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ALGEBRAIC CHERN-SIMONS THEORY

By SPENCER BLOCH and HÉLÈNE ESNAULT

Abstract. A theory of secondary characteristic classes analogous to the classical Chern-Simons
theory is developed for algebraic vector bundles. Applications are made to questions involving finer
charcterisitic classes for bundles with connection and to the Griffiths group of algebraic cycles.

0. Introduction.

0.1. Secondary (Chern-Simons) characteristic classes associated to bundles
with connection play an important role in differential geometry. We propose to
investigate a related construction for algebraic bundles. Nonflat algebraic connec-
tions for bundles not admitting flat structures on complex projective manifolds are
virtually nonexistent (we know of none), and a deep theorem of Reznikov ([18])
implies that Chern-Simons classes are torsion for flat bundles on such spaces. On
the other hand, it is possible (in several different ways, cf. 1.1 below) given a
vector bundle E on X to construct an affine fibration f : Y ! X (i.e. locally over
X, Y �= X�A

n) such that f �E admits an algebraic connection. Moreover, one can
arrange that Y itself be an affine variety. Since pullback f � induces an isomor-
phism from the Chow motive of X to that of Y , one can in some sense say that
every algebraic variety is equivalent to an affine variety, and every vector bundle
is equivalent to a vector bundle with an algebraic connection. Thus, an algebraic
Chern-Simons theory has some interest. Speaking loosely, the content of such a
theory is that a closed differential form � representing a characteristic class like
the Chern class of a vector bundle on a variety X will be Zariski-locally exact,
� j Ui = d�i. The choice of a connection on the bundle enables one to choose the
primitives �i canonically up to an exact form. In particular, (�i , �j) j Ui \ Uj is
exact. When X is affine, a different choice of connection will change the �i by a
global form �.

0.2. Unless otherwise noted, all our spaces X will be smooth, quasi-
projective varieties over a field k of characteristic 0. Given a bundle of rank
N with connection (E,r) on X and an invariant polynomial P of degree n on the
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904 SPENCER BLOCH AND HÉLÈNE ESNAULT

Lie algebra of GLN (cf. [3]), we construct classes

wn(E,r, P) 2 Γ(X, Ω2n�1
X =dΩ2n�2

X ); n � 2.(0.2.1)

Here Ωi
X is the Zariski sheaf of Kähler i-forms on X, and d: Ωi

X ! Ωi+1
X is

exterior differentiation. Zariski locally, these classes are given explicitly in terms
of universal polynomials in the connection and its curvature. They satisfy the
basic compatibility:

dwn(E,r, P) is a closed 2n-form representing the characteristic class in
de Rham cohomology associated to P by Chern-Weil theory. Note that
dwn is not necessarily exact, because wn is not a globally defined form.

The simplest example is to take E trivial of rank 2 and to assume the con-
nection on the determinant bundle is trivial. The connection is then given by a

matrix of 1-forms A = (
� �
 ,�

). Taking P(M) = Tr (M2) one finds

w2(E,r, P) = 2� ^ d�, 4�� + �d + d�(0.2.2)

or, if A is integrable,

w2(E,r, P) = ,2� ^ d� = ,2��.

One particularly important invariant polynomial Pn maps a diagonal matrix
to the nth elementary symmetric function in its entries. We write

wn(E,r) := wn(E,r, Pn).(0.2.3)

For example, P2(M) := 1
2 (TrM)2,Tr(M2). In fact, whenr is integrable, wn(E,r, P) =

�wn(E,r) for some coefficient � 2 Q (see 2.3.3).
When k = C , wn(E,r) is linked to the Chern class in An(X), where An(X)

denotes the group of algebraic cycles modulo a certain adequate equivalence
relation, homological equivalence on a divisor. For example, A2(X) is the group
of codimension 2 cycles modulo algebraic equivalence. When n = 2 and X is
affine, there is an isomorphism

': Γ(X, Ω3
X=dΩ2

X)=Γ(X, Ω3
X) �= A2(X)
Z C .(0.2.4)

(This result, which we will not use, follows easily from results in [2].)
Writing c2,cycle(E) for the second Chern class of E in A2(X), we have

'(w2(E,r)) = c2,cycle(E)
 1(0.2.5)

0.3. Suppose now the connection r on E is integrable, i.e. E is flat. Let
Km

i denote the Zariski sheaf, image of the Zariski-Milnor K sheaf in the constant



ALGEBRAIC CHERN-SIMONS THEORY 905

sheaf KM
i (k(X)). One has a map dlog: Km

i ! Ωi
X,clsd. Functorial and additive

classes

ci(E,r) 2 H i(X,Km
i ! Ωi ! Ωi+1 ! � � �)(0.3.1)

were constructed in [8]. One has a natural map of complexes

�: fKm
i ! Ωi ! Ωi+1 ! � � �g ! Ω2i�1

X =dΩ2i�2
X [, i].(0.3.2)

We prove in Section 4

wi(E,r) = �(ci(E,r)) 2 Γ(X, Ω2i�1=dΩ2i�2).(0.3.3)

In the case of an integrable connection, the classes wn(E,r) are closed. We are
unable to answer the following

Basic question 0.3.1. Are the classes wi(E,r, P) all zero for an integrable
connection r?

0.4. We continue to assume r integrable. We take k = C , and X smooth and
projective. We define the (generalized) Griffiths group Griffn (X) to be the group of
algebraic cycles of codimension n homologous to zero, modulo those homologous
to zero on a divisor. (For n = 2, this is the usual Griffiths group of codimension
2 algebraic cycles homologous to zero modulo algebraic equivalence.) Our main
result is

THEOREM 0.4.1. We have wn(E,r) = 0 if and only if cn(E) = 0 in Griffn (X)
Q .

The proof of this theorem is given in Section 5.
The idea is that one can associate to any codimension n cycle Z homologous

to zero an extension of mixed Hodge structures of Q (0) by H2n�1(X, Q (n)). One
gets a quotient extension

0 ! H2n�1(X, Q (n))=N1 ! E ! Griffn (X)
 Q (0) ! 0

where N1 is the subspace of “coniveau” 1, the group on the right has the trivial
Hodge structure and where

E � H0(X,H2n�1(Q (n))).

Using the classes (0.3.1) and the comparison (0.3.3) we show

wn(E,r) 2 F0E \ E(R ).
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Furthermore, wn(E,r) 2 E(C ) maps to the class of cn(E). Since the kernel of
this extension is pure of weight ,1 it follows easily that wn = 0 , cn = 0. In
fact, Reznikov’s theorem ([18]) implies

wn(E,r) 2 E(Q ).

0.5. Through its link to the Griffiths group, it is clear that the classes
wn(E,r), when r is integrable, are rigid in a variation of the flat bundle (E,r)
over X. But in fact, a stronger rigidity (see 2.4.1) holds true: one can allow a 1
dimensional variation of X as well.

0.6. Examples (including Gauss-Manin systems of semi-stable families
of curves, weight 1 Gauss-Manin systems, weight 2 Gauss-Manin systems of
surfaces, and local systems with finite monodromy) for which the classes wn(E,r)
vanish are discussed in Section 7.

It is possible (cf. Section 7) to define wn(E,r, P) in characteristic p for p
large relative to n. In arithmetic situations, the resulting classes are compatible
with reduction mod p. When the bundle (E,r) in characteristic p comes via
Gauss-Manin from a smooth, proper family of schemes over X, we show using
work of Katz ([15]) that wn(E,r, P) = 0. A longstanding conjecture of Ogus
([17]) would imply that a class in Γ(X,Hn) in characteristic 0 (where H is the
Zariski sheaf of de Rham cohomology), which vanished when reduced mod p for
almost all p was 0. Thus, Ogus’s conjecture would imply an affirmative answer
to 0.3 for Gauss-Manin systems.

0.7. In concrete applications, one frequently deals with connectionsr with
logarithmic poles. Insofar as possible, we develop our constructions in this context
(see Section 6). The most striking remark is that even if r has logarithmic poles,
wn(E,r) does not have any poles (see Theorem 6.1.1).

Acknowledgments. We thank E. Looijenga for making us aware of the simi-
larity between our invariant w2 with Witten’s invariant for 3-manifolds (see [20]),
and G. van der Geer for communicating [12] to us. The second author thanks
E. Viehweg for support and encouragement.

1. Affine fibrations. An affine bundle Y over a scheme X is, by definition,
a V-torseur for some vector bundle V . Such things are classified by H1(X,V). In
particular, Zariski-locally, Y �= X � A n . Pullback from X to Y is an isomorphism
on Chow motives, and hence on any Weil cohomology; e.g. HDR(X) �= HDR(Y),
Hét(X) �= Hét(Y), etc. The following is known as “Jouanolou’s trick.” We recall
the argument from [14].

PROPOSITION 1.0.1. Let X be a quasi-projective variety. Then there exists an
affine bundle Y ! X such that Y is an affine variety.
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Proof. Let X � X̄ be an open immersion with X̄ projective. Let X̃ be the
blowup of X̄ , X on X̄. X̃ is projective, and X � X̃ with complement D a
Cartier divisor. Suppose we have constructed �: Ỹ ! X̃ an affine bundle with
Ỹ affine. Since the complement of a Cartier divisor in an affine variety is affine
(the inclusion of the open is acyclic for coherent cohomology, so one can use
Serre’s criterion) it follows that ��1(X) ! X is an affine bundle with Y := ��1(X)
affine. We are thus reduced to the case X projective. Let P(N) ! P

N be an affine
bundle with P(N) affine. Given a closed immersion X ,! P

N , we may pull back
P(N) over X, so we are reduced to the case X = P

N . In this case, one can take
Y = GLN+1=GLN � GLN+1.

An exact sequence of vector bundles 0 ! G ! F ! E ! 0 on X gives rise
to an exact sequence of Hom bundles

0 ! Hom (E, G) ! Hom (E, F) ! Hom (E, E) ! 0

and so an isomorphism class of affine bundles

@(IdE) 2 H1(X, Hom (E, G)).

Of particular interest is the Atiyah sequence. Let X be a smooth variety, and let
I � OX 
OX be the ideal of the diagonal. Let PX := OX 
OX=I

2, and consider
the exact sequence

0 ! Ω1
X ! PX ! OX ! 0

obtained by identifying I=I2 �= Ω1 in the usual way. Note thatPX has two distinct
OX-module structures, given by multiplication on the left and right. These two
structures agree on Ω1 and on OX . Given E a vector bundle on X, we consider
the sequence (Atiyah sequence)

0 ! E 
OX Ω1
X ! E 
OX PX ! E ! 0.(1.0.1)

The tensor in the middle is taken using the left OX-structure, and then the se-
quence is viewed as a sequence of OX-modules using the right OX-structure.

PROPOSITION 1.0.2. Connections on E are in 1,1 correspondence with splittings
of the Atiyah sequence (1.0.1).

Proof. (See [1] and [5].) As a sequence of sheaves of abelian groups, the
Atiyah sequence is split by e 7! e 
 1. Let �: E ! E 
 PX be an O-linear
splitting. Define

r(e) := �(e), e
 1 2 E 
Ω1
X .
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We have

r( f � e) := �(e) � (1
 f ), (e
 1)( f 
 1)

= (1
 f ) � r(e) + (e
 1) � (1
 f , f 
 1)

= fr(e) + df ^ e,

which is the connection condition. Conversely, given a connection r, the same
argument shows that �(e) = r(e) + e
 1 is an O-linear splitting.

COROLLARY 1.0.3. Let E be a vector bundle on a smooth affine variety X. Then
E admits an algebraic connection.

Proof. An exact sequence of vector bundles on an affine variety admits a
splitting.

1.1. In conclusion, given a vector bundle E on a smooth variety X, there
exist two sorts of affine bundles �: Y ! X such that ��E admits a connection. We
can take Y to be the Atiyah torseur associated to E, in which case the connection
is canonical, or we can take Y to be affine, in which case all vector bundles admit
(noncanonical) connections.

2. Chern-Simons. We begin by recalling in an algebraic context the basic
ideas involving connections and the Chern-Weil and Chern-Simons constructions.

2.1. Connections and curvature. Let R be a k-algebra of finite type (R and k
commutative with 1). A connectionr on a module E is a mapr: E ! E
RΩ1

R=k
satisfying r( f � e) = e
 df + f � re. More generally, if D � Spec R is a Cartier
divisor, of equation f , one defines the module Ω1

R=k( log D) of Kähler 1-forms
with logarithmic poles along D, as the submodule of forms w with poles along
D such that w � f and w^df are regular [6]. A connection with log poles along D
is a k linear map r: E ! E
Ω1

R=k( log D) fulfilling the Leibniz relations. When

E has a global basis E = RN , r can be written in the form d + A, where A is an
N � N-matrix of 1-forms. Writing ei = (0, : : : , 1, : : : , 0) we have

r(ei) =
X

j

ej 
 aij.

The map r extends to a map r: E 
 Ωi ! E 
 Ωi+1 defined by r(e 
 !) =
r(e)^! + e
 d!. The curvature of the connection is the map r2: E ! E
Ω2.
The curvature is R-linear and is given in the case E = RN by

r
2(ei) =

X

j

ej 
 daij +
X

j,`

e` 
 aj` ^ aij

= (0, : : : , 1, : : : , 0) � (dA, A2).
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The curvature matrix F(A) is defined by F(A) = dA,A2. (Note that the definition
F(A) = dA + A2 is also found in the literature, e.g. in [3].)

Given g 2 GLN(R), let  = g�1. We can rewrite the connection r = d + A in
terms of the basis �i := ei � g = (gi1, : : : , giN), replacing A and F(A) by

dg � g�1 + gAg�1 = ,�1d + �1A(2.1.1)

F(dg � g�1 + gAg�1) = gF(A)g�1.(2.1.2)

A connection is said to be integrable or flat if r2 = 0. For a connection on RN

this is equivalent to F(A) = 0.

2.2. We recall some basic ideas from [3]. Let G be a Lie algebra over a
field k of characteristic 0, and let G be the corresponding algebraic group. (The
only case we will use is G = GLN .) Write G` := G 
 � � � 
 G| {z }

` factors

. G acts diagonally

on G` by the adjoint action on each factor, and an element P in the linear dual
(G`)� is said to be invariant if it is symmetric and invariant under this diagonal
action. For a k-algebra R we consider the module Λr,` := G` 
k Ωr

R=k of r-forms

on R with values in G`. Let xi denote tangent vector fields, i.e. elements in
the R-dual of Ω1. We describe two products ^: Λr,` 
R Λr0,`0 ! Λr+r0,`+`0 and
[ ]: Λr,1 
R Λr0,1 ! Λr+r0,1. In terms of values on tangents, these are given by

' ^  (x1, : : : , xr+r0) =
X

�,shuffle

�(�)'(x�1, : : : , x�r )(2.2.1)


 (x�r+1 , : : : , x�r+r0
)

[', ](x1, : : : , xr+r0) =
X

�,shuffle

�(�)['(x�1, : : : , x�r ), (x�r+1 , : : : , x�r+r0
)].(2.2.2)

Here �(�) is the sign of the shuffle. These operations satisfy the identities (for
P 2 (G`)� symmetric, i.e. invariant under the action of the symmetric group in `
letters but not necessarily invariant under G)

[', ] = (, 1)rr0+1[ ,'](2.2.3)

[[','],'] = 0(2.2.4)

d[', ] = [d', ] + (, 1)r[', d ](2.2.5)

d(' ^  ) = d' ^  + (, 1)r' ^ d (2.2.6)

d(P(')) = P(d')(2.2.7)

P(' ^  ^ �) = (, 1)rr0

P( ^ ' ^ �).(2.2.8)
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If P is invariant, we have in addition for 'i 2 Λri,1 and  2 Λ1,1

X̀

i=1

( , 1)r1+���+riP('1 ^ � � � ^ ['i, ] ^ � � � ^ '`) = 0.(2.2.9)

By way of example, we note that if A = (aij), B = (bij) are matrices of 1-forms,
then writing AB (or A2 when A = B) for the matrix of 2-forms with entries

X

`

ai` ^ b`j

we have

[A, A](x1, x2)ij = ([A(x1), A(x2)] , [A(x2), A(x1)])ij

= 2 (A(x1)A(x2) , A(x2)A(x1))ij

= 2
X

`

�
ai`(x1)a`j(x2) , ai`(x2)a`j(x1)

�

= 2
X
`

ai` ^ a`j(x1, x2) = 2A2(x1, x2),

whence

A2 =
1
2

[A, A].

In the following, for ' 2 Λr,` we frequently write 'n in place of ' ^ � � � ^ '

(n-times). The signs differ somewhat from [3] because of our different convention
for the curvature as explained above.

THEOREM 2.2.1. ([3]) Let P 2 (G`)� be invariant. To a matrix A of 1-forms over
a ring R, we associate a matrix of 2-forms depending on a parameter t

't := tF(A),
1
2

(t2 , t)[A, A].

Define

TP(A) = `
Z 1

0
P(A ^ '`�1

t )dt 2 Ω2`�1
R=k .(2.2.10)

For example, for

P(M) = TrM2, ` = 2, TP(A) = Tr
�

AdA ,
2
3

A3
�

(2.2.11)
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Then dTP(A) = P(F(A)`). The association A 7! TP(A) is functorial for maps of
rings R ! S. If A 7! T 0P(A) is another such functorial mapping satisfying

dT 0P(A) = dTP(A) = P(F(A)`),

then

T 0P(A), TP(A) = d�

is exact.

Proof. The first assertion follows from Proposition 3.2 of [3], noting that
Ω(A) in their notation is ,F( , A) in ours. For the second assertion, we may
assume by functoriality that R is a polynomial ring, so H2`�1

DR (R=k) = (0). The
form T 0P(A), TP(A) is closed, and hence exact.

PROPOSITION 2.2.2. With notation as above, let g 2 GLN(R), and assume ` � 2.
Then TP(dg �g�1 +gAg�1),TP(A) is Zariski-locally exact, i.e. there exists an open
cover Spec (R) =

S
Ui such that the above expression is exact on each Ui.

Proof. The property of being Zariski-locally exact is compatible under pull-
back, so we may argue universally. The matrix A of 1-forms (resp. the element
g) is pulled back from the coordinate ring of some affine space A

m (resp. from
the universal element in GLN with coefficients in the coordinate ring of GLN),
so we may assume R is the coordinate ring of A

m � GLN .
Let � be a closed form on a smooth variety T . Let f : S ! T be surjective,

with S quasi-projective. Then � is locally exact on T if and only if f �� is locally
exact on S. Indeed, given t 2 T we can find a section S00 � S such that the
composition f 0: S0 ! T , where S0 ! S00 is the normalization, is finite over some
neighborhood t 2 U. Assuming f �� is locally exact, it follows that f �� j f 0�1(U)
is locally exact, and so by a trace argument (we are in characteristic zero) that
� j U is locally exact as well.

We apply the above argument with

� = TP(dg � g�1 + gAg�1), TP(A)

and T = A
m �GLN . As a scheme, GLN

�= G m � SLN , and for some large integer
M we can find a surjection

`
finite A

M ! SLN by taking products of upper and
lower triangular matrices with 1 on the diagonal and then taking a disjoint sum
of translates. Pulling back, it suffices to show that a closed form of degree � 2
on A

M+m � G m is exact. This is clear.

Construction 2.3. Let E be a vector bundle of rank N on a smooth quasi-
projective variety X. Let P be an invariant polynomial as above of degree n on
the Lie algebra GLN . Suppose a given connection r on E. (Such a connection
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exists when X is affine because the Atiyah sequence splits.) Let X =
S

Ui be
an open affine covering such that E j Ui

�= O�N , and let Ai be the matrix of
1-forms corresponding to r j Ui. The class of TP(Ai) 2 Γ(Ui, Ω2n�1=dΩ2n�2)
is independent of the choice of basis for E j Ui by (2.2.2). It follows that these
classes glue to give a global class

wn(E,r, P) 2 Γ(X, Ω2n�1=dΩ2n�2).(2.3.1)

PROPOSITION 2.3.1. Let E be a rank N-vector bundle on a smooth affine variety
X. Let r and r0 be two connections on E. Let P be an invariant polynomial of
degree n. Then there exists a form

� 2 Γ(X, Ω2n�1
X )

such that

wn(E,r, P), wn(E,r0, P) � � mod(dΩ2n�2).

Proof. Because X is affine, any affine space bundle Y ! X admits a section.
(An affine space bundle is a torseur under a vector bundle.) Thus, we may replace
X by an affine space bundle over X. Since X is affine, E is generated by its global
sections, so we may find a Grassmannian G and a map X ! G such that E is
pulled back from G. We may find an affine space bundle Y ! G with Y affine.
Replacing X with X �G Y , which is an affine bundle over X, we may assume
E pulled back from a bundle F on Y . Since Y is affine, F admits a connection
Ψ, and it clearly suffices to prove the proposition for r the pullback of Ψ.
Write r0 , r =  with  2 HomOX (E, E 
 Ω1). Let �: X ,! A

m be a closed
immersion. The product map X ,! Y � A

m is a closed immersion, hence  lifts
to ' 2 HomOY�Am (F, F 
Ω1

Y�A m ). Let Ψ0 := Ψ + '. We are now reduced to the
case X = Y � A

m . Writing H2n�1 for the Zariski cohomology sheaf of the de
Rham complex on X, one knows that Γ(X,H2n�1) � Γ(U,H2n�1) for any open
U 6= ; ([2]). Taking U = A

M+m , where A
M is an affine cell in Y , we may assume

Γ(X,H2n�1) = (0). If P corresponds to a polynomial F in the Chern classes,
dw(E,r, P) and dw(E,r0, P) both represent the same class F(E) in cohomology,
so, since X is affine, there exists � 2 Γ(X, Ω2n�1) such that

wn(E,r, P), wn(E,r0, P), � 2 Γ(X,H2n�1) = (0).

PROPOSITION 2.3.2. Let r be an integrable connection on E, and let P be an
invariant polynomial of degree n. LetH2n�1 = Ω2n�1

closed=dΩ2n�2. Then wn(E,r, P) 2
Γ(X,H2n�1), i.e. dw = 0.

Proof. dw = P(F(r)) = 0 since r integrable implies F(r) = 0.
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PROPOSITION 2.3.3. Letr be an integrable connection on E, and let P = �Pn+Q
be an invariant polynomial of degree n, where Pn is the nth elementary symmetric
function and Q is a sum with rational coefficients of decomposable polynomials
Pi1 : : :Pir with r � 2 and ij � 1. Then

wn(E,r, P) = �wn(E,r)

(see notation (0.2.3)).

Proof. Writing elementary symmetric functions Pi of degree i � n as poly-
nomials with rational coefficients in the elementary Newton functions Qi(M) =
Tr Mi of degree i � n and vice-versa, it is enough to show wn(E,r, QI) = 0
where QI = Qi1 : : :Qir for r � 2 and ij � 1. For A with dA , A2 = 0 one has
F(tA) = (t , t2)A2, and therefore

QI(A ^ F(tA)i1+���+ir�1)

Qi1(AF(tA)i1�1)((t, t2)i2+���+ir )Qi2(A2i2) � � �Qir (A
2ir ) = 0

as Tr A2j = 0 for j � 1.

2.4. Rigidity.

THEOREM 2.4.1. Let f : X ! S be a smooth proper morphism between smooth
algebraic varieties defined over a field k of characteristic zero. Assume dimS =
1. Let r: E ! Ω1

X=S 
 E be a relative flat connection, and P be an invariant
polynomial. Then

wn(E,r, P) 2 H0(X,H2n�1(X=S))

lifts canonically to a class in H0(X,H2n�1) for n � 2.

Proof. Take locally the matrix A0

i 2 H0(Xi, M(N, Ω1
X=S)) of the connection, N

being the rank of E. Take liftings Ai 2 H0(Xi, M(N, Ω1
X)), and define TP(Ai) look-

ing at the Ω1
X valued connection defined by Ai. Since F(Ai) 2 H0(Xi, M(N, f �Ω1R 


Ω1
X)), one has F(Ai)n = 0 for n � 2, and dTP(Ai) = P(F(A)n) = 0. On Xi \Xj, one

has

Aj = dg � g�1 + gAig
�1 , Γij

where Γij 2 H0(Xi\Xj, f �Ω1
S). Using Proposition 2.2.2, we just have to show that

TP(B), TP(B + Γ) is locally exact for some matrix of one forms B = dg � g�1 +
gAig�1, verifying F(B)! = 0 for any w 2 M(N, f �Ω1

S), and Γ = Γij 2 f �Ω1
S. By

Proposition 2.3.3 it is enough to consider P(M) = TrMn. One has

't(B + Γ) = F(t(B + Γ)) = F(tB) + tdΓ, t2(ΓB + BΓ)(2.4.1)
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and

F(tB)! = (t , t2)dB!(2.4.2)

with ! as above. Thus

P((B + Γ) ^ 'n�1
t (B + Γ)) = Tr(B + Γ)(2.4.3)

�[(tdB, t2B2)n�1 + (n, 1)(t, t2)n�2

� (dB)n�2(tdΓ, t2(BΓ + ΓB)]

= P(B ^ 'n�1
t (B)) + R

with

R = TrΓ(dB)n�1[(t, t2)n�1 , 2t2(n, 1)(t, t2)n�2](2.4.4)

+ (n, 1)(t, t2)n�2tTrB(dB)n�2dΓ.

Write Tr d(BΓ) = Tr dBΓ, Tr BdΓ. Then we have

R = F(t)Tr Γ(dB)n�1(2.4.5)

modulo exact forms, with

F(t) = n(t , t2)n�1 , (n, 1)t2(t , t2)n�2 = (t(t , t2)n�1)0.(2.4.6)

The assertion now follows from (2.2.10).

3. Flat Bundles. The following notations will reoccur frequently.

3.1. X will be a smooth variety, and D =
S

Di � X will be a normal
crossings divisor, with j: X,D ! X. We will assume unless otherwise specified
that the ground field k has characteristic 0.

3.2. (E,r) will be a vector bundle E of rank r on X with connection
r: E ! E
Ω1

X=k( log D) having logarithmic poles along D. The Poincaré residue

map Ω1( log; D) ! ODi is denoted resDi , and Γi := resDi � r: E ! EjDi .

3.3. When E is trivialized on the open cover X = [Xi, with basis ei on Xi,
then (E,r) is equivalent to the data

gij 2 Γ(Xi \ Xj, GL(r,OX))

gik = gijgjk

Ai 2 Γ(Xi, M(r, Ω1
X( log D)))

with g�1
ij dgij = g�1

ij Aigij , Aj.
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3.4. The curvature

r2: E ! Ω2
X( log D)
 E

is given locally by

r2 = F(Ai) := dAi , AiAi.

The connection r is said to be flat, or integrable if r2 = 0.

3.5. For two r � r matrices A and B of differential forms of weight a and
b respectively, one writes Tr AB for the trace of the r � r matrix AB of weight
a + b, and one has Tr AB = ( , 1)abTr BA. We denote by tA the transpose of
A: (tA)ij = Aji.

3.6. For any cohomology theory H with a localization sequence, the ith
level of Grothendieck’s coniveau filtration is defined by

NiH� = fx 2 H� j 9 subvariety Z � X of codimension � i

such that 0 = xjX�Z 2 H�(X , Z).g

3.7. For any cohomology theory H defined in a topology finer than the
Zariski topology, one defines the Zariski sheaves H associated to the presheaves
U 7! H(U) ([2]). When H is the cohomology for the analytic topology with
coefficients in a constant sheaf A, we sometimes write H(A). For example the
Betti or de Rham sheaves H(C ) are simply the cohomology sheaves for the
complex of algebraic differentials Ω�

X . For D � X as above, we write H�( log D)
for the cohomology sheaves of Ω�( log D). It is known that H�( log D) �= j�H�

X�D.

3.8. When k = C we use the same notation Ω�
X for the analytic and algebraic

de Rham complexes. For integers a and b, the analytic Deligne cohomology is
defined to be the hypercohomology of the complex of analytic sheaves

Ha
D,an(X,Z(b)) := H

a(Xan,Z(b) ! O ! Ω1 ! � � � ! Ωb�1).

(This should be distinguished from the usual Deligne cohomology, which is de-
fined using differentials with at worst log poles at infinity.) One has a cycle class
map from the Chow group of algebraic cycles modulo rational equivalence to
Deligne cohomology:

CHi(X) ! H2i
D,an(X,Z(i)).

3.9. We continue to assume k = C . Let �: Xan ! XZar be the identity map.
For a complex C�, let t�iC� be the subcomplex which is zero in degrees < i and
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coincides with C� in degrees � i. There is a map of complexes t�iC� ! C�. The
complex

Z( j) ! OX ! Ω1
X ! � � �

in the analytic topology is quasi-isomorphic to the cone Z( j) ! C , and hence to
C =Z( j)[, 1]. We obtain in this way a map in the derived category

(t�jΩ�
X) ! C =Z( j).

The kernel of the resulting map

Rj��(t�jΩ�
X) �= ker

�
��Ωj ! ��Ωj+1

�
! Rj��(C =Z( j))

is denoted Ωj
Z( j) ([8]). Note Ωj

Z( j) is a Zariski sheaf. Writing Km
j for the Milnor

K-sheaf (subsheaf of the constant sheaf KMilnor
j (k(X))), the d log-map

ff1, : : : , fjg 7! df1=f1 ^ � � � ^ dfj=fj

induces a map

d log: Km
j ! Ωj

Z( j).(3.9.1)

To see this, note the exponential sequence induces a map

O�
XZar

! R1��Z(1)

and we get by cup product a commutative diagram with left-hand vertical arrow
surjective

O�
j
XZar

,,,! Rj��Z( j)
??ysurj.

??y

Km
j

d log
,,,! Rj��C .

We shall need some more precise results about the sheaf Ωj
Z( j).

LEMMA 3.9.1. (1) There is a natural map

Hi(XZar, Ωi
Z(i)) ! H2i

D,an(X,Z(i)).
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(2) Let D � X be a normal crossings divisor. Then there is a natural map

H
i(XZar, Ωi

Z(i) ! ��Ωi
X( log D) ! � � �)

! H
2i(Xan,Z(i) ! OX ! Ω1

X ! � � � ! Ωi�1
X ! Ωi( log D)X ! � � �).

(3) There is a natural map

': H
i(XZar,K

m
i

d log
,,,! Ωi

X( log D) ! � � �)

! H
2i(Xan,Z(i) ! OX ! Ω1

X ! � � � ! Ωi�1
X ! Ωi( log D)X ! � � �)

In particular, for D = ;, we get a map

H
i(XZar,K

m
i

d log
,,,! Ωi

X ! � � �) ! H2i�1(Xan, C =Z(i)).

Proof. We consider the spectral sequence

Rj := Rj��(Z(i) ! O ! Ω1 ! � � � ! Ωi�1)

Ep,q
2 = Hp(XZar, Rq) ) Hp+q

D,an(X,Z(i)).

One checks that

Rs �= Hs�1(C =Z(i)); s < i

0 ! Hi�1(C =Z(i)) ! Ri ! Ωi
Z(i) ! 0

0 !Hi�1(C =Z(i)) ! Rs ! ker (Hs(C ) !Hs(C =Z(i))) ! 0; s > i.

We have by ([2]) that Ha(XZar,Hb(A)) = (0) for a > b and A any constant
sheaf of abelian groups. Applying this to the above, we conclude Ea,2i�a

2 =
Ha(XZar, R2i�a) = (0) for a > i, and Ei,i

2
�= Hi(X, Ωi

Z(i)). Assertion (3.9.1) fol-
lows. The construction of the map in (2) is similar and is left for the reader.
Finally, (3) follows by composing the arrow from (2) with the d log map (3.9.1).

3.10. Characteristic classes. Let (E,r) be a bundle with connection as in
3.2 and assume r is flat. Functorial and additive characteristic classes

ci(E,r) 2 H
i(XZar,K

m
i ! Ωi

X( log D) ! Ωi+1
X ( log D) ! � � �)

were defined in [7]. These classes have the following compatibilities:
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3.10.1. Under the map

H
i(XZar,K

m
i ! Ωi

X( log D) ! Ωi+1
X ( log D) ! � � �) ! Hi(X,Km

i ) �= CHi(X)

we have ci(E,r) 7! cChow
i (E) 2 CHi(X).

3.10.2. Assume X proper and D = �. The classes ci(E,r) lift classes
can

i (E,r) 2 H2i�1(Xan, C =Z(i)) defined in [8], via the commutative diagram

H
i(X,Km

i ! Ωi
X ! Ωi+1

X ! � � �) ,,,! CHi(X)

' (3.9.1(3))
?
?
y

?
?
y =cycle map

H2i�1(Xan, C =Z(i)) ,,,! H2i
D

(X, i).

3.10.3. When D 6= � and X is proper, classes

can
i (E,r) 2 H

2i(Xan,Z(i) ! OX ! � � � ! Ωi�1
X ! Ωi

X( log D) ! � � �)

lifting cDi (E) 2 H2i
D

(X,Z(i)) are defined in [8]. In general, for X not proper, these
classes lift

cDi (EjX�D) 2 H2i
D(X , D,Z(i))

via the factorization through H2i�1(X , D, C =Z(i)) ([9], (3.5)).

PROPOSITION 3.10.1. The map ' from (Lemma 3.9.1(3)) carries ci(E,r) to
can

i (E,r). For X proper, the diagram

H
i(X,Km ! Ωi

X( log D) ! Ωi+1
X ( log D) ! � � �) ,,,! CHi(X)

'

?
?
y

?
?
y 

H
2i(Xan,Z(i) ! OX ! � � �Ωi�1

X ! Ωi
X( log D) ! � � �) ,,,! H2i

D
(X,Z(i))

commutes. For X not proper, the diagram remains commutative if one replaces the
bottom row by

H2i�1((X , D)an, C =Z(i)) ! H2i
D(X , D,Z(i))

or if one replaces H2i
D

(X,Z(i)) by H2i
D,an(X,Z(i)).

Proof. The central point, for which we refer the reader to ([8]) is the following.
Let �: G ! X be the flag bundle of E over which E has a filtration Ei�1 � Ei by
�r stable subbundles with successive rank 1 quotients (Li, �r) (see [7]). Then



ALGEBRAIC CHERN-SIMONS THEORY 919

ci(E,r) and can
i (E,r) are both defined on G by products starting from

c1(L�, �r) 2 H
1(G,K1 ! ��Ω1

X( log D) ! � � �)

can
1 (L�, �r) 2 H

2(G,Z(i) ! OG ! ��Ω1
X( log D) ! � � �).

It suffices to observe that the “algebraic” product

H
1(G,K1 ! ��Ω1

X( log D) ! � � �)
i

! H
i(G,Km

i ! ��Ωi
X( log D) ! � � �)

([8], p. 51) is defined compatibily with the “analytic” product

H
2(G,Z(i) ! OG ! ��Ω1

X( log D) ! � � �)
i

! H
2i(G,Z(i) ! OG ! � � � ! Ωi�1

G ! ��Ωi
X( log D) ! � � �).

3.11. Let � : Ω�
X ! N� be a map of complexes , with OX = N0, such that if

a is the smallest degree b for which Bb := KerΩb
X ! Nb 6= 0, then Bb = Ba^Ωb�a

X .
For example, let r: F ! Ω1

X( log D) 
 F be a nonintegrable connection. Then
the local relation dF(A) = [A, F(A)] shows that one can define N� by

N1 = Ω1
X( log D)(3.11.1)

Ni = Ωi
X( log D)=B2 ^Ωi�2

X ( log D)

where B2 is locally generated by the entries of the curvature matrix of r.
Let (E,r) be a flat N� valued connection, that is a k linear map r: E !

N1 
 E satisfying the Leibniz rule

r(�e) = �d�e + �r(e),(3.11.2)

the sign convention

r(! 
 e) = �d(!)
 e + (, 1)o! ^ r(e),(3.11.3)

where o = deg!, and (r)2 = 0. Then the computations of [7] and [8] allow one
to show the existence of functorial and additive classes

ci(E,r) 2 H
i(X,Km

i ! Ni ! Ni+1 � � �)(3.11.4)

mapping to analytic classes

can
i (E,r) 2 H

2i(Xan,Z(i) ! � � � ! Ωi
X ! Ni+1 � � �)(3.11.5)
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compatibly with the classes cDi (E) and cChow
i (E) as before. As we won’t need

those classes, we don’t repeat the construction in detail.

3.12. Finally, the ci(E,r) map to classes

�i(E,r) 2 H0

 
X,

Ω2i�1
X ( log D)

dΩ2i�2
X ( log D)

!
.

In the next section these will be related to the classes wi(E,r).

4. The classes �n and wn. Recall that we had defined wn(E,r) = wn(E,r, Pn)
in (0.2.3) for the nth elementary symmetric function Pn.

THEOREM 4.0.1. Let X be a smooth quasi-projective variety over C . Let E,r
be a rank d vector bundle on X with integrable connection. For d � n � 2, we
have wn(E,r) = �n(E,r), and wn(E,r, P) = ��n(E,r) (with the notations of
Proposition 2.3.2).

The proof will take up this entire section. We begin with

Remark 4.0.2. We may assume X is affine, and E �= O�N
X . In this situation,

the class wn(E,r) lifts canonically to a class in

H0(X, Ω2n�1)=dH0(X, Ω2n�2).

Indeed, one knows from [2] that for U � X nonempty open, the restriction
map H0(X,H2n�1) ! H0(U,H2n�1) is injective. The assertion about lifting fol-
lows from the construction of wn in Section 2 because the trivialization can be
taken globally.

4.1. The connection is now given by a matrix of 1-forms and so can be
pulled back in many ways from some (nonintegrable) connection Ψ on the trivial
bundle E �= ON

A p . We will want to assume Ψ “general” in a sense to be specified
below. For convenience, write T = A

p and let ': X ! T be the map pulling back
the connection. Let �: P ! T be the flag bundle for E and let Q = '�P, so we
get a diagram

Q
'

,,,! P??y� ??y�
X

'

,,,! T .

(4.1.1)

4.2. The curvature F(Ψ) defines an OT-linear map

F(Ψ): E ! E 
OT Ω2
T .(4.2.1)
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In concrete terms, we take p = 2N2q for some large integer q, and we write x(k)
ij

and y(k)
ij for 1 � i, j � N and 1 � k � q for the coordinates on A

p . The connection
Ψ then corresponds to an N � N matrix of 1-forms A = (aij), and the curvature
is given by F(Ψ) := ( fij) = dA, A2. We take

aij =
qX

`=1

x(`)
ij dy(`)

ij ; fij = daij ,

NX

m=1

aim ^ amj.(4.2.2)

Notice that for q large, we can find ': X ! T so that (E , Ψ) pulls back to (E,r).

4.3. We want to argue universally by computing characteristic classes for
(E , Ψ), but the curvature gets in the way. We could try to kill the curvature and
look for classes in the quotient complex of Ω�

T modulo the differential ideal
generated by the fij (see 3.11), but this gratuitous violence seems to lead to
difficulties. Instead, we will use the notion of � -connection defined in [7] and [8]
and work with a sheaf of differential algebras

M� = Ω�

P=I(4.3.1)

on the flag bundle P.
Let

�: Ω1
P=T

�
,,,! ��Hom(E , E)

��F(Ψ)
,,,! ��Ω2

T(4.3.2)

be the composition, where � is the standard inclusion on a flag bundle. An easy
way to see � is to consider the fibration R ! P = R=B, where R is the cor-
responding principal G = GL(N) bundle and B is the Borel subgroup of upper
triangular matrices, and to write the surjection T (R=T)=B ! T (P=T) dual to �,
where T (A=B) is the relative tangent space of A with respect to B. There is an
induced map of graded ��Ω�

T-modules, and we define the graded algebra M� to
be the cokernel as indicated:

Ω1
P=T 
OP ��Ω�

T[, 2]
�
1
,,,! ��Ω�

T ! M� ! 0.(4.3.3)

Note M0 = OP and M1 = ��Ω1
T .

PROPOSITION 4.4.1.

(i) Associated to the connection Ψ on E there is an OP-linear splitting

� : Ω1
P � ��Ω1

T of the natural inclusion ��Ω1
T

i
! Ω1

P. The resulting map � :=
� � d: OP ! ��Ω1

T is a derivation, which coincides with the exterior derivative on
��1OT � OP. By extension, one defines

�: ��Ωn
T ! ��Ωn+1

T ; �( f��1!) = f��1d! + �( f ) ^ ��1!.
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(ii) One has

�2 = � � dP=T : OP

dP=T
,,,! Ω1

P=T ! ��Ω2
T ,

where � is as in (2).

(iii) There is an induced map �: Mn ! Mn+1 making M� a differential graded
algebra. The quotient map Ω�

P � ��Ω�

T � M� is a map of differential graded
OP-algebras.

Proof. We will give a somewhat different construction of M� which we will
show coincides with that defined by (4.3.3).

Let Y be a scheme, and let F be a vector bundle on Y . Let �1: P1 := P(F) !
Y . Let I � Ω�

Y be a differential graded ideal, and write M�

0 = Ω�

Y=I. (All our
differential graded ideals will be trivial in degree 0, so M0

0 = OY .) Assume we are
given an M0-connection r: F ! F 
M1

0 in an obvious sense, that is a k linear
map fulfilling the “Leibniz” rule r(�f ) = �(�)f + �r( f ) for � 2 OY , f 2 F .
Define J := ��1

1 IΩ�
P1
� Ω�

P1
, and let M̃� := Ω�

P1
=J . As a consequence of the

Leibniz rule, the pullback ��1F has a M̃�-connection r̃: ��1F ! ��1F 
 M̃1.
We want to construct a quotient differential graded algebra M̃�

� M�
1 such

that with respect to the quotient M1-connection, the universal sequence

0 ! Ω1
P1=Y(1)

j
! ��1F

q
! OP1(1) ! 0(4.4.1)

is horizontal. The composition

Ω1
P1=Y(1)

j
! ��1F

r̃

,,,! ��1F 
 M̃1
q
1
,,,! M̃1(1)(4.4.2)

is easily checked to be OP1-linear. Let ˜KK1 � M̃1 denote the image of the above
map twisted by OP1(, 1). Define K̃� � M̃� to be the graded ideal generated by
K̃1 in degree 1 and �K̃1 in degree 2. Let M�

1 := M̃�=K̃�. It is immediate that
M�

1 is a differential graded algebra, and that the subbundle Ω1
P1=Y(1) � ��1F is

horizontal for the quotient connection ��1F ! ��1F 
M1
1.

Now let P denote the flag bundle for F . Realize P as a tower of projective
bundles

P = PN�1 ! � � � ! P2 ! P1 ! Y

where Pi is the projective bundle on the tautological subbundle on Pi�1. Starting
with an M0-connection on F on Y , we can iterate the above construction to get
a sheaf of differential graded algebras M�

i on Pi, and an Mi-connection on F j Pi

such that the tautological partial flag is horizontal. Let M0� be the resulting sheaf
of differential graded algebras on P.
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Suppose M1
0 = Ω1

Y . We will show by induction on i that M1
i
�= Ω1

Y j Pi in such
a way that the surjection Ω1

Pi
� M1

i splits the natural inclusion Ω1
Y j Pi ,! Ω1

Pi
, or

in other words that the kernel of the former is complementary to the image of the
latter. This assertion is local on Pi�1 (in fact, it is local on Pi), so we may assume
Pi = P(G) where G is trivial on Pi�1. We can then lift the Mi�1-connection on G
to an Ω1

Pi�1
-connection. The analog of (4.4.2) is now

Ω1
Pi=Pi�1

(1) ! GjPi ! GjPi 
Ω1
Pi
! Ω1

Pi
(1).

This composition twisted by OPi( , 1) is shown in [7] (0.6.1) to be (up to
sign) a splitting of Ω1

Pi
! Ω1

Pi=Pi�1
. In particular, its image is complementary to

Ω1
Pi�1

j Pi. Factoring out Ω1
Pi

by the image of this map and by the pullback of

the kernel of Ω1
Pi�1
� M1

i�1
�= Ω1

Y j Pi�1, it follows easily that M1
i
�= Ω1

Y j Pi as
claimed.

To show M0� as constructed here coincides with M� from (4.3.3) we must
prove for Y = T and F = E that M2 �= M02. We filter Ω1

P=T so fil0 = (0) and

gri = Ω1
Pi=Pi�1

j P. We will show by induction on i that with reference to (4.3.3)
we have

�(griΩ
1
P=T) = �(K1

i ) � (Ω2
T j P)=�(fili�1Ω1

P=T)(4.4.3)

where K1
i is the image of Ω1

Pi=Pi�1
j P in Ω1

T j P under the map analogous
to (4.4.2). Suppose first i = 1. Let e0, e1, : : : be a basis of E , and let ti be the
corresponding homogeneous coordinates on P1 = P(E) so q(ei) = ti in (4.4.1).
The inclusion j: Ω1

P1=T(1) ,! ��1E is given by

t0d(ti=t0) 7! ei , (ti=t0)e0.(4.4.4)

Consider the diagram

Ω1
P1=T(1) � K1(1) � Ω1

P1
(1)

a
9 9 K (Ω2

P1
=K1 ^Ω1)(1)

j # " " q
 1

��1E
��1 Ψ
,,,! ��1E 
Ω1

P1

��1 Ψ
,,,! ��1E 
Ω2

P1

.(4.4.5)

It is straightforward to check that q
 1 ���1Ψ factorizes through Ω1
P1

(1), thereby
defining the dashed arrow a, and that for � 2 K1 we have a(�
 ti) = d�
 ti 2
(Ω2

P1
=K1 ^ Ω1)(1). Thus M02 = Ω2

P1
=(K1 ^ Ω1 + dK1) is obtained by factoring

out on the upper right of (4.4.5) by the image of the composition across the
top twisted by OP1( , 1). Note that the composition across the bottom is the
curvature F(Ψ). If we write ( fij) for the curvature matrix with respect to the
basis e0, e1, : : :, we find using (4.4.4) that, e.g., on the open set t0 6= 0, dK1 is
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generated by elements

t�1
0 (q
 1)F(Ψ)(ej , (tj=t0)e0)(4.4.6)

=
X

i

fij(ti=t0), (tj=t0)
X

k

fk0(tk=t0).

On the other hand, the map � in (4.3.2) is given by

OP1 (, 1) ,! ��1E
_; t�1

i 7!
P

j (tj=ti)e_j
Ω1

P1=T ,! ��1E(, 1) ,! ��1E 
 ��1E
_(4.4.7)

d(tj=t0) 7! (ej , (tj=t0)e0)

P

i (ti=t0)e_i .

The map � from (4.3.2) is given by �(e_i 
 ej) = fij hence by (4.4.7) we get

�(d(tj=t0)) =
X

i

(ti=t0)fij ,
X

i

(titj=t2
0)fi0.(4.4.8)

Comparing (4.4.6) and (4.4.8), we conclude that (4.4.3) holds for i = 1. The
inductive step is precisely the same. We have Pi+1 = P(Gi) for some sub-
bundle Gi � Gi�1 j Pi. The question is local, so we may assume Gi is free.
We assume inductively that Gi�1 has a Mi�1 = Ω�

Pi�1
=I�i�1-connection. Define

˜Mi�1 = Ω�

Pi
=I�i�1 �Ω�

Pi
, so Gi�1 j Pi has a M̃i�1-connection. One factors out by the

image K1
i of Ω1

Pi=Pi�1
as in (4.4.2) to define M1

i and the writes down a diagram

like (4.4.5) to compare dK1
i with the image of � as in (4.3.2). At this point it is

good to remark that the curvature F� : OQ(1) ! ��Ω1
T 
OQ(1) ! M2 
OQ(1)

does not vanish. For example, for N = 2, one has F� (t0) = ( f00 + f01(t1=t0))t0.
The remaining assertions in Proposition 4.4.1 are easily verified.

PROPOSITION 4.5.1. We haveR��Mi �= ��Mi for i < q. The complex H0(T ,��M�)
has no cohomology in odd degrees < q. For 2n < q, the map

�: H n�1(P, Mn ! � � � ! M2n�1) ! H0(P, M2n)

is injective.

4.6. We postpone the proof of Proposition 4.5.1 for a while in order to
finish the proof of Theorem 4.0.1. Note first that since the curvature of the original
bundle E on X is zero, the construction of Proposition 4.4.1 above applied to E
and the flag bundle Q yields a structure of differential graded algebra on ��Ω�

X ,
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and we have (from (4.1.1)) a pullback map of complexes of sheaves on P

'�: M�

! R'��
�Ω�

X(4.6.1)

coming from '�Mi ! ��Ωi
X .

We will construct classes c̃ and w̃ in H
n�1(P, Mn ! � � � ! M2n�1) such that

with reference to the maps

(4.6.2)

H
n�1(Q,��Ωn

X ! � � � ! ��Ω2n�1
X )


 ,,,
�=

H0(X, Ω2n�1
X )=dH0(X, Ω2n�2

X )

�

?
?
y

H
n(Q,Km

n ! ��Ωn
X ! � � � ! ��Ω2n�1

X )

�

x
?
?

H
n(Q,Km

n ! ��Ω�n
X )

we have

���(cn(E,r)) = �'�c̃(4.6.3)

wn(E,r) = �1'�w̃.

(Note that to avoid confusion between H0(Ω2n�1
X =dΩ2n�2

X ) and H0(Ω2n�1
X )=

dH0(Ω2n�2
X ), it is a good idea here to localize more and replace X by its function

field Spec (k(X)). Note also that � is always injective, and that  is an isomor-
phism because X is affine.)

We then show

�c̃ = �w̃ 2 H0(P, M2n),(4.6.4)

whence, by Proposition 4.5.1 we have c̃ = w̃. Now consider the analogue of (4.6.2)
down on X, with ��Ω replaced by Ω. Write �X ,�X , X for the corresponding maps.
The assertion of Theorem 4.0.1 is

X(wn(E,r)) = �X(cn(E,r)).(4.6.5)

It follows from (4.6.2) and evident functoriality of �� that (4.6.5) holds after
pullback by ��. Theorem 4.0.1 then follows from

LEMMA 4.6.1. The pullback

��: H
n(X,Km

n ! Ωn
X ! � � � ! Ω2n�1

X )

! H
n(Q,Km

n ! ��Ωn
X ! � � � ! ��Ω2n�1

X )

is injective.
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Proof of lemma. This is central to the splitting principle involved in the
construction of characteristic classes in [8]. (See the argument on p. 52 in the proof
of Theorem 1.7 of (op. cit.).) An evident diagram chase involving cohomology
of the K-sheaves and the sheaves Ω and ��Ω reduces one to showing the K-
cohomology groups Hn�1(X,Km

n ) and Hn�1(Q,Km
n ) have the same image in

H
n�1(Q,��Ωn

X ! � � � ! ��Ω2n�1
X ).

This follows because the multiplication map

Hn�2(Q,Km
n�1)
 H1(Q,K1) ! Hn�1(Q,Km

n )=��Hn�1(X,Km
n )

is surjective. The line bundles on Q have integrable � -connections in the sense
of [8], so their classes in H

1(Q,��Ω1
X ! � � �) vanish.

4.7. We turn now to the construction of the classes c̃ and w̃. One has

w(E , Ψ, Pn) 2 H0(Ω2n�1
T )=dH0(Ω2n�2

T )
�= H

n�1(T , Ωn
T ! � � � ! Ω2n�1

T ).

We define w̃ by the natural pullback

w̃ = ��w(E , Ψ, Pn) 2 H
n�1(P, Mn

! � � � ! M2n�1).(4.7.1)

It follows that

�(w̃) = ��(dw(E , Ψ, Pn)) = ��(Pn(F(Ψ))) 2 H0(P, M2n).(4.7.2)

To construct c̃, we remark first that the map

H
n�1(P, Mn

! � � � ! M2n�1) ! H
n(P,Km

n ! Mn
! � � � ! M2n�1)

is injective, so it suffices to construct

c̃ 2 ker
�
H

n(P,Km
n ! Mn

! � � � ! M2n�1) ! Hn(P,Km
n )
�

.(4.7.3)

This injectivity follows either from Proposition 4.5.1 or, in order to avoid the
long proof of that result, from the structure of Hn�1(P,Km

n ), given that P is a flag
bundle over affine space. In fact the construction of c̃ as in (4.7.3) would suffice
for our purposes anyway, so we won’t give the argument in detail.
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Let `i be the rank one subquotients of ��E . A basic result from [7] is that
��E admits a “connection” with values in M�,

��E ! ��E 
OP M1(4.7.4)

and that the filtration defining the `i is horizontal for this “connection.” Thus
there exist local transition functions f i

�,� and local connection forms !i
� 2 M1

verifying

d log f i = @!i,(4.7.5)

and thus defining `i 2 H
1(P,K1 ! M1). Here @ is the Cech differential. Then c̃

is defined by the cocyle

(x0, xn, : : : , x2n�1) 2 (Cn(Kn)� Cn�1(Mn) : : :� C0(M2n�1))d�@(4.7.6)

with

x0 =
X

i1<���<in

f i1 [ � � � [ f in(4.7.7)

xn =
X

i1<���<in

!i1 ^ @!i2 ^ � � � ^ @!in

xn+1 =
X

i1<���<in

�!i1 ^ !i2 ^ @!i3 ^ � � � ^ @!in

� � �

x2n�1 =
X

i1<���<in

�!i1 ^ � � � ^ �!in�1 ^ !in .

The cup products “[” here are Cech products. By definition ([8], Theorem 1.7,
p. 51), one has ���(cn(E,r) = '�c̃. Applying � to the last equation, it follows
that the image of c̃ in H0(P, M2n) is

X

i1<���<in

F(`i1) ^ � � � ^ F(`in).(4.7.8)

This is exactly Pn(F( � `i)) = ��Pn(F(Ψ)). (As M� is a quotient complex of
Ω�

P by Proposition 4.4.1, (iii), invariance for Pn guarantees independence of the
choice of local bases for ��E .) Comparing this with (4.7.2) we conclude �c̃ = �w̃
so (4.6.4) holds.

4.8. We turn now to proof of Proposition 4.5.1.
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PROPOSITION 4.8.1. The Koszul complex associated to (4.3.3)

� � � ! Ω2
P=T 
OP �

�Ω�
T[, 4] ! Ω1

P=T 
OP �
�Ω�

T[, 2](4.8.1)

�
1
,,,! ��Ω�

T ! M� ! 0

is exact in degrees < q.

To clarify and simplify the argument, we will use commutative algebra. Let B
be a commutative ring. Let C be a commutative, graded B-algebra, and let S be a
graded C-module. Let Z be a finitely generated free B-module with generators ��,
and let �: Z ! C2, with �(��) = f�. Let I � C be the ideal generated by the f�.
Write grI(S) := �InS=In+1S. Note grI(S) is a graded module for the symmetric
algebra B[Z] (with Z in degree 2). The dictionary we have in mind is

B = Γ(T ,OT)(4.8.2)

C = Ωeven
T � S = Ω�

T

Z = Hom(E , E)

f� = fij = entries of curvature matrix.

LEMMA 4.8.2. Let d � 2 be given. The following are equivalent.

(i) The evident map

�: (S=IS)[Z] := (S=IS)
B B[Z] ! grI(S)

is an isomorphism in degrees � d.

(ii) For all �, the multiplication map

f�: S=( f1, : : : , f��1)S ! S=( f1, : : : , f��1)S(4.8.3)

is injective in degrees � d.

Proof. This amounts to redoing the argument in Chapter 0, x(15.1.1)–(15.1.9)
of [11] in a graded situation, where the hypotheses and conclusions are asserted
to hold only in degrees � d. The argument may be sketched as follows.

Step 1. Suppose � = 1, and write f = f1. Let gr(S) = �f nS=f n+1S. Suppose the
kernel of multiplication by f on S is contained in degrees > d. Then the natural
map ': (S=fS)[T] ! gr(S) is an isomorphism in degrees � d. Here, of course, T
is given degree = degree( f ) = 2.

Indeed, ' is always surjective, and injectivity in degrees � d amounts to the
assertion that for x 2 S of degree � d,2k with f kx = f k+1y, we have x = fy. This
is clear.
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Step 2. Suppose now the condition in (ii) holds. We prove (i) by induction on
�. We may assume by Step 1 that � > 1. Let J (resp. I) be the ideal generated
by f1, : : : , f��1 (resp. f1, : : : , f�). Write grJ (S) = �JnS=Jn+1S. By induction, we
may assume

S=J S[T1, : : : , T��1] ! grJ (S)(4.8.4)

is an isomorphism in degrees � d. We have to show the same for

 : grJ (S)=f�grJ (S)[T�] ! grI(S).(4.8.5)

By (4.8.4) we have that multiplication by f� on grJ (S) is injective in degrees
� d (where the degree grading comes from S, not the grJ grading). An easy
argument shows the multiplication map

f�: S=J rS ,! S=J rS(4.8.6)

is injective in degrees � d for all r. Define

(Qk)i =
X

j�k�i

(grk�j
J (S)=f�grk�j

J (S))Tj(4.8.7)

(Qk)0 = Qk (Qk)k+1 = (0)

gri(Qk) = (grk�i
J (S)=f�grk�i

J (S))Ti.

Define

Q0
k =  (Qk) (Q0

k)i =  ((Qk)i) gri(Q0
k) = (Q0

k)i=(Q0
k)i+1.

The map  is surjective, so it will suffice to show the maps

gri(Qk) ! gri(Q0
k)(4.8.8)

are injective in (S)-degrees � d. The left-hand side is

J iS=
�

f�J
iS + J i+1S

�
Tk�i.

The right-hand side of (8) is the image of

J kS + f�J
k�1S + � � � + f k�i�1

�
J i+1S

in IkS=Ik+1S. What we have to show is that for x 2 J iS of degree � d,2(k, i),
the inclusion

f k�i
�

x 2 J kS + f�J
k�1 + � � � + f k�i�1

�
J

i+1 + Ik+1S(4.8.9)
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implies x 2 f�J iS+J i+1S. The right side of (4.8.9) is contained in J i+1S+Ik+1S �
J i+1S+f k+1�i

�
S. Multiplication by f� on S=J i+1S is injective in degrees� d by (6),

so f k�i
�

x 2 f k+1�i
�

S + J i+1S implies there exists y 2 S such that x , f�y 2 J i+1S.
Since x 2 J iS, we have f�y 2 J iS whence by (4.8.6) again, y 2 J iS so
x 2 f�J iS + J i+1S. This completes the verification of Step 2.

Step 3. It remains to show (i) ) (ii). Again we argue by induction on �.
Suppose first � = 1. Given x 2 S nonzero of degree � d such that f1x = 0, it
would follow from (i) that x 2 f N

1 S for all N, which is ridiculous by reason of
degree. Now suppose � � 2 and that (i) implies (ii) for � , 1. By assumption
the map

S=IS[T1, : : : , T�] ! grI(S)(4.8.10)

is an isomorphism in degrees � d. In particular, multiplication by f1 is injective
in degrees � d on grIS. Arguing as above, an x 2 S of degree � d such that
f1x = 0 would lie in INS for all N, a contradiction. Thus the first step in (ii)
holds. To finish the argument, we may factor out by f1, writing S̄ = S=f1S. Let K
be the ideal generated by f2, : : : , f�. Factoring out by T1 on both sides of (4.8.10)
yields

S̄=KS̄[T2, : : : , T�] ! grK(S̄)

injective in degrees � d. We conclude by induction that (ii) holds for S̄.

Continuing the dictionary from (4.8.2) above, the ring R and the module W
in the lemma below correspond to the ring of functions on some affine in P and
the module of 1-forms Ω1

P=T � ��Hom(E , E).

LEMMA 4.8.3. Let notation be as above, and assume �: Z ! C2 satisfies the
equivalent conditions of Lemma 4.8.2. Let R be a flat B-algebra, and let W � Z
B R
be a free, split R-submodule with basis g� . Then the multiplication maps

g�: S
B R=(g1, : : : , g��1)S
B R ! S
B R=(g1, : : : , g��1)S
B R

are injective in degrees � d.

Proof. Assume not. We can localize at some prime of R contained in the
support for some element in the kernel of multiplication by g� and reduce to
the case R local. Then we may extend fg�g to a basis of Z 
B R and use the
implication (i) =) (ii) from Lemma 4.8.2. Note that � 
 1: Z 
 R ! C2 
 R
satisfies (i) by flatness.

LEMMA 4.8.4. With notations as above, assume Z satisfies the conditions of
Lemma 4.8.2 for some d � 2. Let J � R
B C be the ideal generated by (1
�)(W).
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Then the Koszul complex

� � � ! ^
2W 
R (R
B S) ! W 
R (R
B S)

! R
B S ! (R
B S)=J ! 0

is exact in degrees � d.

Proof. To simplify notation, let A = R 
B C, M = R 
B S, V = W 
R C, so
the Koszul complex becomes

� � � ^
2 V 
A M ! V 
A M ! M ! M=JM ! 0.

We argue by induction on the rank of V . If this rank is 1, the assertion is that the
sequence

0 ! M
g1

,,,! M ! M=g1M ! 0

is exact in degrees � d, which follows from Lemma 4.8.3. In general, if V has an
A-basis g1, : : : , g� , let V 0 be the span of g1, : : : , g��1. By induction, the Koszul
complex

� � � ^
2 V 0


M ! V 0

M ! M

is a resolution of M=(g1, : : : , g��1)M in degrees � d. If we tensor this mod-

ule with the two-term complex A
g�

,,,! A we obtain a complex which by
Lemma 4.8.3 is quasi-isomorphic to M=(g1, : : : , g�)M in degrees � d. On the
other hand, this complex is quasi-isomorphic to the complex obtained by tensor-

ing A
g�

,,,! A with the above V 0-Koszul complex, and this tensor product is
identified with the V-Koszul complex.

For our application, B = C [x(k)
ij , y(k)

ij ] is the polynomial ring in two sets of
variables, with 1 � i, j � N = dim (E) and 1 � k � q for some large integer q.
Let Ω be the free B-module on symbols dx(k)

ij and dy(k)
ij . Let S =

V
B Ω, graded

in the obvious way with dx and dy having degree 1, and let C = Seven be the
elements of even degree. Define

aij =
qX

`=1

x(`)
ij dy(`)

ij ; fij = daij ,

NX

m=1

aim ^ amj.(4.8.11)

We have

fij =
qX

`=1

dx(`)
ij dy(`)

ij ,
X

m,`,p

x(`)
im x(p)

mj dy(`)
im ^ dy(p)

mj .(4.8.12)
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Now give S and C a second grading according to the number of dx’s in a mono-
mial. We denote this grading by z =

P
z( j). For example, fij = fij(1) + fij(0)

with fij(1) =
P

k dx(k)
ij ^ dy(k)

ij . Let Z be the free B-module on symbols �ij, with
1 � i, j � N. We consider maps

�,�(1): Z ! C2; �(�ij) = fij; �(1)(�ij) = fij(1).

LEMMA 4.8.5. Suppose the map�(1) above satisfies the conditions of Lemma 4.8.2
above for some d � 2. Then so does �.

Proof. Suppose

f�`� =
X

1�����1

f�`�

with the `� homogeneous of some degree < d. Write

`� =
X

0�j�r

`�( j); 1 � � � �

such that `�(r) 6= 0 for some �. We have

f�(1)`�(r) =
X

1�����1

f�(1)`�(r).(4.8.13)

We want to show `� belongs to the submodule generated by f1, : : : , f��1, and we
will argue by double induction on r and on the set

A = f� � � j `�(r) 6= 0g.

If r = 0 and `� 6= 0, we get a contradiction from (1), since we have assumed
the `� have degree < d, and `�(0) cannot lie in the ideal generated by the f�(1).
Assume now r � 1.

Case 1. Suppose `�(r) 6= 0. From the above, we conclude that we can write

`�(r) =
X

�2A,� 6=�

m�(r , 1)f�(1).

Define

`0� = `� ,
X

�2A,� 6=�

m�(r , 1)f�(4.8.14)

`0� = `� , m�(r , 1)f� ; � 2 A, � 6= �.
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We still have (taking `0� = `� for � =2 A)

f�`
0
� =

X

1�����1

f�`
0
� .(4.8.15)

Since `0�(r) = `�(r) = 0 for � =2 A, `0�(r) = 0, and `0�(s) = 0 for s > r and all �;
the inductive hypothesis says `0� lies in the ideal generated by the f� for � < �.
It follows from (4.3.2) that `� lies in this ideal also.

Case 2. `�(r) = 0. Choose  2 A. We have

X

�2A

f�(1)`�(r) = 0.

Since the f�(1) are assumed to satisfy the equivalent hypotheses of Lemma 4.6.1,
we can write

`(r) =
X

�2A,� 6=

m�(r , 1)f�(1).

As in (4.3.2), we write

`0 = ` ,
X

�2A,� 6=

m�(r , 1)f�(4.8.16)

`0� = `� + m�(r , 1)f ; � 2 A, � 6= .

Again, taking `0� = `� for � =2 A, we get (4.3.3), so we may conclude by induc-
tion.

LEMMA 4.8.6. The map �(1) defined by

�(1)(�ij) = fij(1) =
qX

`=1

dx(`)
ij ^ dy(`)

ij(4.8.17)

satisfies the hypotheses of Lemma 4.6.1 with d = q, 1.

Proof. Let Vij be the C -vector space of dimension 2q with basis the dx(`)
ij and

the dy(`)
ij . Write V = �Vij. We have

S =
^

V 
 B �= 
i,j

�^
Vij

�

 B.
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It is convenient to well-order the pairs ij, writing f�(1) = fij(1) 2
V

V�. We have

S=( f1, : : : , f��1)S �=
O
���

�^
V�
�



O
�<�

��^
V�
�
=
�

f�(1)
^

V�
��

 B.

It is clear from this that multiplication by f�(1) will be injective in a given degree
d if the multiplication map f�(1):

V
V� !

V
V� is injective in degrees � d. It is

clear from the shape of f�(1) in (2) that multiplication by f�(1) will be injective
in degrees � q, 1.

This completes the proof of Proposition 4.8.1 above.

PROPOSITION 4.9.1. We have for i < q

��M
0 = OT ; ��M

1 = Ω1
T ; Rj��M

i = (0); j � 1.(4.9.1)

The sheaf ��Mi admits an increasing filtration fil`(��Mi), ` � 0 which is stable
under � and satisfies

grj(��M
i) �= Hj(P, Ωj

P=T)
Ωi�2j
T

�= CHj(P)
Z Ωi�2j
T(4.9.2)

for j � 0. Here CHj(P) is the Chow group of codimension j algebraic cycles on
P. The differential grj(��M

i) ! grj(��M
i+1) is the identity on the Chow group

tensored with the exterior derivative on Ω�
T up to sign.

Note that the last assertion in (1) implies for i < q

H�(P, Mi) �=

(
H0(T ,��Mi) � = 0
0 � � 1.

It follows from (4.9.2) that the complex H0(T , M�) has no cohomology in odd
degrees < q , 1. (Recall that T has no higher de Rham cohomology.) These
assertions imply Proposition 4.5.1.

Proof of Proposition 4.9.1. The first two assertions in (1) are clear, because
M0 = OP and M1 = ��Ω1

T . We define

Gj = ImΩj
P=T 
 ��Ωi�2j

T ! Ωj�1
P=T 
 ��Ωi�2j+2

T , G0 = Mi



ALGEBRAIC CHERN-SIMONS THEORY 935

coming from the resolution of Mi in (4.8.1). Then Ra
��Gj = 0 for a 6= j. This

proves Rj
��Mi = 0 for j � 1. One has a short exact sequence

0 ! Rj
��Ωj

P=T 
Ωi�2j
T ! Rj

��Gj ! Rj+1
��Gj+1 ! 0

with R0
��G0 = ��Mi. One defines

filj(��Mi) = inverse image of Rj
��Ωj

P=T 
Ωi�2j
T

via R0
��G0 ! Rj

��Gj.

This proves (4.9.2).
In order to understand the map grj(��M

i) ! grj(��M
i+1), we construct a

commutative diagram

Ω2
P=T 
 �

�Ωi�4
T

�
1
,,,! Ω1

P=T 
 �
�Ωi�2

T

�
1
,,,! �

�Ωi
T

�
1
,,,! Mi

?
?
yr�

?
?
yr�

?
?
yr�

Ω2
P=T 
 �

�Ωi�3
T

�
1
,,,! Ω1

P=T 
 �
�Ωi�1

T

�
1
,,,! �

�Ωi+1
T

�
1
,,,! Mi+1

(4.9.3)

mapping the resolution of Mi to the resolution of Mi+1 given by (4.8.1). To this
aim recall that one has an exact sequence of complexes

0 ! K� ! Ω�P ! M� ! 0(4.9.4)

with

Ki = Ωi
P=T �Ωi�1

P=T 
 �
�Ω1

T � � � �Ω1
P=T 
 �

�Ωi�1
T(4.9.5)

� �(Ω1
P=T) ^ ��Ωi�2

T .

Note that the differential Ki�j�1 ! Ki�j acts as follows

Ωj
P=T 
 �

�Ωi�1�2j
T ! Ωj+1

P=T 
 �
�Ωi�1�2j

T �Ωj
P=T(4.9.6)


 �
�Ωi�2j

T �Ωj�1
P=T 
 �

�Ωi�2j+1
T .

To see this, write

Ωj
P=T 
 �

�Ωi�1�2j
T = Ωj

P=T 
OT �
�1Ωi�1�2j

T(4.9.7)
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and apply the Leibniz rule with

dΩ1
P=T � Ω2

P=T �Ω1
P=T 
 ��Ω1

T � �(Ω1
P=T).(4.9.8)

The corresponding map Ω1
P=T ! �(Ω1

P=T) is of course �. We denote by r� the

corresponding map Ω1
P=T ! Ω1

P=T 
 ��Ω1
T and also by r� the induced map

Ωj
P=T 
 ��Ωi�1�2j

T ! Ωj
P=T 
 ��Ωi�2j

T . For  2 Ωj
P=T 
 ��Ωi�1�2j

T , write d =

j+1+r� ()+(�
1)() with j+1 2 Ωj+1
P=T
�

�Ωi�1�2j
T . The integrability condition

d2() = 0 in Ω�
P says that (�
 1)r� () = r� (�
 1)() 2 Ωj�1

P=T 
 ��Ωi�j+2
T , up

to sign.
Thus grj��M

i ! grj��M
i+1 is the map

Rj��r� : Rj��Ωj
P=T 
Ωi�2j

T ! Rj��Ωj
P=T 
Ωi�2j+1

T .

Now, r� = d jK�, where d is the differential of Ω�
P. Let `i be the rank one subquo-

tients of ��E , with local algebraic transition functions f i
�,� . Then Rj��Ωj

P=T
Ωi�2j
T

is generated over OT by elements ' = F ^ !, with

F = d log f i1
�0,�1

^ � � � ^ d log f
ij
�j�1,�j

and ! 2 Ωi�2j
T . Thus d' = (,1)jF^d!. This finishs the proof of the proposition.

5. Chern-Simons classes and the Griffiths group.

5.1. Our objective in this section is to investigate the vanishing of the
class wn(E,r) for a flat bundle E on a smooth, projective variety X over C . We
will show that wn = 0 if and only if the nth Chern class cn(E) vanishes in a
“generalized Griffiths group” Griffn (X).

Let X be a smooth, quasi-projective variety over C . For Z � X a closed
subvariety and A an abelian group, we write H�

Z(X, A) for the singular cohomology
with supports in Z and values in A. We write

H�
Zn(X, A) = lim

,!
Z�X cod. n

H�
Z(X, A).

Purity implies that for Z irreducible of codimension n,

Hp
Z(X, A) =

(
0 p < 2n
A(, n) p = 2n.
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Here Z(n) = (2�i)n
Z and A(n) := A
 Z(n). As a consequence

Hp
Zn(X,Z(n)) =

(
0 p < 2n
Zn(X) p = 2n

where Zn(X) is the group of codimension n algebraic cycles on X.
For m < n, define the Chow group of codimension n algebraic cycles modulo

codimension m equivalence by

CHn
m(X) := Image

�
Z

n(X) = H2n
Zn(X,Z(n)) ! H2n

Zm(X,Z(n)
�

.(5.1.1)

Of course, CH�0 (X) is the group of cycles modulo homological equivalence. It
follows from [2] (7.3) that CHn

n�1(X) is the group of codimension n algebraic
cycles modulo algebraic equivalence.

Definition 5.1.1. The generalized Griffiths group Griff n (X) is defined to be the
kernel of the map CHn

1(X) ! CHn
0(X). In other words, the generalized Griffiths

group consists of cycles homologous to 0 on X modulo those homologous to 0
on some divisor in X.

Example 5.1.2. Griff 2 (X) is the usual Griffiths group of codimension 2 cycles
homologous to zero modulo algebraic equivalence.

5.2. With notation as above, let Hp(A) denote the Zariski sheaf on X asso-
ciated to the presheaf U 7! Hp(Uan, A), cohomology for the classical (analytic)
topology with coefficients in A. The principal object of study in [2] was a spectral
sequence

Ep,q
2 (A) = Hp(XZar,H

q(A))) Hp+q(Xan, A).(5.2.1)

associated to the “continuous” map Xan ! XZar. This spectral sequence was
shown to coincide from E2 onward with the “coniveau” spectral sequence

Ep,q
1 (A) =

M
x2Zp�Zp+1

Hq�p(x, A) ) Hp+q(Xan, A).(5.2.2)

As a consequence of a Gersten resolution for the sheaves Hp(A), one had

Hp(XZar,Hq(A)) = (0) for p > q(5.2.3)

Hn(XZar,Hn(Z(n))) �= CHn
n�1(X).

The E1-filtration N�H�(Xan, A) is the filtration by codimension,

NpH�(Xan, A) = Image (H�Zp(Xan, A) ! H�(Xan, A)).
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PROPOSITION 5.3.1. With notation as above, there is an exact sequence

0 ! H2n�1(Xan,Z(n))=N1 ! E0,2n�1
n

dn
,,,! Griffn(X) ! 0.(5.3.1)

Proof. It follows from (3) that we have

H2n�1(Xan,Z(n)) � E0,2n�1
1 = E0,2n�1

n+1 � E0,2n�1
n � � � � � E0,2n�1

2(5.3.2)

= Γ(X,H2n�1(Z(n)))

and

CHn
n�1(X) = En,n

2 � En,n
3 � � � �� En,n

n+1(5.3.3)

= En,n
1 � H2n(Xan,Z(n)).

In fact, En,n
r
�= CHn

n+1�r(X). In particular, En,n
n
�= CHn

1(X). To see this, one can,
for example, use the theory of exact couples ([13] pp. 232 ff). One gets an exact
triangle

Dr
ir

,,,! Dr

kr- . jr
Er

where in the appropriate degree

Dr = Image (H2n
Zn(X,Z(n)) ! H2n

Zn�r+1(X,Z(n))) �= CHn
n�r+1(X),

ir = 0 and jr is an isomorphism.
The spectral sequence (1) now yields a diagram with exact rows, proving the

proposition.

0 ,,,! H2n�1(X,Z(n))=N1 ,,,! E0,2n�1
n

dn
,,,! Griffn(X) ,,,! 0

?
?
y=

?
?
y=

?
?
y\

0 ,,,! H2n�1(X,Z(n))=N1 ,,,! E0,2n�1
n

dn
,,,! En,n

n ,,,! H2n(X,Z(n))
(5.3.4)

PROPOSITION 5.4.1. Let X be smooth and quasi-projective over C . Let (E,r)
be a vector bundle with an integrable connection on X. Let n � 2 be given, and let
dn be as in (5.3.4). Let cn(E) be the nth Chern class in Griff n (X)
 Q . Then

(i) wn(E,r) 2 E0,2n�1
n (C ) � Γ(X,H2n�1(C )).

(ii) dn(wn) = cn(E).
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Proof. The spectral sequence (5.2.1) in the case A = C coincides with the
“second spectral sequence” of hypercohomology for

H�(Xan, C ) �= H
�(XZar, Ω�

X=C ).

This is convenient for calculating the differentials in (5.2.1). Namely, we consider
the complexes for m � n

�n,nΩ� := Hn(C )[ , n](5.4.1)

�m,nΩ� :=
�

Ωm
X=dΩm�1

X ! � � � ! Ωn�1
X ! Ωn

closed

�
[, m]; m < n.

We have maps

�0,nΩ� ! �1,nΩ� ! � � � ! �n,nΩ� ! �n,n+1Ω� ! � � � ! �n,1Ω�,

and

E0,2n�1
r = Image (H2n�1(X, �2n�r+1,2n�1Ω�)(5.4.2)

! H2n�1(X, �2n�1,2n�1Ω�)
= Γ(X,H2n�1)).

There is a diagram of complexes

h
Km

n ! Ωn ! � � � ! Ω2n�2 ! Ω2n�1
closed

i a
,,,! Ω1Km

n

b

??y c
??y

�n+1,2n�1Ω�[n, 1]
e

,,,! �2n�1,1Ω�[n, 1],

(5.4.3)

where Ω1Km
n is the complex Km

n ! Ωn ! Ωn+1 ! � � �. We have

cn(E,r) 2 H
n(X, Ω1Km

n )(5.4.4)

c(cn(E,r)) = wn(E,r) 2 H
2n�1(X, �2n�1,1Ω�)

�= H0(X,H2n�1).

The map a is the inclusion of a subcomplex, and the quotient has no cohomology
sheaves in degrees < n + 1, so a is an isomorphism on hypercohomology in
degree n. It follows that wn(E,r) lies in the image of the map e in (5.4.3). By
(5.4.2), this image is E0,2n�1

n .
To verify dn(wn) = cn(E), write Ω̄1Km

n for the complex

Km
n ! Ωn=dΩn�1 ! Ωn+1 ! � � � ,



940 SPENCER BLOCH AND HÉLÈNE ESNAULT

and let c̄n(E,r) 2 H
n(X, Ω̄1Km

n ) be the image of cn(E,r). Consider the distin-
guished triangle of complexes

�n,2n�2Ω�[n, 1] ! Ω̄1Km
n

�

! K
m
n � �2n�1,1Ω�[n, 1].(5.4.5)

We have by definition �(c̄n(E,r)) = (cn(E), wn(E)), so, writing @ for the boundary
map,

@(cn(E)) = ,@(wn(E,r)) 2 H
2n(X, �n,2n�2Ω�).(5.4.6)

Note that the boundary map on Km
n factors through the dlog map Km

n ! Hn.
Thus @cn(E) is the image of the Chern class. On the other hand, by (5.2.3) we
have

H
2n(X, Ω�)� H

2n(X, �n,1Ω�),

from which it follows by standard spectral sequence theory that the image of the
map

H2n(X, �n,nΩ�) ! H
2n(X, �n,2n�2Ω�)

coincides with En,n
n , and that the boundary map

�: Γ(X,H2n�1) �= H
2n�1(X, �2n�1,1Ω�) ! H

2n(X, �n,2n�2Ω�)

coincides with dn from the statement of the proposition on ��1(En,n
n ) = E0,2n�1

n .
This completes the proof of the proposition.

Our next objective is to realize the sequence (5.3.1) as an exact sequence of
mixed Hodge structures. To avoid complications, we replace Z with Q throughout.
More precisely, we work with filtering direct limits of finite dimensional Q -mixed
Hodge structures, where the transition maps are maps of mixed Hodge structures.

LEMMA 5.4.2. The spectral sequence (5.2.1) with A = Q (n) can be interpreted
as a spectral sequence in the category of mixed Hodge structures.

Proof. The spectral sequence (5.2.2) can be deduced from an exact couple
([2], p. 188)

� � � ! Hp+q
Zp (X, Q (n)) ! Hp+q

Zp�1 (X, Q (n)) ! Hp+q
Zp�1=Zp(X, Q (n)) ! � � � .

These groups clearly have infinite dimensional mixed Hodge structures and the
maps are morphisms of mixed Hodge structures. The lemma follows easily, since
(5.2.1) coincides with the above from E2 onward.
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Remark 5.4.3. The groups En,n
r are all quotients of

H2n
Zn=Zn+1(X, Q (n)) �=

M

z2Xn

Q

so these groups all have trivial Hodge structures.

PROPOSITION 5.5.1. The Chern-Simons class wn(E,r) 2 E0,2n�1
n (C ) lies in

F0 (zeroeth piece of the Hodge filtration) for the Hodge structure defined by
E0,2n�1

n (Q (n)).

Proof. We have E0,2n�1
n � E0,2n�1

2 � H2n�1(C (X), C ), where the group on
the right is defined as the limit over Zariski open sets. Thus, it suffices to work
“at the generic point.” Let S denote the category of triples (U, Y ,�) with Y
smooth and projective, �: Y ! X a birational morphism of schemes, and U � Y
Zariski open such that YU is a divisor with normal crossings and U ! �(U) is
an isomorphism. Using resolution of singularities, one easily sees that

Hn( Spec (C (X)), C ) �= lim
,!
S

H n(Y , Ω�
Y( log (Y , U))).

The Hodge filtration on the left is induced in the usual way from the first spectral
sequence of hypercohomology on the right.

LEMMA 5.5.2. For � 2 S let j�: U� ,! Y� be the inclusion. Then

lim
,!
S

Hn(Y�, j��K
m
n,U�) = (0), n � 1.

Proof of lemma. Given j: U ,! Y in S and z 2 Hn(Y , j�Km
n,U), let

k: Spec (C (X)) ! Y be the generic point. We have Hn(Y , k�Km
n,C (X) ) = (0) since

the sheaf is constant, so there exists V � U open of finite type such that writing
`: V ! Y , z dies in Hn(Y , `�Km

n,V ). Let m: V ! Z represent an object of S with
Z dominating Y . We have a triangle

Hn(Y , j�Km
n,U) ! Hn(Z, m�K

m
n,V )

& %

Hn(Y , `�Km
n,V )

(5.5.1)

from which it follows that z 7! 0 in lim
,!S

Hn(Y�, j�,�K
m
n,U�

).
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Returning to the proof of Proposition 5.5.1, write D� = Y� , U� for � 2 S .
We see from the lemma that the map labeled a below is surjective:

cn(E,r) 2 H
n(X, Ω1Km

n )
#

lim
,!S

H
n(Y�, j�,�K

m
n,U� ! Ωn( log (D�)) ! � � �)

%a #

lim
,!S

H
n�1(Y�, Ωn( log (D�)) ! � � �) b

! H2n�1( Spec (C (X)), C ).

(5.5.2)

Since the image of b is F0 for the Hodge filtration on

H2n�1( Spec (C (X)), C ),

and since the composition of vertical arrows maps cn(E,r) to the restriction of
wn(E,r) at the generic point, the proposition is proved.

PROPOSITION 5.6.1. The Chern-Simons class wn(E,r) 2 E0,2n�1
n (Q (n)).

Proof. The following diagram is commutative

H n(X, Ω1Km
n ) ! H0(X,H2n�1(C )) ! H2n�1( Spec (C (X)), C )

# '(3.9.1(3)) #

H2n�1(Xan, C =Z(n)) ,,,,,,,,,,,,,! H2n�1( Spec (C (X)), C =Z(n)).
(5.6.1)

We know from [7] and Proposition 3.10.1 above that

'(cn(E,r)) = can
n (E,r),

and, using the deep theorem of Reznikov ([18]), that this class is torsion. In partic-
ular, the image of cn(E,r) on the upper right lies in H2n�1( Spec (C (X)), Q (n)). As
a matter of fact, in Theorem 5.6.2, we will only use that wn(E,r) 2 E0,2n�1

n (R (n)).
For this we don’t need the full strength of [18], but only that can

n (E,r) = 0 2
H2n�1(Xan, C =R (n)), which is a consequence of Simpson’s theorem ([19]) assert-
ing that (E,r) deforms to a C variation of Hodge structure.

THEOREM 5.6.2. Let X be a smooth, projective variety over C . Let E be a
vector bundle on X, and let r be an integrable connection on E. Then wn(E,r) 2
H0(X,H2n�1(C )) vanishes if and only if the cycle class cn(E) is trivial in Griffn (X)

Q .

Proof. Consider the exact sequence of mixed Hodge structures

0 ! H2n�1(Xan, Q (n))=N1 ! E0,2n�1
n (Q (n))(5.6.2)

! Griffn (X)
 Q ! 0.
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Write H for the group on the left. It is pure of weight ,1, so
H(Q ) \ F0H(C ) = (0). It follows that wn(E,r) = 0 if and only if its image
cn(E) in Griffn (X)
 Q vanishes.

The following corollary is a simple application of the theorem to the example
(0.2) discussed in the introduction.

COROLLARY 5.6.3. Let E, X, r be as above. Assume E has rank 2, and that
the determinant bundle is trivial, with the trivial connection. Let U � X be affine

open such that E j U is trivial, and let

 
� �

 ,�

!
be the connection matrix.

Then c2(E) 
 Q is algebraically equivalent to 0 on X if and only if there exists a
meromorphic 2-form � on X satisfying d� = � ^ d� = � ^ � ^ .

6. Logarithmic poles. In this section we consider a normal crossing divisor
D � X on a smooth variety X, the inclusion j: X , D ! X, and a bundle E,
together with a flat connection r: E ! Ω1

X( log D) 
 E with logarithmic poles
along D. The characteristic of the ground field k is still 0. Finally recall from [2]
that one has an exact sequence

0 ! H0(X,Hj) ! H0(X , D,Hj) ! �ires H0(k(Di),H
j�1).(6.0.3)

THEOREM 6.1.1. Let (E,r, D) be a flat connection with logarithmic poles. Then

wn(E,r) 2 H0(X,H2n�1) � H0(X , D,H2n�1)(6.1.1)

= H0(X, j�H
2n�1).

Proof. By (6.0.3), one just has to compute the residues of wn(E,r) along
generic points of D. So one may assume that the local equation of r is A =
B dx

x + C, where B is a matrix of regular functions, x is the local equation of a
smooth component of D, and C is a matrix of regular one forms. Furthermore,
as dA = A2 = 1

2[A, A], the formulae of Theorem 2.2.1 say that the local shape of
wn(E,r) is Tr�A(dA)n�1 = �Tr (B dx

x + C)(dB dx
x + dC)n�1 for some � 2 Q . So up

to coefficient one has to compute

Tr Res
�

B
dx
x

+ C
�0@(dC)n�1 +

X
a+b=n�2

(dC)adB
dx
x

(dC)b

1
A(6.1.2)

= Tr Res

2
4C

X
a+b=n�2

(dC)adB(dC)b + B(dC)n�1

3
5 dx

x
.
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On the other hand, the integrability condition reads

(dB, (CB, BC))
dx
x

+ dC , C2 = 0,

from which one deduces

dC
dx
x

= C2 dx
x

(6.1.3)

Res(dB, (CB, BC))
dx
x

= 0.(6.1.4)

Applying (6.1.3) to (6.1.2), we reduce to calculating

Tr Res

2
4 X

a+b=n�2

(dC)aCdB(dC)b + B(dC)n�1

3
5 dx

x
.(6.1.5)

Since we are only interested in calculating (6.1.5) modulo exact forms, we can
use d(CB) = dCB,CdB and move copies of dC to the right in (6.1.5) under the
trace. The problem becomes to show

Tr ResB(dC)n�1 dx
x

(6.1.6)

is exact. It follows from (6.1.4) that

Tr ResC2n�3dB
dx
x

= Tr Res[C2n�2B, C2n�3BC]
dx
x

.(6.1.7)

Bringing the C to the left in the last term changes the sign, so we get by (6.1.3)

Tr Res(dC)n�2CdB
dx
x

= Tr ResC2n�3dB
dx
x

(6.1.8)

= Tr Res2(dC)n�1B
dx
x

.

Thus

Tr Res(dC)n�1B
dx
x

= Tr Res(dC)n�2(CdB, dCB)
dx
x

(6.1.9)

= ,Tr Res d
�
C(dC)n�3d(CB)

dx
x

�
.

This form is exact, so we are done.
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6.2. We now want to understand the image of wn(E,r) under the map dn

defined in Proposition 5.3.1. Of course Proposition 5.4.1 says that

dn(wn((E,r) j (X , D))) = cn(E).

Definition 6.2.1. (See [10], Appendix B.) Let (E,r) be a flat connection with
logarithmic poles along D, with residue

Γ = �Γs 2 �sH
0(Ds, End EjDs).

One defines

NCH
i (Γ) = (, 1)i

X

�1+���+�s=i

 
i
�

!
Tr (Γ�1

1 � � � � � � �Γ�s
s )(6.2.1)

�[D1]�1 � � � [Ds]
�s 2 CHi(X)
 C .

One defines as usual the corresponding symmetric functions cCH
i (Γ) 2 CHi(X)
C

as a polynomial with Q coefficients in the Newton functions NCH
i (Γ). For example

cCH
2 (Γ) =

1
2

2
4
 X

s

Tr (Γs) � Ds

!2

(6.2.2)

, 2

 X
s

Tr (Γs � Γs) � D2
s + 2

X
s<t

Tr (Γs � Γt)Ds � Dt

!#

2 CH2(X)
 C .

We denote by c2(Γ) its image in H2(X, Ω2
X,cl) and also by c2(Γ) its image in

H2(X,H2
DR).

Note that these invariants vanish when the connection has nilpotent residues
Γs. (This condition forces the local monodromies around the components of D to
be unipotent (see [5]).)

THEOREM 6.2.2. Assume k has characteristic zero and X is proper. Then

c2(E), c2(Γ) = d2(w2(E,r)) 2 H2(X,H2).(6.2.3)

Proof. In order to simplify the notations, we denote by c2(Γ) the same ex-
pression in CH2(X)
 C , �sCH1(Ds) 
 C , �sF1H2

DR(Ds) etc., where we always
distribute 2Ds � Dt for s < t as one Ds � Dt on Ds and one on Dt.

We denote by �: Q ! X the flag bundle of E. As �� induces an isomorphism

H2(X, dΩ1
X)

H1(X,H2)
=

H3(X,OX ! Ω1
X)

N1H3(X)
�

,!
H3(Q,OQ ! Ω1

Q)

N1H3(Q)
(6.2.4)
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and an injection H2(X,H2) ! H2(Q,H2), it is enough to prove the compatibility
on Q via the exact sequence ([2])

0 !
H3(X,OX ! Ω1

X)
N1H3(X)

! H2(X, Ω2
X,clsd) ! H2(X,H2).(6.2.5)

Write D0

s = �
�Ds, and consider (O(D0

s),rs) 2 H
1(Q,K1 ! Ω1

Q( log D0

s)clsd),
where rs is the canonical connection with residue ,1 along D0

s.
We define a product

(Km
i ! (��Ωi

X( log D))�d)� (Km
j ! (��Ωj

X( log D))�d)
�

,! (Km
i+j ! (��Ωi+j

X (logD))�d)

by

x � x0 =

8><
>:

x [ x0 if deg x0 = 0
�d log x ^ x0 if deg x = 0 and deg x0 = 1
0 otherwise

.(6.2.6)

(Here �d: �
�Ωi

X( log D) ! �
�Ωi+1

X ( log D) comes from the splitting
� : Ω1

Q( log D0) ! �
�Ω1

X( log D). See Proposition 4.4.1 as well as [7] and [8].)
One verifies that

d(x � x0) = dx � x0 + (, 1)degxx � dx0,(6.2.7)

the only nontrivial contribution left and right being for degx = degx0 = 0.
This product defines elements (W1 is the weight filtration)

�st = (O(D0

s),rs) � (O(D0

t),rt)(6.2.8)

2 H
2(Q,K2 ! W1Ω2

Q( log (D0

s + D0

t))cl)

which map to D0

s �D
0

t in CH2(Q). Moreover Res �st is the class of D0

s �D
0

t sitting
diagonally in

F1H2
DR(D0

s)� F1H2
DR(D0

t)

if s 6= t; or in F1H2
DR(D0

s) if s = t.
Next we want to define a cocycle N2(��(E,r)).
Let hij( = h) be the upper triangular transition functions of EjQ adapted to the

tautological flag Ei, and write Bi for the local connection matrix in Ω1
Q( log D0),

D0 = �
�1D. Then �Bi is upper triangular, and �dBi = d�Bi has zero’s on the

diagonal ([7], (0.7), (2.7)). Let

wi = Tr (BidBi).



ALGEBRAIC CHERN-SIMONS THEORY 947

Using Tr (dhh�1)3 = 0, one computes that wi , wj = ,3Tr d(h�1dhBj). But

Tr h�1dhBj = Tr h�1BihBj(6.2.9)

Tr h�1
ik dhijdhjk = Tr h�1

ik (Bihij , hijBj)(Bjhjk , hjkBj)

= �Tr (BihBjh
�1).

Here � is the Cech coboundary. Writing Ci for Cech i-cochains, we may define

3N2(��(E,r)) =

 
3

rX
a=0

�a
ij [ �a

jk,,3Tr (h�1dhBj), wi

!
(6.2.10)

2 (C2(Q,K2)� C1(Q, Ω2
Q( log D0))

�C
0(Q, Ω3

Q( log D0)))d+�

where (�1
ij, : : : , �r

ij) is the diagonal part of hij. This defines 3N2(��(E,r)) as a
class in H

2(Q,K2 ! Ω2
Q(logD0) ! � � �) which maps to

3�N2(��(E,r)) =

 
3

rX
a=1

�a
ij [ �a

jk, 3
rX

a=1

!a
i ^ (�!a)ij, 0

!
(6.2.11)

2 H
2(Q,K2 ! ��Ω2

X( log D0)�d)

where (!1
i , : : : ,!r

i ) is the diagonal part of �Bi.
As the image of �N2(��(E,r)) in H2(Q,K2) is just the second Newton class

of E, the argument of [8], (1.7) shows that

N2(E,r) := �N2(��(E,r))(6.2.12)

2 H
2(X,K2 ! Ω2

X( log D) ! � � �)

� H
2(Q,K2 ! ��Ω2

X( log D) ! � � �).

We observe that w(B) = Tr BdB 2 W2Ω3
Q( log D0) (weight filtration) so the

cocycle

2x = ,N2(��(E,r)) + c1(��(E,r))2(6.2.13)

=
�
, Tr (h�1dh)2 + Tr h�1dh � Tr h�1dh,

Tr (h�1dhB), Tr h�1dh � Tr B,,
w(B)

3

�

defines a class in

H
2(Q, Ω2

cl ! W1Ω2
Q( log D0) ! W2Ω3

Q( log D0)cl).
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One has an exact sequence

0 ! H
2(Q, Ω2

cl ! W1Ω2
Q(logD0) ! W1Ω3

Q( log D0)cl)(6.2.14)

! H
2(Q, Ω2

cl ! W1Ω2
Q( log D0) ! W2Ω3

Q( log D0)cl)
residue
,,,! �s<tH

0(D0
st, Ω1

D0

st,cl
).

As D0
st is proper smooth, one has

H0(D0
st, Ω1

D0

st,cl
) � H0(D0

st,H
1) = H1(D0

st).

The residue of 2x along D0
st is just the residue of , 1

3 w(B) along D0
st via

H0(Q,H3( log D0)) = H0(Q, D0,H3)(6.2.15)

! �sH
0(D0

s , [t 6=sD
0
t,H

2)

! �s<tH
0(D0

st,H
1),

which vanishes. Therefore

2x 2 H
2(Q, Ω2

cl ! W1Ω2
Q(logD0) ! W1Ω3

Q( log D0)cl).(6.2.16)

Its residue in �sH1(D0
s, Ω1

D0

s
) is (Tr (h�1dh � Γ) , Tr h�1dh � Tr Γ). By [10],

Appendix B, one has ,h�1dh = �(D0) � Γ in H1(Q, Ω1
Q
EndE) where �(D0) is

the extension

0 ! Ω1
Q ! Ω1

Q( log D0) ! �sOD0

s
! 0.

One has

(1) ,D0
s � D0

s is the push down extension of �(D0
s) by Ω1

Q ! Ω1
D0

s
in

H1(Q, Ω1
D0

s
)

(2) ,D0
s � D0

t is the extension

0 ! Ω1
D0

t
! Ω1

D0

t
( log (D0

s \ D0
t)) ! OD0

s\D0

t
! 0

in H1(Q, Ω1
D0

t
).

It follows that residue x = c2(Γ) in �sH1(D0
s, Ω1

D0

s
).

For appropriate �st 2 k (the coefficients of c2(Γ)), c2(Γ) = residue
P

�st�st

in �sH1(D0
s, Ω1

D0

s
). So one has

residue
�

x,
X

�st�st

�
2 �sF

2H2(D0
s).(6.2.17)
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Again, since residue (x ,
P

�st�st) = residue x = 0 in �sH0(D0

s,H
2) �

�sH2(k(D0

s)), one has that in �sF1H2(D0

s)

residue
�

x,
X

�st�st

�
2 �sF

2H2(D0

s) \ H1(D0

s,H
1) = 0.(6.2.18)

This shows that residue (x,
P

�st�st) = 0 in �sF1H2(D0

s), that is

w2(E,r) =
�

x,
X

�st�st

�
(6.2.19)

2
H

2(Q, Ω2
cl ! Ω2 ! Ω3

cl) = H0(Q,H3)
Im�s H1(D0

s)

and maps to

c2(E), c2(Γ) in H2(Q,H2).(6.2.20)

Question 6.3. We know (see [10], Appendix B) that on X proper, the image
of cn(Γ) in the de Rham cohomology H2n

DR(X) is the Chern class cDR
n (E). This

inclines us to ask whether

cn(E), cn(Γ) = dn(wn(E,r)) 2 Griffn(X).

6.4.

THEOREM 6.4.1. Let (E,r) be a flat connection with logarithmic poles along
a normal crossing divisor D on a smooth proper variety X over C . When (E,r) j
(X , D) is a complex variation of Hodge structure, then w2(E,r) = 0 if and only
if c2(E), c2(Γ) = 0 2 H2(X,H2). When furthermore (E,r) j (X , D) is a Gauss-
Manin system, then w2(E,r) 2 H0(X,H3(Q (2))), and if it has nilpotent residues
along the components of D, then w2(E,r) = 0 if and only if c2(E) = 0 2 H2(X,H2).

Proof. As in Proposition 5.5.1, one has wn(E,r) 2 F0. In fact, the proof does
not use that r is everywhere regular, but only that wn(E,r) comes from a class
in H n(Y ,Km

n ! Ωn
Y( log (Y,U) ! � � �) on some (U, Y ,�) 2 S . Further, if (E,r) j

(X,D) is a C variation of Hodge structure, then wn(E,r) 2 H0(X,H2n�1(R (n))
as

wn(E,r) j (X , D) 2 H0(X , D,H2n�1(R (n)))

(see proof of Proposition 5.6.1). When (E,r) j (X,D) is a Gauss-Manin system,
then again one argues exactly as in the proof of Proposition 5.6.1 using [4] to
show w2(E,r) 2 H0(X,H3(Q (2))). Finally c2(Γ) = 0 when the residues of the
connection are nilpotent.
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7. Examples.

7.1. Let X be a good compactification of the moduli space of curves of
genus g with some level, such that a universal family ': C ! X exists. Let (E,r)
be the Gauss-Manin system R1

'�Ω�
C=X(log1). Then Mumford ([16], (5.3)) shows

that cCH
i (E)
 Q = 0 in CHi(X)
 Q for i � 1, so a fortiori ci(E)
 Q = 0 in the

Griffiths group. As r has nilpotent residues (the local monodromies at infinity
of the Gauss-Manin system are unipotent and (E,r) is Deligne’s extension [5]),
one applies Theorem 6.4.1.

In particular, for any semi-stable family of curves ': Y ! X over a field k
of characteristic 0,

wn(R1
'�Ω�

Y=X( log1)) = 0,

for n = 2 and for n � 2 if ' is smooth (or if Question 6.3 has a positive response).

7.2. Let X be a level cover of the moduli space of abelian varieties such that
a universal family ': A ! X exists. The Riemann-Roch-Grothendieck theorem
applied to a principal polarization L on A together with Mumford’s theorem that

'�Ln = M 
 trivial

for some rank 1 bundle M, implies that cCH
i (E)
 Q = 0 for E = R1

'�Ω�
A=X j X0,

where X0 is the smooth locus of '. This result was communicated to us by G.
van der Geer ([12]). In particular, for any smooth family ': Y ! X of abelian
varieties with X smooth proper over a field of characteristic 0, wn(R1

'�Ω�
Y=X) = 0

for all n � 2.

7.3. Let ': Y ! X be a smooth proper family of surfaces over X smooth.
The Riemann-Roch-Grothendieck theorem, as applied by Mumford in [16], im-
plies that the Chern character verifies

ch

 
i=4X
i=0

(, 1)iRi
'�Ω�

Y=X

!
2 CH0(X)
 Q � CH�(X)
 Q .

As R1
'�Ω�

Y=X is dual to R3
'�Ω�

Y=X, the two previous examples show that

ci(R2
'�Ω�

Y=X) = 0 in CHi(X) 
 Q for i � 1. This implies wn(R2
'�Ω�

Y=X) = 0
for all n � 2 when X is proper.

7.4. As shown in [9], wn(E,r) = 0 in characteristic zero when (E,r)
trivializes on a finite (not necessarily smooth) covering of X.
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[8] H. Esnault, Characteristic classes of flat bundles, II, K-Theory 6 (1992), 45–56.
[9] , Coniveau of classes of flat bundles trivialized on a finite smooth covering of a complex

manifold, K-Theory 8 (1994), 483–497.
[10] H. Esnault and E. Viehweg, Logarithmic De Rham complexes and vanishing theorems, Invent. Math. 86

(1986), 161–194.
[11] A. Grothendieck, EGA IV, Publ. Math. Inst. Hautes Études Sci. 20 (1964).
[12] G. van der Geer, private communication.
[13] S. Hu, Homotopy Theory, Academic Press, New York, 1959.
[14] J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-théorie algébrique, Algebraic K-theory I, Lecture
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