q,S)), where d = Hom(dQ, dS). Two such connections

differ by an element in H0(X, Ω1
X ⊗Hom(Q, S)).

In particular, if X is projective smooth, k = C, and if d is unitary, then ∇
exists.
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Proof. Let X =
⋃

Ui be an affine covering of X,

σi : Q|Ui
−−→ E|Ui

, τi = Id− σi : E|Ui
−−→ S|Ui

be some splitting of u on Ui. Then

τj = τi + uij ◦ π(3.1)
σj = σi − ι ◦ uij

on Uij . Define ∇i = dS ◦ τi + σi ◦ dQ. Then

∇j −∇i ∈ H0(Uij ,Ω1
X ⊗Hom(Q, S))

is a cocycle. Another choice of σi verifies

σ′i = σi − ι ◦ ui

τ ′i = τi + ui ◦ π

for some ui ∈ H0(Ui,Hom(Q,S)). Thus

∇′
i −∇i − dS(ui ◦ π)− ι ◦ ui ◦ dQ(3.2)

= d(ui) ∈ H0(Ui,Ω1
X ⊗Hom(Q,S)),

and therefore the class αij of

∇j −∇i ∈ H1(X, Ω1
X ⊗Hom(Q,S))

is well defined. If this class vanishes, then in a refinement of (Ui) there are forms
Ai ∈ H0(Ui,Ω1

X ⊗Hom(Q, S)) such that ∇j −∇i = Ai −Aj , thus ∇ = ∇i + Ai is
globally defined and αij is the exact obstruction to the existence of ∇.

On the other hand, the computation in 3.2, with ui replaced by uij , shows at
the same time that αij = duij . �

Let X be a projective curve over C and E be a semistable bundle of degree 0
on X. Then there is a unique filtration, which we call the canonical filtration of E,
verifying

0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E(3.3)

griE = Ei/Ei−1 = socle of E/Ei−2.

Recall that the socle of E is the maximal semistable subbundle of E which splits
as a sum

⊕
ν Vν of stable ones.

Hom(griE,E/Ei) = Hom(griE, gri+1E)(3.4)

=
⊕

δνµIdVν

with griE =
⊕

ν Vν , gri+1E =
⊕

µ Vµ for stable bundles Vν and Vµ.
On the other hand, over C, there is a unique unitary connection di on griE by

the Narasimhan-Seshadri correspondence [5].

Proposition 3.2. Let E be a semistable bundle of degree 0 on a complex pro-
jective curve, and Ei be its canonical filtration. Then there is a connection ∇ on E
respecting the canonical filtration and lifting the unitary connections di on Ei/Ei−1.
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Proof. Since Hom(dm, dm−1) is unitary, there is a connection dE/Em−1 lifting
dm and dm−1 by lemma 3.1. Assume inductively that dE/E`

exists. We want to see
that

d : H1(X,Hom(E/E`, gr`E)) −−→ H1(X, Ω1
X ⊗Hom(E/E`, gr`E))

kills the extension of E/E` by gr`E given by the canonical filtration, where d =
Hom(dE/E`

, d`). We show directly that d itself vanishes. Its dual is the differential

d∗ : H0(X,Hom(gr`E,E/E`)) −−→ H0(X, Ω1
X ⊗Hom(gr`, E/E`)).

By the equation 3.4, and the fact that d∗ lifts Hom(d`, d`+1), one has d∗ =
Hom(d`, d`+1) = 0. �

Lemma 3.3. Let X be a smooth projective variety defined over a field k of
characteristic zero, D be a smooth irreducible divisor, L be an invertible sheaf L,
and let ∇ : L → Ω1

X(log D)⊗L be a connection. Then the residue resD(∇) is m · id
for a rational number m. Moreover, if X is a curve, m is an integer.

Proof. Since X is projective, we may write L = O(A1 − A2) where Ai are
smooth divisors meeting transversally. Thus L carries the trivial connection dA with
resAi

(dA) = (−1)i · IdL|AI
. Hence ω := ∇ − dA ∈ H0(X, Ω1

X(log (A1 + A2 + D))
with

m := resD(ω) = resD∇, resAi
(ω) = −resAi

(dA).
Let C be an ample smooth curve, meeting D, A1 and A2 transversally. Then

−(C.A1) + (C.A2) + m · (C.D) =
∑

q∈C∩(A1∪A2∪D)

resq(ω) = 0

and consequently m ∈ Q (or m ∈ Z, if dim(X) = 1). �

Lemma 3.4. Let X be a smooth projective variety over a field k of characteristic
zero, let D =

∑ρ
i=1 Di be a normal crossing divisor and

∇ : V → Ω1
X log D)⊗ V

a connection on a locally free sheaf V . Assume that the eigenvalues of resDi
(∇) are

zero for i = 2, . . . , ρ and that the sum of the eigenvalues of resD1(∇) does not lie in
Q− {0} (or not in Z− {0}, if X is a curve). Then

∧max
V is numerically trivial.

Proof. ∇ induces a connection

∇′ :
max∧

V −−→ Ω1
X(log D)⊗

max∧
V.

resDi(∇′) = 0 for i = 2, . . . , ρ, and the image of ∇′ lies in Ω1
X(D1) ⊗

∧max
V . By

3.3 resD1(∇′) must be a rational number (or an integer), hence 0, and ∇′ induces
a connection with values in Ω1

X ⊗
∧max

V . �

4. Existence of irreducible connections

Let E be a semistable bundle of rank N on the curve X and let

∇ : E → Ω1
X ⊗ E

be a connection. In this section we want to construct a different connection ∇′ :
E → Ω1

X(log Σ) ⊗ E, where Σ =
∑µ

i=1 pi is a reduced divisor in X, such that
Ker(∇′|X−Σ) is an irreducible local system. If X is defined over C this construction
and 3.2 imply proposition 0.3.
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Proposition 4.1. Assume that E is not isomorphic to the direct sum L⊕N

for some L ∈ Pic0(X) and let p, q ∈ X be two different points. Then there exists
ϕ ∈ Hom(E,Ω1

X(log(p + q))⊗ E) such that Ker(∇′|X−p−q) is irreducible for ∇′ =
∇+ ϕ.

Proof. By assumption there exists a surjection τ : E → S for some bundle S
on X of rank s ≥ 2 such that one of the following properties holds true:

i) S is stable
ii) S = L1 ⊕ L2 for L1 6∼= L2 and Li ∈ Pic0(X)
iii) 0 → T → S → L⊕` → 0 is an extension of L⊕`, for L ∈ Pic0(X) with a

stable bundle T , such that the induced map

H0(X,O⊕`
X ) −−→ H1(X, T ⊗ L−1)

is injective.
In fact, let F ∗

0 = {0} ⊂ F ∗
1 ⊂ . . . ⊂ F ∗

m = E∗ be the canonical filtration of the dual
bundle and

F0 = {0} ⊂ F1 = (E∗/F ∗
m−1)

∗ ⊂ . . . ⊂ Fm−1 ⊂ (E∗/F ∗
1 )∗ ⊂ Fm = E

the dual filtration. If Fm/Fm−1 contains no semistable bundle S as in i) or ii) it is
a direct sum L⊕`′ , for some `′ ≥ 1. In this case,

Fm−1/Fm−2 −−→ E/Fm−2 −−→ L⊕`′

is a non-trivial extension and for each direct factor T of Fm−1/Fm−2 one obtains a
surjection from E to a non-trivial extension

0 −−→ T −−→ S′ −−→ L⊕`′ −−→ 0.

Leaving out direct factors of S′, which are isomorphic to L, one obtains S as in iii).
For any bundle F on X write Fq = F ⊗ k(q). In order to construct a basis of

Eq we fix a basis of Sq, case by case:
i) v̄1, . . . , v̄m−1, v̄N is any basis of Sq.
ii) v̄1, v̄N is a basis of Sq with v̄1 6∈ (Li)q, for i = 1, 2.
iii) v̄1, . . . , v̄m−1, v̄N is a basis of Sq, such that Tq 6⊂< v̄1, . . . , v̄m−1 >.

Let K = Ker(τ : E → S) and

0 −−→ Kq −−→ Eq
τq−−→ Sq −−→ 0

the induced sequence of vector spaces.
Let vm, . . . , vN−1 be a basis of Kq, and vj ∈ τ−1

q (v̄j), for j = 1, . . . ,m − 1, N .
Then v1, . . . , vN is a basis of Eq. By Serre duality

h1(X, End(E)⊗ Ω1
X(log p)) = h0(X,Hom(E,E(−p)) = 0,

hence the residue map

H0(X, End(E)⊗ Ω1
X(log(p + q)))

resq−−→ End(Eq)

is surjective. Choose ϕ ∈ End(E,Ω1
X(log(p + q)) ⊗ E) such that resq(ϕ) is one

Jordan block for the eigenvalue 0, with respect to v1, . . . , vN . In particular, the
only resq(ϕ) invariant subspaces of Eq are of the form Ker(resq(ϕ)ι).

Let λ1, . . . , λν be the eigenvalues of resp(ϕ). Replacing ϕ by π · ϕ for some
π 6∈ Q(λ1, . . . , λν) we may assume that no linear combination Σρiλi ∈ Q− {0} for
ρi ∈ Q.
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Let V ⊂ E be a subbundle such that ∇′(V ) ⊂ Ω1
X(log(p + q)) ⊗ V , for ∇′ =

∇+ ϕ. By 3.4 deg(V) = 0, hence V is a semistable subbundle of E, and the image
B of V in S is zero or a semistable subbundle of S.

Since resq(∇′) = resq(ϕ), for some ι ≥ 1

Vq = Ker(resq(ϕ)ι) =< v1, . . . , vι >⊂ Eq.

In particular B 6= 0. Obviously B = S in case i). In case ii) we remark that v1 ∈ Bq

and obtain B = S, as well.
If in case iii) B 6= S, then Bq =< v1, . . . , vι > for ι ≤ m − 1 and B ∩ T 6= T .

Since the degree of B is zero, and since B/(B ∩ T ) ⊂ L⊕`, B ∩ T = 0. Then
B ' L⊕ι and the composite

H0(X, B ⊗ L−1) ↪→ H0(X,O⊕`
X ) −−→ H1(X, T ⊗ L−1)

zero, contradicting the assumptions made.
Hence B = S in all cases, and vn ∈ Vq. Therefore Vq = Eq and V = E. �

If E = L⊕N , then in order to find some ϕ, with Ker(∇ + ϕ|X−Σ) irreducible,
one needs three points p, q1, q2. In fact, choosing the “canonical” basis v

(i)
1 , . . . v

(i)
N

in Eqi
, induced by the direct sum decomposition, one has again a surjection

End(E,Ω1
X(log(p + q1 + q2))) −−→ M(N ×N, C)⊕M(N ×N, C).

Let us choose two nilpotent matrices M1 and M2 with MN−1
i 6= 0 in such a way,

that the (unique) eigenvector of M1 does not lie in Ker(MN−1
2 ). Repeating the

argument used in the proof of 4.1 one obtains:

Proposition 4.2. Let Σ = q1+q2+p be a reduced divisor and E be a semistable
bundle with connection ∇. Then for some ϕ ∈ Hom(E,Ω1

X(log Σ) ⊗ E) the local
system Ker((∇+ ϕ)|X−Σ) is irreducible.

Under stronger condition on the structure of E, it is possible to choose Σ = p,
as we illustrate in two examples on an elliptic curve X.

Example 4.3. Let L ∈ Pic0(X), L 6= O, E = L ⊕ O. Take Σ = {p} a point.
Then choose

∇ = d +
(

α β
γ δ

)
where d is the sum of the unitary connections on L and O,

α, δ ∈ H0(X, Ω1
X(log Σ)) = H0(X, Ω1

X)

γ ∈ H0(X, L−1 ⊗ Ω1
X(log Σ))−H0(X, L−1 ⊗ Ω1

X)

β ∈ H0(X, L⊗ Ω1
X(log Σ))−H0(X, L−1 ⊗ Ω1

X).

Assume resqγ = λ, resqβ = µ are chosen such that x2 − λ · µ has no zero in Q.
If V ⊂ E of rank 1 is stabilized by ∇, then residuep(∇|V ) 6∈ Q. This contradicts
lemma 3.3.

Example 4.4. Let X be an elliptic curve and

0 −−→ OS
ι−−→ E

π−−→ OQ −−→ 0

be the non-trivial extension of OX by OX . As we have seen in 3.2, there exists a
connection ∇ on E, lifting d : OX → Ω1

X . As

h0(X, End(E)) = h1(X, End(E)) = 2 and h1(X, End(E(p))) = 0
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for any point p, whereas H0(X,OX) = H0(X,O(p)), the image of

resp : Hom(E,E(p)) = Hom(E,E ⊗ Ω1
X(log p)) −−→ M(2× 2, k)

is a two-dimensional space of matrices of trace 0. In particular the image contains
some lower triangular matrix

M =
(

α 0
γ −α

)
6= 0,

with respect to a basis v1, v2 with v1 ∈ ι(k(p)). Choose φ ∈ Hom(E,E(p)) and
λ ∈ k with respφ = λ · M , such that λα 6∈ Z − {0}. By 3.4 a rank 1 subbundle
V ⊂ E with ∇(V ) ⊂ Ω1

X(log Σ) ⊗ V is numerically trivial, hence equal to ι(OX).
Then α and γ are both zero, contradicting the assumption M 6= 0.
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