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Recent developments on characteristic classes
of flat bundles on complex algebraic manifolds

Héléne Esnault, Essen

Refined characteristic classes of flat bundles have been recently considered by
several authors. The most striking example is given by Reznikov’s solution to Bloch’s
conjecture on smooth projective varieties (see section 3). A purely algebraic theory has
been developed as well (see section 4). In this note, we present an account of this. We
recall at the beginning older work on topological classes (see section 2), necessary to
understand the background of more recent results and questions.

1 Generalities

1.1

If X,n is a complex analytic manifold, a rank n flat bundle (En, Van) isarank n
analytic bundle E,, endowed with a € linear map

Van : Ean — Qy,, ®0y Ean

with values in the analytic one forms Q} .- fulfilling the Leibniz condition
Van(Ae) = d\ ® e + AVan(e)

for ) and e local sections of the analytic functions Oy,, and E,;. V,, extends to
Van : Qy,, ®0y Ean — Qi ®0y, Ean

via the sign convention
Van(we) = dw @ e+ (—1)'w A Vag(e)

for w € Q. . Van is flat or integrable if the Ox,, linear map
Vﬁn B — Qg(an R0y E,

called curvature, vanishes. The local existence of n linearly independent solutions to
the system V,, of linear differential equations guarantees that L = KerV,, is a local
system of complex vector spaces of dimension n over X,,. The corresponding
monodromy representation p : m (X, x) — GL(n,C) is defined by following solu-
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tions in L along loops 7y € 71 (X, x). The correspondence
L — (Eyn =L ®¢ Oxayy Van = 1@ d)
(Ean,Van) — L = KerV,,
is known under the name of Riemann-Hilbert correspondence. (Here d is the Kihler
differential).
In this article, we study flat bundles (E,,, Van) on analytic manifolds which

arise from an algebraic structure. Crucial to our purpose is Deligne’s theorem:

Theorem 1.1 [10] Let X be a complex algebraic manifold, and (E,,, Van) be a
flat bundle on the associated analytic manifold X,,. Then there is an algebraic bundle E
and an algebraic connection

V:E— Q}Y Qoy E
such that (E, V)an = (Ean, Van)-

A connection Vg, : E;p — Q}"an ®oy E., can be interpreted as a Oy,,
splitting of the Atiyah extension

0— Q% ® Ean = P'(Ean) = Ean — 0

of principal parts of E,, (see[1], [10]). One says that V is an algebraic connection if it is
induced by an algebraic splitting of the Atiyah extension PY(E) of principal parts of E.
It implies automatically that the curvature is algebraic.

Thus Deligne’s theorem is an application of Serre’s GAGA theorem [22],
when X is proper. But when X is not proper, it contains a large part of the theory of
differential equations with regular singularities.

A more precise formulation is

Theorem 1.2 In the above situation, for each good compactification j : X X
such that X is smooth and X—-X=Disa normal crossing divisor, there are algebraic
extensions (E,V), V : E — Q% (log D) ® E of (Ean, Van)-

(One can even determine all possible such extensions [16], Appendix C).

1.2

Let CH'(X) be the Chow group of codimension i cycles on X modulo rational
equivalence. The algebraicity of flat bundles 1.1 allows to define Chern classes

‘B (E) € CH'(X).
This gives at least two guide lines in the interest for algebraic bundles in algebraic
geometry.

e They grasp the part of the topology of X, encoded in finite representations of the
fundamental group.
e They possibly give interesting algebraic cycles on X.
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The purpose of this article is to give the state of the art on the second question.
The first one had a spectacular development in the last decade, due to work by
Narasimhan-Seshadri, Donaldson, Uhlenbeck-Yau, Hitchin, Corlette, Simpson and
others (see [23]).

1.3 Examples
Flat bundles in algebraic geometry arise naturally as GauB-Manin bundles or
as bundles coming from finite coverings.

e Let ¢ : Y — X be a smooth proper family over X smooth. Then for each i > 0,
R, .Y/X

is endowed with the GauB-Manin connection. When one has a flat (in the sense of
algebraic geometry) compactification ¢ : ¥ — X of ¢ such that X—X is a good
compactification, then

R'$.0%¢(log(Y — 1))

is a natural logarithmic extension of R'p,Q5, Ix

e Let ¢ : Y — X be an étale covering over X smooth. Then ¢« (Oy,d) splits into a
sum of flat bundles. When one has a flat compactification @ : ¥ — X of ¢ such that
XX is a good compactification, then ¢.(Oy, diog) splits into a sum of flat bundles
with a logarithmic connection along X — X extending the factors over X, where

diog : Oy — QL (log(Y — Y)).

2 Topology

The topological Chern classes Z(E) € H*(Xan,Z) of flat bundles are
torsion. In fact, Chern-Weil theory expressing the class in

H?"'(Xan,Z) ®z € = H* (Xan, €) = de Rham cohomology group H%iR(Xan)

as the cohomology class of a smooth differential form associated to any connection
implies that c%(E) ® @ = 0. Grothendieck [19], Théoréme 4.8, gives bounds for the
torsion of ¢Z(E) in terms of invariants of the Galois group of the field of definition of

(X, E) by reduction modulo a prime p. ‘
A deep explanation of the torsion of c%(E) when X is proper is given by

Theorem 2.1 (Deligne-Sullivan) ([11]) Let X be proper smooth over € (in fact
a compact polyedron would be sufficient). Let (E, V) be a flat bundle. Then there is an
étale cover Y — X (explicitely described in terms of a subring A of € of finite type such
that the monodromy representation

p:m(X,x) — GL(n,A)

is A valued) such that E|y is trivialized as a C* bundle.
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This is in contrast to the algebraic situation. Deligne gives the following
example. Let X be a smooth proper curve, and E be a non torsion element in Pic’ X,
the group of rank 1 vector bundles of degree (= ¢;) 0. Then if ¥ — X is finite and
E|y ~ Oy, E is a direct factor of Oy as a Oy module. If ¥ — X is étale, this
contradicts that E is not torsion. If ¥ — X ramifies, then a power of E has to be an
ideal sheaf on X so is not in Pic’ X

3 Analytic Structure

3.1 Deligne-Beilinson cohomology

The Deligne-Beilinson cohomology H7(X,Z(b)) (2], [17]) encodes the
topological cohomology H’(X,,,Z) and its Hodge filtration F’ coming from the
analytic structure of the algebraic manifold. It is naturally presented as an extension

He 1(Xan,(IZ/Z)
Fb

1  0- — Hp(X,Z(b)) —

Ker(FCH*( X0, €) — H*(Xon, ©/Z)) — 0

The right hand side group is discrete, whereas the left hand side group is
endowed with the classical topology coming from €. For example, when X is proper,
then the group HZ (X, Z(i)) is an extension of the image in the de Rham cohomology
of the group of codimension i Hodge cycles by a group, which is itself an extension of
the torsion in H%(X,,, Z) by Griffiths’ intermediate jacobian

C H* Y (Xgn, €©)/H*(Xan, Z) + F'.

The latter is a complex torus, sometimes (e.g. fori = 1 ori = d,d = dimX) an abelian
variety. (It would be easier to say that H% (X, Z(i)) is an extension of the Hodge cycles
by the intermediate jacobian, but in the above presentation, we distributed the torsion

differently).
There is a cycle map

CH'(X) — HE(X,Z(i)).

So flat bundles have classes ¢,2(E) € H* 1(Xan, C/Z)/F' (see equation 1). For
example, for i=1, ¢P(E) € %‘1’5@— When i =1 and X is proper, then the
intermediate jacobian is just the classwal jacobian Pic’X.

3.2

A key conjecture by Bloch and Beilinson ([4], [2]) asserts that if X is projective
smooth, there should exist on CH'(X) ®z @ a filtration
0=F*'CFc...cFlcF'=CH'(X)®Q

compatible with products and correspondences. Then F! should be KerCH!(X)®
Q — H*(X,C), in particular F'CH'(X)®Q =Pic’(X)® @, F* should be
KerCH'(X) ® @ — HZ (X, Q(i)). So if one had a splitting principle for flat bundles,
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in the sense that one could reduce the computation of ¢ (E) € CH!(X) to the one of
a direct sum of rank 1 flat bundles then one would have

“Conjecture” (Bloch) [3] ¢‘#(E) € FICH!(X) ® @ when (E, V) is flat on X
projective smooth.

As one does not know the existence of the filtration, and as flat bundles are far
from “splitting” as sums of rank 1 flat bundles, the “conjecture” does not mean
anything precise, except of

Conjecture (Bloch) [3] ¢P(E) ® @ = 0fori > 2 when X is projective smooth.

3.3

In his seminal paper [3] introducing the dilogarithm function in algebraic
geometry, not only Bloch states the above conjectures, but he proves at the same
time '

Theorem 3.1 (Bloch) [3] Ifi = 2 and X is proper smooth, there is a countable
subgroup A* C €/@Q such that
H3 (X, C/Z)

¢ (flatbundles) € Im H?(Xan, A¥) in 73

In fact, even if X is not proper, Bloch shows that

3
Im ¢ (flat bundles) in H3(Xan’ ¢/Q) e Im H3(X,A*).

]Il (Xal’h Q}Zn)
Also, if X is proper, one can refer only to the Hodge theory to show

Theorem 3.2 [15] On X proper smooth, the classes c;° (bundles with algebraic
connection) form a countable subset of HZ (X, Z(i)).

(This theorem is of no use as one does not know any example of an algebraic
bundle on a proper smooth variety which is not flat but carries a non flat algebraic

connection).

Reznikov made a major progress answering positively Bloch’s conjecture. His
resultis stronger. Not only ¢, (E) is torsion for i > 2 but some good analytic classes in
H*~1(X,,, €/Z) mapping to ¢, (E) are torsion as well (see 3.5).

3.4 Secondary Analytic Classes

A rank 1 flat bundle is equivalent to a representation

p € Hom (m(X,x),C*) = H'(Xan, C/Z).

. 1 .
This class p maps to the class ¢ (E) € E(X%—’C/Z—) when the algebraic bundle F

underlies the analytic one (see theorem 1.1)). General functorial and additive classes
in H*~!(X,,, C/Z) can be constructed for i > 1. I know of four ways.
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1. The original one of Cheeger-Simons [7] consists in defining a group of differential
characters H/(X,IR/Z) (or H/ (X, C/Z)) on a differentable manifold X, which is an
extension of global C* R (or €) valued forms of degree j with Z periods by
H-Y(X,IR/Z) (or H/~'(X,C/Z)). They show that flat bundles (E, V) on the C*
manifold X have classes é(E,V) € H¥1(X,R/Z) c H¥(X,IR/Z). (One defines
exactly similarly classes of flat bundles in H¥~!(X,C/Z) c HY(X,C/Z)). Those
classes are smooth and do not refer to an analytic structure. If X is a proper smooth
algebraic manifold, then Bloch for unitary bundles ([3]) and Gillet-Soulé for non
unitary ones ([18]) show that those classes map to ¢,2(E).
2. Karoubi ([20]) constructed classes with K theory.
3. Beilinson ([2]) observes that the Deligne-Beilinson cohomology HZ (BG., Z(i)) of
the discrete simplicial scheme BG,, G = GL(n, €), is just H*~(BG,,C/Z). This
defines classes by universality.
4. One can also develop a modified splitting principle ([12], [13]) to define functorial
and additive classes ¢2*(E, V) € H* 1 (X,,, C/Z).

One shows ([14], [12], [20]) that the classes defined by the splitting principle, by
universality and by K theory are the same.

35

Now we can express Reznikov’s theorem.

Theorem 3.3 (Reznikov) [21] On X projective smooth, ¢;,(E, V) and c2*(E, V)
lie in

H™!(Xan, Q/Z) C Hy ™' (X, Z(3))
fori>2.

One may apply his method to show

Theorem 3.4 [9] On X smooth &(E,V) and ¢ (E, V) lie in H*~(Xan, Q/Z)
(which no longer injects into HE (X, Z(i)) for X not proper) fori > 1 when (E, V) isa @
variation of Hodge structure, for example when (E,V) is a Gaup-Manin bundle
associated to a smooth proper family (see (1.3)).

In fact, in [9], there is a version of this on a topological manifold X

3.6 Questions
There are many questions raised by Reznikov’s answer.

e When X is not proper, what about ¢,?(E), ¢®(E, V)?

e For (E,V) a @ variation of Hodge structure, one has the vanishing theorem 3.4.
Letj: X — X, (E,V) be as in theorem 1.1. The de Rham classes ¢P%(E) of E are
expressable in terms of .cycles supported in D with coefficients depending on the
residues of V along D ([16], Appendix B). Let @ C 4 C € be the smallest field
containing those coefficients. For example, when the residues are nilpotent,
cPR(E) = 0, and 4 = @Q. Does one have ¢,P(E) = 0in H(X, A(i))? (See also [9]).
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o When one knows that ¢2*(E,V) € H*~!(X,,, Q/Z), what does the torsion reflect
exactly? (Of course this torsion is an upper bound for the torsion of the classes ¢Z(E)
2)).

o Grothendieck’s coniveau filtration of a cohomology theory H fulfilling localiza-
tion is defined by

N°H(X)={x € H, 3 subscheme Z C X,

Bloch-Ogus theory [6] implies that NV H*~!(X,,,C/Z) = 0 for j > i. So the lowest
piece possibly non vanishing is N'-1 H*~!(X,,, €/Z). (For i = 1, N°H'(X,,, C/Z)
= H' (X, €/Z) but for i > 2, the lowest piece is smaller than the whole group).
When (E, V) comes from a finite representation of the fundamental group, then

ci"(E,V) € N7 H*™! (Xun, Q/)

for all i > 1. '.([14]). The proof requires the existence of algebraic classes ([13],
section 4). Does one have in general

¢™(E,V) € NT'H* (X, C/Z)?

4 Algebraic Structures

4.1 Secondary Algebraic Classes

A natural question is to find classes lifting the secondary analytic classes
@ (E, V) as well as the most possible algebraic classes 7 (E) € CH'(X). This is the
purpose of [13].

We denote by K7 the image of the Zariski sheaf of Milnor K theory in the
constant sheaf of M1lnor K theory of the field k(X)) of rational functions on X. (Here
X is defined over any field k). The dlog: K; — Q) map defined by dlogf =
extends to a map dlog : K" — Q.

Theorem 4.1 [13] Let (E, V) be a flat connection with logarithmic poles along
D. Then there are functorial and additive classes
G(E,V) € H' := H (X, K" 250, (log D) — Q' (log D) — ...)
liftingc.CH (E) € CH!(X) = H'(X,K"). When the field of definition of X is €, there are
maps Y
]I_I (Xan Z - OX — ... .
o Ry — Q’“ (log D) — ...) = H* (X — Dan, C/ZL)

taking c;(E, V) to c?“(E , V), compatibly with the image c,°(E) of ¢t (E).

4.2
The algebraic classes ¢, (E, V) define torsion free classes

2y (log D)

Y(E, V) € H" ! (X, =X
chsd

— % (log D) — ..)
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which are difficult to understand, and classes

Q7' (log D) 4

60,(E,V) € H'(X,
(E,V) ( d0%=2%(log D)

) = H'(X — D, H**).

Here H is the Zariski sheaf associated to the presheaf H,(U) defined by
Bloch and Ogus [6].

The rest of this note is devoted to the classes 6,(E, V) studied in [5]. It turns
out that they define an algebraic Chern-Simons theory.

4.3

Locally, the bundle E is trivialized: E ~ @&"Oy, so a connection V (not
necessarly integrable) is determined by a r x r matrix 4 of one forms. The curvature
V2isthen V2 = F(A) = dA — A%. Let P be an invariant homogeneous polynomial of
degree n on matrices M € M(r x r,k) (X might be defined on any field k of
characteristic zero), that is an element

P € Homy (End (K")®", k),

invariant under the diagonal adjoint action of GL(r, k). Then the forms

1
TP(A) = n / P(A A F(tA))dt
0

with d TP(A) = P(F(A)), defined by Chern-Simons ([8]), glue together to a well
defined class

2n1

wn(E,V,P) € H'(X, dQZn —

—om3)"

When V is flat, then |
-1
a0y

wn(E,V,P) € H (X, H* ") c H'(X, ).

Theorem 4.2 If D = ¢, then
0,(E,V) = wn(E,V, Pp)(=: wa(E, V)),

where P, is the invariant polynomial describing the n-th Chern class.

4.4

The comparison 4.2 allows to make a purely algebraic Chern-Simons theory
on X over k = C.

We introduce the generalized Griffiths group Griff”(X) as the group of
codimension 7 cycles homologous to zero on X modulo those homologous to zero on
some divisor in X. For example Griff?(X) is the classical Griffiths group of
codimension 2 cycles homologous to zero modulo those algebraically equivalent to
zero.
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There is an extension

H2n—-1 (Xan, Z)
N'H»- (X, Z)

where £ C‘HO(X , H**~Y(Z)), and W (Z) is the Zariski sheaf associated to the
presheaf H'(U,y, Z). Then

0— - & 2, Griff"(X) — 0,

Theorem 4.3 Let (E, V) be aflat connection on X proper smooth over C. Then
wa(E,V) € EQ M, du(wn(E,V)) is the Chern class c,(E) € Griff"(X) ® @, and
wn(E,V)®Q = 0ifand only if c,(E) @ Q = 0.

The proofrelies on the (Somparison 4.2, on Reznikov’s theorem 3.3, and on the
definition of the mixed Hodge structure on the (infinite dimensional) Z module £.

4.5

To make the theory more flexible, one has to introduce logarithmic poles. In
fact,

wa(E, V) € HY (X, H* 1Y c H'(X — D, H**1)

and lies in £ ® €. Its image d,(c,(E,V)) in the Griffiths group differs from the
algebraic class of E by a class supported in D, whose precise shape is clear for n = 2
(and is vanishing if V has nilpotent residues along D).

4.6 Rigidity

The link of w,(E, V) with the algebraic class in the Griffiths group (if D = ¢)
forces wy(E, V) to be invariant in a deformation of (E, V) over X. But in fact, a
stronger rigidity holds true: one can allow X to vary in a one dimensional family.

4.7 Vanishing — Non Vanishing

The invariants

2n—1
QX

wn(E, V) € HO(X,W)

are certainly non vanishing when V is not flat, as
dwn(E,V) = c,(E) € HO (X, Q%).

However, the only examples we have for an integrable connection are
vanishing classes:

GauB-Manin systems of curves (even with logarithmic poles), general weight
one GauB-Manin systems, weight two GauB-Manin systems of surfaces, finite
monodromy. .

In characteristic p large enough, one can define w,(E, V) and all Gau-Manin
systems of proper smooth varieties vanish. ‘

One may raise the question of whether on X smooth proper, w,(E, V) always
vanishes for n > 2.
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