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Abstract. We show that hypergeometric differential equations, unitary and Gaul%Manin 
connections give rise to de Rham cohomology sheaves which do not admit a Bloch- 
Ogus resolution [I]. The latter is in contrast to Panin’s theorem [8] asserting that 
corresponding &ale cohomology sheaves do fulfill Bloch-Ogus theory. 0 Acadkmie 
des Sciences/Elsevier, Paris 

Hermes de classes de cohomologie de de Rham qui s’annulent 
au point g&&rique 

RCSUlllC. Nous rnontrorts que les ,systPmes d’r’quations hypergt!otn~triques. les connexions 
unitaires et de GauJ-Manin donnent lieu ir des fuiscenux de cohnmologie de de Rham 
qui n’ont pus de r&solution de Bloch-Ogus [I 1, Ce dernier exemple contraste avec le 
thtTor?me de Panin [8] affirmant que des faisceaux ,semhlahles en ~~ohomologie &ale 
ve’r$ent la thgorie de Bloch-Ogus. 0 AcadCmie des Sciences/Elsevier, Paris 

Version frangaise abrhgke 

Soit (E: V) une connexion plate sur une vari&tt! lisse 5’ sur un corps k algkbriquement clos en 
caractkistique 0. La restriction des faisceaux de cohomologie ‘Hb,( (E, V)) B leur valeur au point 
gCntrique de S est trivialement injective pour % = 0.1. Afin de montrer que pour les exemples de 
(E. V) &oqu& plus haut, cela n’est plus nkcessairement le cas pour % = 2, nous forqons l’existence 
de germes de sections de la fagon suivante (voir [5]). On remplace S par l’klatement d’un point. Cela 
introduit un diviseur exceptionnel sur lequel la connexion est triviale, et done acquiert des sections. 
Par le morphisme de Gysin, ces sections fournissent des sections non nulles dans HLn(S’ (E, V)) qui 
en particulier s’annulent au point gCdrique de S. Que ces sections ne s’annulent pas dans le germe 
du faisceau en un point du diviseur exceptionnel provient d’une hypothkse convenable de rkidus 
dans le cas hypergkomttrique. de gCnCricit6 dans le cas unitaire, et de la thCorie de Hodge dans le 
cas de GauB-Manin pour une famille i forte variation. 

Note pr&entCe par Christophe SOUI,~. 
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Let 5’ be a smooth algebraic variety defined over an algebraically closed field k. Bloch-Ogus 
theory [l] provides an acyclic resolution of the Zariski sheaves of &ale cohomology 7-&@/n(j)) if 
char X: = 0 or if (char X;, 71,) = 1, of de Rham cohomology ‘Ftbn if char Az = 0, and of Betti cohomology 
Ffk if ,4 = C. Here W denotes the Zariski sheaf associated to the presheaf II H Hi(U). The first 
level of the resolution says that the restriction map to the generic point & : rl = Spec /C(S) -+ S, 

is injective (and similarly for de Rham and Betti cohomologies). 
Bloch-Ogus theory extends in an obvious way to the sheaves of cohomology W(L) with values 

in a local system of complex vector spaces L of finite monodromy, or equivalently (see [6]) to the 
de Rham cohomology sheaves XL,, (( E, V)) of a locally free sheaf E with a flat connection V, the 
monodromy of which is finite with respect to one embedding X: c a3 (and hence to all). 

A remarkable generalization of the Bloch-Ogus theory for &ale cohomology has been given by 
I. Panin [8]. Let f : X 4 S be a projective smooth morphism and let L be a local system of free 
Z/n-modules of finite rank (where 7~ is prime to char X. if char k > 0). Then the Zariski sheaves 
Y;+(f, L(j)) associated to the presheaves U +-+ Hi+(f-l(U), L(j)) have a Bloch-Ogus acyclic 
resolution on S. In particular. the restriction to the generic point 

is injective, as in the classical case “.f = identity and L = Z/n”. 
This raises the question of a similar theorem for the de Rham cohomology in characteristic zero. 

In this Note we give negative examples: 

0.1. Bundles E with a flat connection V for which 

x;,((E, V)) -i &H&&q, (E, V)) (0.1) 

is not injective, or equivalently (over C). local systems L of complex vector spaces for which 
X2(L) -+ &H2(rl% L) is not injective (.WP 2.1 and 3.1). 

0.2. Smooth projective morphisms .f : X + S for which 

%R(.f) - ~&m(.f-1(v)) w.a 

is not injective (see 1.3 and 1.4). Here tibn(f) denotes the Zariski sheaf associated to 
U H Hbn(f-l(U)). Or equivalently, over C, 

%kf) - i ,,*H;(f-‘(71)) = %,]* I& H;(f-l(U)) 
1:c.S 

is not injective, with a similar notation for Betti cohomology. 
AS R.‘f*C = @jRJf,C[-;j] over k: = a3 [3], 161 implies that (0.2) is non-injective if 

%iJJ(WfJ~:-,s~ VI) + ~r,J&J(~, (RjfS&, V)) 

is non-injective for some .j, where Y is the GaulS-Manin connection. In the second example we 
verify this for j = 2. 
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0.3. CONSTRUCTION OF A SECTION. - Let (E’. V’) be defined over a smooth variety S’ of dimension 
at least two, and let 6 : S + S’ be the blow-up of a point p E S’, with exceptional divisor F. Let 
(E, V) = S*(E’, 0’) be the pullback connection. Then the restriction map 

H;n(S,(E,V)) =H&(S’.(E’.V’)) - E-I;&‘? - 1,. (E;,“. a’)) = &(S - F, (E. 0)) 

is an isomorphism. Hence the Gysin map 

iF : H&&S’,(E.V)) = H;,(F,(E.G)I~~) = ,Yr’kE i H;,(S,(E.V)) 

is injective, and any section %F(‘T), CT E k:r;rr’h-E. vanishes at the generic point r/ of S. 
To show that the maps (0.1) and (0.2) need not be injective. we will show that for certain CT, the 

image ~:F(IT) is non-zero in the stalk Xin((E, V)),, for all q G F. The latter is equivalent to saying 
that for any divisor C c S. with F @ (:. 

,iF(m) @ ‘:cH&&S’, (E, V)). (0.3) 

For any smooth dense open subscheme Co of C and for X : $1 = S - (C - 6’“) - S one has 

HhxJS, (E, VI) = $m,,,, (S,,.(E.V)) = H;,(C,,.(E.V)lc,,) = H’:,,(C.I/*(E.V)), (0.4) 

where z/ : 6 -+ S is the normalization of C c S. One way to think of this is analytically. Let 15 be the 
kernel of V. let X : Sa + S, ,io : S,, - C,, + 5”“. and ,j = Xojo. Then H:.(S’. I,) = H”(S,R’,j,L) and 

H$(&, L) = H”(S. X&&L) = H”(&, R’JoJ) = H”((;,, 1+,) 

As S - Se has codimension 2 2 in S. R’X,L = 0 for ,i = 1.2. Thus by the Leray spectral 
sequence for ;j = X o go, the restriction map R’,j,I, - X,R.l;j,,,L is an isomorphism. Since 
H’(C,&,) = HO@ II*I,) this concludes the proof of (0.4). In other words. we can do as if 
C was smooth. 

This way to force geometrically the existence of sections which have nothing to do with the 
connection was used by the first author in [5] for example 2.1. We thank 1. Panin for explaining to 
us the proof of his manuscript [S]. 

1. Gad-Manin systems 

ASSUMPTION 1.1. - Let 9 : I’ + B be u semi-.stczhle family of’c’urws of genus ~1 2 1 over a smooth 
projective curve B with cp*w~-/n ample, IT smooth, and defined over an algebraically closed $eld X: 
qf characteristic zero. 

Let &I be the open subscheme of KI with I;, = +Y’(&,) smooth over Bo, and as in 0.3 let 
n : S + S’ = B,J x Be be the blow-up of a point p = (h, . h,) E B. x II,, with exceptional divisor 
F. Let .f : .Y = (1; x YU) x(~,,~~,,) S + S be the pullback family. We consider the Gaul-Manin 
connectton ( R2f,ll>,s, V). On the de Rham cohomology 

H&#‘> W.‘,W;-,,?. C)IF) = H;,(K, x I;,, ), 

one has the F-filtration which defines a pure Hodge-structure after base extension from I; to C. 

CLAIM 1.2. - For CJ E {F” - F’}H~,(I~~~, x Y;,,) and,for all (I E F the image %r( 0) is non-zero 
in the stalk Xh,((R.‘f,12:.,,Y. V)),I. 
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Proof. - Let C c 5’ be a reduced curve with F @ C, let 11 : ?? -+ S be the normalization of C, 
let s‘ : 3 -+ B x B be the blow-up of p, and let n, : I’ -+ ?? be the normalization of the closure 
of C in 3. Let us denote by: 

x : A-r = (Y x Y) X(BxS) r- - r. 

I1 : -7,: = (I/;, x 11,) X(&X&,) c -----f c. 

zyF = X xs F = f=l x I;,, x r-; 2 i f=’ 

the induced families of surfaces. The Gysin map ,ic : Hcrj cdyF) + Hh,(Ay), fo]lowed by the 
restriction map pF : H;,(X) -+ HAn(X,) = Hh,($l x ,i, x I-j,,). equals the restriction map 

A-I(F) : H&(-Y,-) - @ %A-+ xc: {f:}, = @ H;n({4d} x Ej,, x YiL)T 
<-Ev-‘(f’) r.Elj-’ (F) 

followed by the sum of the Gysin maps 

$ H%b+)) x 1.6, x I%,) - H&(P1 x Ii,, x I;,,). 
&C’(F) 

On the other hand, pV- L(F) factors through the surjective map 

P : H&&Q) - HO,,@. (R’h,bl;, /?. V)) = H&&S’, (R2f*61;-,,s. O)), 
I 

and pF o ic = & o ,ic o p where /& is the restriction map 

and %C : Hh,,, (S, (R.2f,S2\.ls, V)) - H&,(S. (R.‘,f*f*n~,,,O)) as in 0.3. By definition, h is a 

semi-stable family of surfaces, with singular fibres Z = %-‘(‘m) for w = 7),-‘(3 - 5’) = r - e. 
Hence, all Gaufl-Manin bundles. in particular R’%+61~,,,, (log Z). have nilpotent residues. This says 

that the eigenvalues are 0, and thus they are the Deligne extension [2] of their restriction to ?‘. 
Therefore one has 

and p({FO/F1}H&(X~)) = p(H2(X,-, U.Y-)) c H”(lY,R2h,0dx-,.). The sheaf 
I 

is dual to (6 o ‘~l)*(pr;cp,w,.,n @ pr$cp,wl.,~). Since h o 7/j is finite. the latter is ample and 
H’(I’, R?h,UAy,.) = 0. Thus, since the restriction and Gysin maps are morphisms of mixed Hodge 
structures (see [4], Theorem 3.2.5 for the covariant restriction PF, and note that the Gysin map “e 
is dual to the covariant pullback map Hhn(X) 4 H’(X,)), 

iln(pF 0 ic) = irn(& o ic-,) c F”H;‘,n($I x YI,, x y,,). (1.1) 
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On the other hand, & o %F is the multiplication by ( - 1) = dt:g( (3~-( F) ). Hence for (T E 
{F” - Fl}H&(Yh, x K,2), one has 

/I& o”~(cT) E {F’ - F”}H&#=’ x X,, x Y,,,). (1.2) 

(1.1) and (1.2) imply i;~(g) $ a,HL,,,(S: (E.C)). and, as explained in 0.3, this proves the claim I .2. 

Example 1.3. - There are families which satisfy the assumption I. 1. for example, non-isotrivial 
semi-stable families of elliptic curves. 

For Q 2 3 one can even assume that y : Y + I? is smooth. Hence there exist smooth families of 
surfaces f : X - S with S projective, for which the map (0.2) is not injective. 

Proof. - Let M!,,3 and A, be the moduli spaces of curves of genus !J with level 3 structure and 
of g-dimensional principally polarized Abelian varieties, respectively. For ~1 > 3 the image of fiTq,, 
in the Baily-Bore1 compactification of iz, is a projective manifold whose boundary has codimension 
larger than or equal to two. Hence A[,,,, has a projective compactihcation with the same property. 
Taking hyperplane intersections one obtains a smooth projective curve I3 in lIf!,,:~. and thereby a 
smooth family of curves p : Y- - 13. 

In order to show that for B in general position, (F*tiI-/B is ample, we may assume that k = C. 
The monodromy representation of the fundamental group of B is irreducible. Indeed, the fundamental 

group of A{!, maps surjectively onto the fundamental group Sp(2r~, Z) of A,. The latter acts via the 
standard representation on C”“, in particular irreducibly. On the other hand, the fundamental group 
of B maps surjectively to the one of ~Z;r,,:s. hence to a subgroup Ii of finite index of Sp(2g. Z). 
Thus H is Zariski dense in Sp(2</. C). 

On the other hand, by [7], 4.10. the sheaf ~*wJ-/~ is the direct sum of an ample vector bundle and 
a vector bundle, flat with respect to the GauB-Manin connection. The irreducibility of the monodromy 
representation implies that the latter is trivial. 

2. Hypergeometric equations 

Example 2.1. - As in 0.3 let S’ = P’ - D. where D is the union of three lines HI, Hz, and 
H3 in general position. Choose (I,~, CL:! E I:. r~.:~ = -cl1 - nz such that the elements 1: nj. “j E h: are 
Q-linearly independent, for 1 < % < ,; 5 :3, 

Let w E H”(P’. & (log D)) be the unique form with rcsu,w = ~1, for i = 1.2,3, and 
(E’. 0’) = (Us!. d + w). A s in 0.3. consider the blow-up ?I : S - 5” with exceptional divisor 
F and the pullback (E: V). We take a section 0 # CT E X: = HO(F, (E. V)lF) and regard its image 
am under the Gysin map. 

CLAIM 2.2. - For all reduced curves C c S not containing F, one has H&,,,.(S. (E, V)) = (1. In 
particular, 0 # I:F(cT) E ‘FI&((E:V)),, for all q E F. 

Pro& - Let Co be the smooth locus of C. As in (0.4), Hh,,,(S, (E, C)) = Hin(C,, (E, O)(c,I). 
and since (E. V) has rank one, the claim 2.2 is equivalent to (,!I?: O)[,,, # (U,,,, cl). 

Let n‘ : 3 + P2 be the blow-up of p. and let 71. : I’ + ?? be the normalization of the closure of C in 
3. For cc = n-‘8-‘(D). and f or some 711; E N sufficiently large, one has 

H~n(C;;).(E.V)lc,,) = II”(~,i2~(logcx;)~~ (no7~.)*(0p~(Cn1,H,).n+w)). 

The residues of (5 o n)*(0nz(C rrl,H,). d + U) along .I’ E r are in 

(N - (0)) . (a; - m,) for h(743:)) E H; - IJ pJ-f;HJ. 

(N - (0)) (a; - nr;) + (N - {O}) . (nJ - 71~~) for n(n(.r:)) E Hi n H.,. 
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Indeed, the residue of (0~2 (C 7q,H;), d + w) along Hi is ai - mi, and I? lies on a surface X obtained 
by a sequence of blow-ups X + S. As well known, if z is a smooth point on a variety 2 with local 
coordinates I:~! . . . ,3:,, , and (E, V) a differential equation defined around z by w = Cy=l b;? + ‘71 
for a regular form ‘q on 2, then the pullback differential equation on the blow-up of z has r&idue 
CT=‘=, bi along the exceptional locus. 

By the assumption (i) in 2.1, the residues of (5 o 7~)*(0p~(C rn,H;), d + w) can not be in Q, and 
a fortiori (E. V)lc,, can not be trivial. 

3. Unitary rank one sheaves 

Example 3.1. - Let B1 and B2 be two non-isogeneous elliptic curves. defined over X: = 43, let 
Li E Pic’(Bi) be non-torsion, and let Vi be the unique unitary connection on Li. Using the notations 
introduced in 0.3, we choose 5” = Bl x B2 and 

(E’, V’) = (v-lb ‘CS IX;Lz, prtV1 @ pr;V*). 

Then for the pullback (E, V) of (E’, 0’) on the blow-up S of a point p, the map (0.1) will not be 
injective. In fact, for the exceptional divisor F on 5’ one has Hb,(F, (E, V)IF) = a3 whereas for all 
reduced curves C c S with F 6 C: one finds Hb,,,(S, (E, ‘17)) = 0. 

Proof - Let again CO denote the smooth locus of C’ and let ‘IL : r + S be the normalization. By (0.4) 

Hh~,~(s,('>v)) = H~R((;;)>(E.V)ICU) = Hin(r.71*(E.V)) C $H”(rj,l>;,lLl @PJ,~L~), 

where r3 are the irreducible components of I‘, and where pi,; denotes the restriction of 
pri o S o 72 : lY + B; to rj. If l)j,i is dominant, the image 0: of p,*,, : Pic”(n,) - Pic”(rj) 
is isogeneous to B, and it is the Zariski closure of the subgroup generated by l,y,;L;. Hence if one of 
the projections, say pJ,l, maps rj to a point, PT,~L~ @ p;,2 L2 = p5,2L~ has no global section. 

If both, pJ.l and pj,z are dominant, the two elliptic curves Bi and Bi are not isogeneous, hence 
Bi n Bk is finite, and H”(T,;,p~,,L1 c;3 P;,~L~) = 0. 

This work has been partly supported by the DFG Forschergruppe “Arithmetik und Geometrie” and by the I.H.E.S., 
Bures-sur-Yvette. 
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