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Introduction

In [1] Beilinson and Ginzburg announce a canonical description of the sheaf of
differential operators on the moduli scheme (or moduli stack) M of principal G-
bundles £ on a smooth complex projective curve X of genus g =2, where G is a
connected complex semisimple Lie group.

To be a little bit more precise, let D}, be the sheaf of regular differential
operators on the (smooth) moduli space M of order smaller than or equal to n. The
sheaf Oy is a subsheaf of D},. Then, starting from the bundle &, corresponding to

the point p € M, Beilinson and Ginzburg consider a X, equivariant blowing up X
of the n-fold product X x ... x X and they propose the definition of a Z,-sheaf G,
such that one has a canonical isomorphism

bn : (Dy/On); — H'X",Go) >

where ( ), denotes the geometric fibre and ( )~ the subspace of anti invariants,
i.e. of elements s with t(s) = sign(t)-s for © € Z,. One has an exact sequence

0 — D! /Oy — Diy/Ou — §"(Tu) = 0

where Ty is the tangent sheaf. Therefore one should have a natural exact sequence
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0 S"HX,G) — H'X", G5 — H° R, Gp1) 21 = 0
and a commutative diagram

STHOX,Gy) — HOR", G5 — HOR" ™ Gpy)
S"(¢1) | on | bno1 L
STy, — (DY/Ow), — (D '/On);

where ¢, : H'(X,G)) — Ty » is the dual of the Kodaira-Spencer map.

This compatibility, also announced in [1], allows to consider ¢, as the dual of
a lifting of the Kodaira-Spencer map to higher differential operators. In fact, if S
is a non-singular variety, if F is a family of principal G-bundles on X x §, and
@ :S — M is the map to the moduli space induced by S, then for s € ¢~ '(p) one
has a map

@n : (DE/Os)s — (D /Om)p — HOR", G5 .

In this paper we want to present a different construction of ¢, for G = Si(r, C),
which works as well for other deformation or moduli problems in any dimension.

(It will turn out that in the announcement [1] one has to replace H(X " Gy~ by

a subspace H'(X",G,)~Zm=n-1>--~%2_ whose definition should be dual to the one
used in (6.1)).

Let f : X — S be a projective flat family of smooth varieties defined over an
algebraically closed field & of characteristic zero or a compact flat family of complex
smooth analytic varieties (in which case we still write k = €). We will consider a
f~'Os Lie Algebra A on X with the following two properties:

a) There is an extension
0—>A——>./~l—+f_lTs—>0.
The induced edge morphism
os:Ts > R'fL A

will be called the Kodaira-Spencer map.
b) The f~'Os linear Lie bracket

A ®f—los A—- A
is induced by a k linear Lie bracket A ®; A — A which lifts to
A A— A.

The easiest example of such a Lie algebra A is the relative tangent sheaf. One
has the exact sequences

0 — Tx/s i— TX — f*Ts — 0

T T T

0 — TX/S — T — f_lTs — 0

where Ty,Ts and Ty;s are the tangent sheaves and where the second sequence is
induced by the first one. The usual Kodaira-Spencer map is the edge morphism
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os : Ts — R Tys

of the first, or equivalently of the second exact sequence. The latter has been con-
sidered by Beilinson and Schechtman in [2], and they used already that 7" allows a
lifting of the Lie algebra structure on Tyjs. In fact, the 'Oy linear Lie bracket

Txis ®p-104 Txjs L s
is defined by
[x,71(4) = x(»(4)) — y(x(2)) ,
for x,y € Tyjs and A € Ox. The k linear Lie bracket on Ty

Ty 4 Tx -[’—}*TX

restricts to .
Tys Qi T — Txs -
In general, starting with any f —1(s Lie algebra satisfying a) and b) we construct

in the first two sections of this paper a complex of sheaves A®(n) on the n-fold
product

Xxs... XxsX 158,

Choosing one diagonal embedding

X Xs... x5 X((n — 1) — times) = X X5 ... x5 X(n — times)
we construct a map
R, A%(n — 1) = R A%(n) .

The symmetric group X, will act on A®(n). Let us write again ( )=G for the
anti invariants under a subgroup G C Z". Since the fixgroup of 4 is a subgroup of
X, isomorphic to X,_,, 4 induces a map

R™Y A (n = 1) 52 — (R A (n) 72

whose cokernel will turn out to lie in (R"f,.A%(n))~%". We will define in Sect. 6 a
quotient complex

of (R"f,, A*(n))~*" inductively by push forward in the diagram

(Rn_lf:..A.(n _ 1))—2,,_1,...,—22 —_ (Rnf*Ao(n))-Z,.,.‘.,—Zz —_— (R"f,Ao(n))"X"
surj. T sulj.T =T
R A (n — 1)) 22 — R A () — RfLAYm) 2"

On the left hand side of the diagram we regard (R*~'f. A*(n —1))7%-1 as a
quotient of (R"~'f,.A*(n — 1))~%»—2 by means of the trace map (see Sect. 6).
Using this notation the main result of this paper says:

Assume that the f~'Os Lie algebra A satisfies a) and b) and either one of
the following two assumptions:
c.l) RRF,A=0 for p > 1.
c2) L, A=0.
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Then (R"f, A°(n))~%" = S"(R'f..A) and there exists a natural morphism of left
Og-modules
¢ns : D§/Os — (R"f*A'(n))_E"w’Ez

such that the following diagram commutes

0
T
sirs) L SR A)
f |
Dyjos 5 (R A (n))~2r— 52
f 1
Dy N RYAN = 1) B
)
0.

In particular, if s : Ts — R'fi A is surjective the morphisms ¢, s are surjective
as well. Under the assumption c.2) the morphism

(R"—lf*A'(n _ l))—E,,_],...,—ZZ N (R"ﬁA'(n))—E" ,,,,, -2
is injective and hence the injectivity of
¢s: Ts — R'f. A

implies the injectivity of all the ¢, s. Under the assumption c.1) a slightly different
argument shows that ¢, s is an isomorphism if g is an isomorphism.

As for the Kodaira-Spencer class s itself, ¢, s comes from the edge morphism
@, of a n extension of f ~(Ts ®% ... ® Ts) (n-times) by A*(n) on the n fold product
X Xg...xs X which we construct in the second half of Sect. 3. This n extension
defines

G Ts Qk Ts Q... Ts — R'fL A%(n) .
In Sect. 4 we calculate in the language of Cech-cohomology the difference
P11 @2 ®x3R...0%) — P2 X1 B X3 Q... ®xp) .

In Sect. 5 we discuss the properties of the sheaf of differential operators on
a smooth variety. Finally, in Sect. 6 we define the sheaves (R"f..A®(n))~>"~22
together with the natural maps occuring in our main result. We use the relation,
obtained in Sect. 4, to show that ¢, induces the maps @, s.

Let us return to the example considered above, i.e. to the case A = Tx;s. The
condition c.2) is satisfied if the fibres of f have no infinitesimal automorphisms and
our main result says that the Kodaira-Spencer map for such a family can be extended
to the whole sheaf of differential operators. If S happens to be the nonsingular locus
of a fine moduli space for certain manifolds without infinitesimal automorphisms,
then this implies that D¢/Os is isomorphic to (R, A%(n))~En—22,

Other examples of families for which a f~!Os Lie algebra A exists with prop-
erties a) and b) and for which, of course, the Kodaira-Spencer map defined in a)
is the usual one will be discussed in the first half of Sect. 3. They will include
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families of vectorbundles on curves (one example where the condition c.1) holds
true), and families of stable vectorbundles over higher dimensional manifolds.

This paper grew out of an attempt of Schechtman and us to understand the
results announced in [1]. The influence of the ideas of Beilinson and Ginzburg on
our work is obvious.

1 The sheaves A(n) and the X, action

Let f : X — S be a flat morphism of schemes over an algebraically closed field k
of characteristic 0 or a flat morphism of analytic spaces. Let A be a locally, free
Ox-module. If X Xg...xgX is the n-fold product we denote the structure map
again by

fiX Xs...xs X =8,

and the projection to the i-th factor by
pr;: X xs...xs X = X.
In Sect. 2 we assume that we have a bracket
[L]:AxA— A

and we will construct a complex .A®(n), concentrated in degrees 0,...,n — 1 together
with an action of the symmetric group Z,. In this section we start by defining the
sheaves A!(n), supported on the diagonals of codimension / - dim(X); then we define
the Z, action and consider the antiinvariants under this group.

1.1 Notations. For i = 1,...,r, let I; C {1,...,n} be subsets with

Ui={1,....n} and LNL=g fori%j.

{t,=t; vpel, i=1,..,r}
where ¢t = 1, ..., 1® are coordinates of X and ¢, = pr}(¢). We will regard
L=, 1)

as an ordered tupel of subsets of {1,...,n} and write

Obviously one has

1.2 Properties. a) Ag1y,..iny =X Xs... Xs X.
b) For = € X, we have 4, .1 = AIM) ,,,,, Iny-
¢) codim(4y,,..;, CX Xs... Xs X) = (n—r)-dim X.

d) 45,1, X Xs...xs X (r-times).

.....

,,,,,

the different factors.
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1.3 Lemma and definition. a) For [ = (1,...,1,) as in (1.1) let
F() = {0 € Zn;0(4p) = 41} .
Then
F(I) = {0 € Z,; for some n € Z, one has a(I;) = I for all i}.
b) Let us call I ordered, if
Min{v € I;} < Min{u € I}

fori=1,...,r—1
¢) If I is any tuple as in (1.1), then there is a unique element n € X, such that
(Inq1ys - - - s Inry) is Ordered.

1.4 Notation. Let pr; : 4; — X be the projection to the i-th factor (using (1.2.d).
Hence pr; = prVIAL for all v€ I;. Let R be a sheaf of rings on S such that the
sheaf A is a sheaf of f~'R-modules, and such that the Lie product

[L]: A®1g A— A
is defined over f~!R. Then we define
A = A RALK. .. BA;, = Ko Ay
to be the sheaf ,
XS (Rypry; A

i=1

1.5 Remarks. a) We will consider the cases R = Os and R = k, the constant sheaf
on S, where k is the field of definition for S, or £ = € in case that X and S are
analytic manifolds.

b) As long as the bracket [,]: Ax A — A in (2.1) is Ox-linear, everything
said in this section for .A; remains true for

*
® prliA :
OXxS.‘.xSX

¢) Let us write
Fo(D) = {0 € Zsy0(l) = I;} .

Then Fo(I) C F(I) is a subgroup and for o € Fo(I) one has A; = As.
1.6 Notation. Let us write for [ =n —r

Ay = Am) =P AL

where the direct sum is taken over all ordered tuples I = (f3,...,1,). In particular,
if I =(l,...,1,) is any tuple as in (1.1), then A/(n) has exactly one summand
with support 4;. If = € Z, is chosen such that (Inqtys - - - » In(ry) is ordered, then this
summand is Az, 1
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1.7 The action of Z,. The X, action on X Xg... XsX extends to a X, action on
Al(n):

For 7 € X, and I ordered we can find some 7 € Z, such that for [ " = 1(I) the
tupel (I, -» Iy() is ordered. Then an action of X, on A'(n) — which is not yet
compatible with the differential defined in Sect. 2 — is given by

—1
T (a11...a1r) = bIrlt(l)“.b];t(r)

where b,/(') = a;,. Here 7 is acting on the elements of {1,...,n} and = on the indices
Yy

{1,...,r}
s L) =5 (e D) = Uy Iy -

In other terms, 7 is the element of %, with
Min{v € I}y } < Min{v € L1}
fori=1,...,r— 1.

1.8 Definition. We consider A'(n) as a X, sheaf with the action

" = sign() - sign(n) - 77!

on 'AL'

1.9 Examples. Assume that [ is ordered.

a) If I = ({1},{2},....{n}) then t =7~" and o* =7"".

b) If I = ({1,2,3},{4,5}) and © = (1,5) € Zs, then (1) = ({5,2,3},{4,1}) and
n=(1,2) € 2.

¢) For ¢ € Fo(I) (see (1.5)) the map t* = A; — A is the multiplication by
sign(7). In fact, the corresponding = is the identity.

d) Let © = (v, p) be a two cycle in Z, and assume that © ¢ Fo(I) or, equivalently,
that v € I; and p € I; for some i=j. Then 7 =7~ if v=Min/; and y = MinJ;,
but t* = —t~! if v > Min/; and g > Min J;.

1.10 Notations. Let S”(X) be the quotient (X x5 ... x5 X)/Z,. If X is a projective
(or an analytic) variety, then S"(X) exists as a projective (or analytic) variety. Let

X xs...xs X = SX)
Il gl
S = s

denote the induced morphisms and let G C Z, be a subgroup. If F is a G-sheaf on
X Xg...xgX, then we write (8+F)~C for the sheaf of antiinvariants, i.e: (6, F)~C
is the subsheaf of 8,F on which 7 € G acts by multiplication with sign(t).

1.11 Examples. Assume that [ is ordered.
a) (0xA;)~FoD = 6, A; (here = is the identity).
b) If F; C F(I) is a subgroup such that Fo(I) and F, generate F(I). Then

@A) TTD = (8,41
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c¢) Let G C X, be a subgroup such that Fyo(/) and G N F(I) = F generate F([).
Let I =M, 1@ . I® be ordered tuples such that {AL(‘)""’AL(‘)} is the G-orbit

of 4;. Then
- -G

sPAan| =GO,
j=1

Proof. a) is a special case of b) and both follow from (1.9.c).

Ifa= ®;=1 a) is G antiinvariant, then a5 is F)-antiinvariant. Moreover, a
is determined by the component a;q). Hence, for a given F)-antiinvariant a;), we
just have to show that we find some ayq such that the local section )

N s
a=PaoesPAw
i=1 j=1

is G-antiinvariant.
Let 0y =id,0,,...,0, represent the different cosets of G/F; and let m; € X, be
chosen such that

(af(Inj_l(l))’ cees G'j(Inj—l(r)))
is ordered. We can number the o; such that
IO = (O’j([nj—l(l)), ces O'j(]nj-l(r))) .
Then we define
ay) = sign(m) aj—l(ai) .
This definition is independent of the choice of g;. In fact, for y € F; we have
ytar = sign(y)-ar,
as gy is Fy-antiinvariant. On the other hand, if 7 € 2, with
1 =>(Y(11_1(1))5 s Y1)
then
y*ar = sign(y) - sign() -y~ (ap)
and we obtain sign(7) - 7_1(‘11) = q;. Since replacing o; by g; o y forces us to replace
m; by m; o 7, we obtain the independence. By definition we have for y € F}

(9 0 7)*(ap) = sign(g; - 1) a0 -

On the other hand, since F; = GNF (IY)) is conjugate to Fj, the element
ay) is Fj-antiinvariant, and repeating this argument, we have for ¢ € G with
o(4p») = 4rp

a*(ay ) = sign(d) - ay) -

Hence a is G-antiinvariant.
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1.12 Notations. Let » = n — I and let Di(n) be the subsheaf of A'(n) given by
Dy(m) =P Ar»

where the direct sum is taken over all ordered tupels [ = (N,...,I,) with
{1,2} cl.

Then Z,_,, as the group of permutations of {3,...,n}, and X, as the group of
permutations of {1,2} act on Dj(n).

1.13 Lemma. One has, for [ 21,
(S A ()72 = (8. Dh(m) 22 = (3. Dy(m) "2 -

Proof. Since the 2-cycle (1, 2) acts by multiplication with (—1) on each A; with
{1,2} cl
the second equality is obvious. By (1.11.c)

n
(6. A M) " =D ()L

v=1
where JO, ..., J' ) are ordered tuples representing the different 2, orbits
{AL(”""’AL(’)} .
Of course we can choose J® = (Jl(v),...,J,(v)) such that {1,2} C Jl(v). Then
(1,2) € F(I™)
and by (1.11.c) again, applied to G = 2>, one obtains

n
(5*95(’1))—2"_2 = @(AM)J({(”’) :

v=1

2 The A* (n) complex

2.1 Notations. Using the notations from Sect. 1, we assume that we have an R
linear pairing

[,] : .A®f—l'R‘.A“> A
with
a®b— [a,b]
satisfying:
a) [a’ b] = —[b’a]
b) (Jacobi-identity) [[a, b],c] + [[b,c],a] + [[c,al,b] = 0.
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The next aim is to use [,] to define a %, invariant differential

d: Ay — A\ (n)

such that (A®(n),d) is a complex of f~!R sheaves with a f~!R linear differential.
2.2 Notation. Let J = J1s+-.sJr—1) and I = (I,...,1,) be ordered tuples as defined
in (1.1) and (1.3). We write J < [ if there exist numbers v and uwith 15y < v<r
such that

I; for i<pandpu<i<v

Ji = Ii+l for igv
Lul, for i=p.

For I, u and v given we can construct some J < I by choosing J; = I;, for
i<wpand pu<i<v, Jy=1I for i=v and by defining J, =1,Ul,. Of course
the tuple J obtained is ordered.

2.3 Definition. For J <1 and u < v as above we define

d-ll . ‘AL — .A,_]_
by
dy(an®...Ra,) = ()" -byX...®by,_,
where
ay, Jor i<p and p<i<v
in= aIiH for iév

lay,a] for i=p.

2.4 Remark. Up to the (—1)" factor, which we added to get compatibility of the
sign rules for different n, this corresponds to the usual conventions. If one drops
the condition of “ordered” for the tuples J one could choose

dayR...Ka,); = (~1)"+"+"[a1ﬂ,a1v]...a1“...a1v...a1, )

Then, rearranging the tuple forces us to introduce an additional sign (— 1)

2.5 Definition. For | =n —r we define
d: Al(n)— A" (n)

dla, =) dy.

J=<1

by

2.6 Example. Let us consider the case n = 3. We have maps

A°(3) -4 A3) L 42(3)




Higher Kodaira-Spencer classes 501

given by:
Ay — Apape — Apesy

Ay — Ay — Apas

Aoy — Apyesy — Aps)

where we just give the signs, the maps themselves being the obvious ones, for
example

Anyyey — Ay

or a®b®c— +[a,c]®b

Aqsyzy — A
a®b— —[ab].
We obtain
dz(a ® b ® C) =[[a’ b],C] - [[a! C], b] - [a, [b,C]]
=[[a,b],c] + [[c,a],b] + [[b,cl,a] = 0.
Before we show that d> =0 for all n, let us give an inductive description
for d.

2.7. We can write A/(n) as a direct sum of B/(n) and D'(n), where we take for

B =P A
the direct sum over all ordered tuples I = ({1}, 5,...,1,), and for
D) =P A

we take the direct sum over ordered tuples I = (},55,...,1,) with #I; > 1. Of
course, since / is supposed to be ordered, 1 € I;. We have

d(D'(n)) € D'\ (n).
In fact, we can go one step further. If for n € {2,...n} we write (as in (1.12))
i
D= B AL
{1,n}C1, I ordered

then d(D(n)) C D4+ (n). Identifying

with the (n — 1) fold product X x ... xg X, let A/(n — 1) be the sheaf constructed
for the index set

{L,....on=L,n+1,...n}.
Then “leaving out #” gives an isomorphism

Df,(n)«lgT.Al_l(n -1
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and, due to the (—1)" in the definition of d, the differential changes signs. Hence
we have a commutative diagram:

2.8.

A-ln-1) ' Din) — Dmy — A
n

ld ld la la
Al(n _ 1) N DL—H(n) . Dl+1(n) N Al+1(n) .

(—1y*1 .

On the other hand, B/(n) = pr; ' ARIA(n — 1), where now {2,...,n} is the index
set for A/(n — 1) on the (n — 1)-fold product X xg ... xg X, and where we identify
A0y, h,..1, With X Xg 4p, ;.. We have a commutative diagram:

2.9,
0 — Dm)y — Am — Bm=p'Axdln-1) —0
ld ld Lid<d
0 —DH'm) — At ) — B =pri ' ARA ' (n—-1) — 0.
If we consider B'(n) as a subsheaf of .A’(n), then d does not respect B*(n).

2.10 Definition. Let x € A and a € A'(n — 1) be local sections on X and on the
(n — 1)-fold product X xs ... xs X, respectively, with

a= @alllalé...al'{_l = @all .
r r

Define [x,a] = } . [x,ay] with [x,ap] = @, by, where the sum is taken over
ordered tuples J = (J,,...,J,_1) and

by =

if h={QYUL and (Jr,....Jo_)=(],....T,...I'_))

{(—1)"”“ [xayRayR...KaR...Kay_
v
0 otherwise .

2.11 Lemma. For x € A and a € A'(n — 1) we have
d(xXa) = [x,a] + xXd(a)
where d(x[Ra) is the differential in A'(n) and d(a) the differential in A'(n — 1).

Proof. For a = apl...Ray_ we have xxia € A; for [ = ({1},1,...,1]_,). We
can verify (2.11) in each A; with J <[ separately.

Case a) J, =1, = {1}.
Hence we have 1 < 4 < v<n and

L=1I_, for 1<i<py and p<i<vy
Ji=S i =1 for izv
LU, =1, Ul _, for i=pu.
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In A; only the second summand occurs and

dy (xR a) = (—1)"""xKapX . ..a,u_l[a,,‘,a,v]...a;...a,,
= (—l)("_l)+(v_1)xa11/...aI/ 2[a1/ l,aI/_l]
[ [ v
...a”,;:...a,:_l
= xRXdy (@)
for
J' =, o)
Case by J; = {1} UL, = {1} UI,_,.
Only the first summand occurs and
dy (xR a) =(-1y"""[x,a,]Ra,R. .. Ka,K ... Kay,
=(—1)n+v[x,a1/_l]a]lz...a/1/\_l...ap_l

is the element b; of (2.10) for

'—].-:(Jl’lfa---51/‘:_\1,~-.l;_l). 1""

2.12 Proposition. a) (A*(n),d) is a complex of sheaves.
b) In the notation of (2.7) (D*(n),d) is a subcomplex of (A*(n),d) and

0 — (D*(n),d) — (A*(n),d) — (pr ' ARA®(n — 1),idRd) — 0

is an exact sequence of complexes.
¢) For n € {2,...,n}, (Dy(n),d) is a subcomplex of (A*(n),d) and we have an
isomorphism of complexes .

A= 1) T2 Dy

Proof. b) and c) follow from a) and (2.8) or (2.9). To prove a) we can assume that,
by induction, .A*(n — 1) is a complex. Hence (2.9) implies that Dj(n) is a complex
for all n € {2,...,n}. Hence D*(n) is a complex as well.

It remains to verify that d2(xxia@) = 0 for x € A and a € A'(n — 1). We can
assume that g = a’f"'alr'_l for an ordered tupel (I{,...,I;_,) for the index set

{2,...,n}. We have

d*(x®a) = dlx,a] + d(x®da) = d[x,a] + [x,da] + xRd’a = d[x,a] + [x.dd] .

Let us write
I={1}L1,.. . _) =1, .. 1) .

The component of d*(x® @) in Ax with K < J < [ is zero if Ky = {1}. Assume
that

K ={1}ul, ={1}ul_,.
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There are two possible tuples JO, for i = 1,2, with K < JD < I
JO = {1}y Ulph,... 0. 1)
JO =1Ly s dpse s Ly 1)
with J, = Ky =1, U, for

, _[u-1if n<up
Tl if n>up.
The signs in the definition of d are
_1ytn oy
AT A T A

-1y —1yrt’
A Ao T Ak

where .
, {v—l if n<v
V= .
v if n>v
and
,_fn if n<v
= n—1 if n>v.

Hence v+ V' +#+1#' is odd for all v##n. We have

(xR a)k = di ;o © dyy (xR a) + dy ;) 0 dje) (xR )
= - x4, IR LK. .. Rlay,, a1, )R a;,,, 8. .. KK, .. Kaj,
+ (-1 x4, R ap®. .. Ky, 4, 1Ry, K. REGR. .. Da,
=0.
If K satisfies K; = {1} UI, U, with u < v, then there are three possible J, as

indicated in the following diagram:

(_1)n+vr (_1)n+u

Ar {1}Vl By Ty K
A (_1)n+;1 (_])rH—v-H
1 {1} Ul By T I K
(_1)n+v (_1)”‘*}1
— IL .

—_— ~
AL {E5 3930 R AU S " &

Hence
d(xRa)x = (—1)""*{[[x,a,),a1,] - [[x,a,),a1,]
+ [x[an,, a1} Ray, ... RKa,X. .. Ka,X. .. Ka,
= (_1)v+p{[[x, alv]’ aly] + [[alysx]aalv]
+ [lar,, a1, x1}RKapR ... Ra,K...KayX. .. Kaj,

and d*(xKa)x = 0 by the Jacobi-identity.
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In Sect. 1 we have defined an action of Z, on A‘(n). As already mentioned, the
sign rules in the definition of this action were made to get the following statement.

2.13 Proposition. X, acts on the complex A°®(n).

Proof. Let I be ordered and a; = a;,¥...Kaj,. In order to prove (2.13) we have
to verify that

d(c*a;) = o*(day) forall o€ Z,.

Of course it is sufficient to consider 2 cycles (m,!) € X,. Let us fix some J <1
and let 4 < v be as in (2.2). Let us choose 7 € 2, and 7 € 2, such that:

ll = (G(In—l(l))’ cres G(In—l(r)))
and
-l/ = (O'(Jr—l(l))’ EER) G(J-r‘l(r——l)))
are both ordered.
Of course, J' < I'. Let ¢’ < V' be chosen with Jli, = IL, UI,. The diagram

ayX...Ray, - -1y X...Ka,_Rlay,,a,]K.. . Ka,K. .. Kag,
Lo Lot
! —
bll"-'bI,’ _7 (_1)n+v bllr...bp, 1[b1'/’b[’/]"'all/"'blr’
W~ Wy v

commutes up to sign, where, of course, by = ar_y We have
J J

g =Min{n~'(w,77'(v)} and v =Max{n~'(u), 7" ()}
Write
[0 if V= = '(v)
¢ { 1 if v=rlp.

It remains to show that the diagram commutes, if we replace o~ ! on both sides by
o*. Hence we have to verify that for ¢ = (I,m) one has

(~1)"*" - sign(o) - sign(z) = (—1)"*" - sign(0) - sign(m) - (~1)°

or equivalently (*):
(=)' ** = sign(t) - sign(n) .
Obviously, if I,m € I; for some i, we have t =id,n =id,v = v and ¢ = id and
both sides of (x) are +1.

Hence it remains to consider ¢ = (I, m) where for some ¢ %7 one has / = Min I,
and m = Min I,. Of course, one has 7 = (g, ) in this situation.

Case 1. If o=p and y=v, then t=1id,v' =v = n~'(u) and & = 1. Hence both
sides of (x) are —1.

Case 2. Ifg=pbutn < v, then t=(u, 1), vV =v= n~!'(v) and & = 0. Both sides
of (x) are 1.

Case 3. If {o,n} 0 {u,v} = &, then t = (1’,¢’) for some n'+¢’. Since v = v =
n~!(v) we have ¢ = 1 and, again, both sides of (x) are 1.
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Case 4. g=pand v < 1.

If v > 2, then there is some 1’ < v with #'+u = ¢. By case 3 we can inter-
change 1’ and # and by case 2 we obtain (x). If v = 2, then = 1 and, using case 3
again we can assume n = 3. We have / =1 € J; and m € J, = I;. However, since
1 < Min L, the ordered tuple J' is (6(J2),a(J1),J5,...,Jr—1) and 7= (1,2). We
have v/ = 3 = n~!(y) and & = 1. Then the right hand side of (x) is (—1)*"**! =1,
hence the same as the left hand side.

Case 5. g%u and n =v.
This case follows, using the cases 1 and 2 or 1 and 4.

The Proposition 2.13 allows to consider the complex
(0.A°(m),d) %"
of antiinvariants, where again

§: X xXg..Xs X - 8S"X)=XXs... xs X/Zn

is the natural quotient map.
Let A°Z!(n) be the subcomplex of .A®*(n) with

o> 0 for 1=0
(A= () = { Ay for 1>0.

Of course, the complex D3(n) considered in (2.7) and (2.8) lies in A®*Z'(n). We
have

2.14 Corollary. We have isomorphisms

BoA = Dy o2 (BD30) I (6,47 )

and an exact sequence of complexes

0 — (B A ()2 = (5, AX)) 2" — (3. M) ™5 — 0.

Proof. The exact sequence follows directly from the definition of A°*21(n). The first
isomorphism follows since

(=D 1*: A (m— 1) - D3(n)

is an isomorphism and X,_, as group of permutations of {3,...,n} is compatible
with the morphism 1* given by “leaving out 2” in the index sets. The second
isomorphism was shown in (1.13). ‘

2.15 Remark. Let us remind that ¢ € Z, is acting on A%°(n) by ¢* =o'
(see (1.9.a)). Hence the local sections of (3,.4%(n))~*" are given by local sections
a of A%n) with 6~ !(a) = sign(o) - a.
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3 An extension by A*(n)

As already mentioned in the introduction the sheaf A considered in Sects. 1 and
2 should be an f~!Os Lie algebra which controls a deformation problem. The
corresponding Kodaira-Spencer map should be the edge morphism of an extension

02 A Ao f1Ts—0.

Before we discuss some examples let us state in an axiomatic way the additional
assumptions used in this and in the next chapters.

3.1 Assumptions. Let f : X — S be a flat morphism of schemes over an algebraically
closed field k of characteristic zero or a flat morphism of analytic spaces. In addition
to the locally free Ox-module A we consider an Os-module T’ and an f -10s-
module T such that £ T’ maps to T. (As in [2] the example we have in mind is
the sheaf T' = Tg and T =f"!Ts.)

Let A be a f~!Og-module obtained as an extension of 7' by A:

0-A—> A>T —0.

We assume that A is a f~'Og Lie algebra, i.e. that one has a f ~1Os-bilinear
bracket

[,] . A®f~—los .A—" .A,
antisymmetric and satisfying the Jacobi-identity (2.1).
The Lie-bracket [,] extends to a left f~!Os-product
[,]: A A— A,

i.e. a product, k-linear on the right and f ~1Og-linear on the left, satisfying the
Jacobi identity

[[d’ b]’ C] - [[d) C], b] - [&5 [b’ C]] =0

for local sections d of A and b, ¢ of A.

3.2 Remarks. a) If X and S are schemes over a field k, all sheaves considered are
sheaves for the Zariski topology. For analytic spaces we take the analytic sheaves.

b) For some deformation problems (for example in (3.6)) the Lie-product is even
defined on A ®o, A.

3.3. In (3.1) we have the following situation in mind. Let

Y5xLs and g=fon
be the composite of smooth projective morphisms (or of flat morphisms of analytic
varieties with compact manifolds as fibres). Then Tys has a g~ 'Os Lie algebra
structure and 7, Tys has an induced f~'Os Lie algebra structure. Let A = m.Tys

and call T the inverse image of g~'Ts in Ty via the natural map Ty — ¢*Ts.
One has an exact sequence

0— Tys = Ty? — g 'Ts =0
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and the usual Lie bracket
[,]1: Tys ®g-105 Tvss = Tyss -

Locally Tyjs consists of those sections & of T ,t," P which, applied to g~'Os are
zero. In particular, for local sections 0 of Ty® and 0 of Ty one has

g7 '05) C g7'O0s and 9d(g~'Og) = (g™ O5) = 0.
Hence the & Lie algebra structure
T;OP R T;OP N T;OP
restricts to )
Ty® ®k Tyis — Tys
and verifies [A%,y] = A[%,y] for 4 € Os, % € Ty® and y € Tys.
Let us assume that Rlm, Tys = 0 or, more generally, that
R'n.Tys — R'm, Ty
is injective. Then for A = m, Ty® one has an exact sequence
O—~>.A-—>fl—>f_1Tg—+0,
and the Lie-bracket extends to a bracket
[L]: A®k A — m(Ty° & Tys) — A,
f!Og-linear on the left. Altogether, the assumptions made in (3.1) are satisfied in
this case.
3.4 Example. For Y = X we obtain, as in the introduction, A = Ty;s and A=T /{f’ .

Let us note for later use, that f,. A =0 if the fibres of f : X — S have no
infinitesimal automorphisms. In particular this holds true if the Kodaira dimension
of the fibres of f is maximal.

3.5 Example. Let £ be a vector bundle on X and Y = IP(£) the corresponding
projective bundle over X. Then R'n,Ty)x = 0 and n. Tyx = End®(€) is the sheaf of
endomorphisms of trace zero. We have a commutative diagram of exact sequences

0
!
e T)(/s — 0
i
— T/{?p — 0
!
s — [T
! !
0 0

0 — &ndE) —

=l
0 — &ndE) —

— o+ e o
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where the right hand side sequence describes the deformations of the fibres
X; =f~1(s) of f, whereas the middle describes the deformations of both, X; and
P(E)x,.

If the fibres X, have no infinitesimal automorphisms and if the bundles &|x, are
stable, then both, £,End®(€) and f. Tys are zero and hence f,.A = 0 as well.

3.6 Example. If in (3.5) one has X = Z x S and f = pr,, then the right hand vertical
exact sequence in (3.5) splits and one obtains a diagram

0
!

0 — &End’E) —
l

0 — Al e
!

0 — f'Is — f7'Ts
! !
0 0.

— Tx/s — 0

-1

— e D O

In this case the Kodaira-Spencer map is the edge morphism of the left hand
vertical sequence and one should take A; = End®(€) in (3.1). The bracket

[’] . Al ®f—los Al - -Al s

is given by [@,0] = @ 0 6 — 6 0 @. In particular it is Ox-bilinear.

3.7. Let us return to the notations introduced in (3.1). Starting from the extension

(e1) 0-A—- A>T =0

of f~1Os-modules we want to construct n-extensions (&,) of the left f~1Os-module
Ty R T2y R - - B Tpmy = pry ' T @iepry ' T k. @ pr, ' T

by A®(n). Here we consider T(1}X ... Xy T(s} as a left f~!Os-module by multi-
plication on the first factor and A®*(n) is the complex constructed in Sect. 2 for
R = Os.

3.8.~Let us denote by A°(n) the complex one obtains if one replaces in the definition
of A®*(n) the sheaves

Ay, = pri ' A ®r-105 (Ap,..1r)
by the sheaf
A{x},lz,..J, =pri LA @ (Ap,..1,)
whereas
A0 = Ay
remains unchanged for {1} C I; but {1} +/;. Again, multiplication on the left gives
Ay,..1, a f~'Os-module structure.

Since [,]:/1®k A — A has its image in A and is left f~!Os linear, the map
defined in (2.3) lifts to a left f~!Os-linear map
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JI . 'AL i .AJ_ .

In fact, dy; = dy; if {1} C Iy, but {1} =1, whereas d,; = id®(d, pr,) if I =
Ji={1} and J' = (Jp,...,Jr—1),I' = (L,...,1,). Finally, for I; = {1} and J; =
{1} U, one obtains

‘_1_1(51|a12...(11r) = [&1,,a1v]a12...a1v...a1, .

Since [dj,,ay,] is a local section of A, the map d 71 is well defined. As in (2.5)
we define a left f~!Og-linear morphism ‘
d: Ay — A+ (n)
by

The calculations made in (2.7)—(2.12) remain true since we only used the sign
rules and the Jacobi identity, as it was stated in (3.1). In particular as in (2.12):
a) one finds (A°®(n),d) to be a complex of sheaves and, as in (2.12)

b) one finds an exact sequence of complexes
0 — (D*(n),d) — (A°(n),d) — (pr; ' A (A*(n)),id ®d) — 0
where (D*(n),d) is the complex defined in (2.7) for R = f~10s.
3.9. The above exact sequence induces a surjective map of complexes
(A*(n),d) = (pr7'T & (A°(n — 1),id ®d) ,
by mapping prl'l.ﬁ to prl_lT. The kernel of this map is the subcomplex A’*(n) of
A*(n) given by
Ay bt = pri ' A® (Ap,.1,)

and

.....

AL = An
for {1} C 11,{1} *1.
The different complexes give a commutative diagram of exact sequences

0 0
! !

0— D*(n) — A'*(n) —s priA® A (n— 1) —0
l= ! !

0 — D*(n) — A’(n) — pri' A® A(n— 1) —0
i !

pri' T @ A(n— 1) —pry ' T ® A*(n — 1)

1 !

0 0.
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3.10. One has a natural surjection
A'*(n) — A*(n)

by replacing “®;” by “®f ~10¢” and from the middle vertical exact sequence
(¢) in (3.9) one obtains by push forward

0— A"*(m)— A*(n) —pry ' T @ A*(n— 1) — 0
) ) !
0 — A*(n) — A°(n) x A*()/ A" (n) — pr; ' T ® A*(n—1)—0.

Let us denote the extension given by the bottom line by (¢).
Let us assume, by induction that we have constructed the (n — 1)-extension

(en—1) of T2y T3} .. By Ty by A°(r —1).
Tensoring on the left by T(; = prl'lT over k one obtains an extension
(1Rén—1) of T(yRkT2) R ... ®T» by pry T @ A°(n = 1),
and composing with (&) one obtains an extension
(en) of T(}Ru T2} - - BT (ny by A*(n).

Since (1 &s—1) and (¢) are extensions of left f ~1Og-modules the same holds
true for (g,).

3.11. In particular, the extension (g,) gives rise to a left Og-linear morphism of
sheaves on S

T @k ... T' = TR - B T(n}) — R'f. A*(n)
where again

fiXXs...xg X =8
is the structure map.

3.12 Remarks. a) Of course, one can modify the construction of @,. For example,
if A*(n); denotes the complex from Sect. 2 for R = k, and if A®(n); denotes the

complex with A instead of A at the first factor and with all tensor products over
k, then the extension (¢)

0 — A*(n) — A*(n) — Ty REA(n — 1 — 0
gives rise to
T ®... & T' = RYfLA () -
Composing @, with the natural map
R A(n) — R'f.A%(n)

one obtains again @,.
b) If the bracket A®;-15;, A — Ain (3.1) is Oy-linear, for example in (3.6),
then one can replace f~!Os in the definition of A®*(n) by Ox. If A*(n)oy is the
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corresponding complex, then the above constructions give a left f~'Os extension
of (13K ... Rk Tny by A*(n)oy, and again a left Os-linear morphism

I'®¢..ex T — R"f*.A'(n)OX .
However, this morphism can as well be obtained by composing @, in (3.11)
with
R'fA*(n) = R A*()oy -
3.13. Proposition (2.12), b) and c) allows to add up the maps @, to obtain

d,: 69 (T' ® ... R T'(v times)) — R/ A%(n)
v=1

where @, restricted to the last summand is
Gp: T' R ... Q T'(n times) — R"f, A% (n)

and &, restricted to the first (n — 1) summands is the composition of @,_; with

R - ) R DI () — R ).

This map, as we will see in the following three sections induces the lifting of
the Kodaira-Spencer map.

4 Antisymmetrization of ¢, and Cech cohomology

Our next aim is to study @, in the language of Cech cohomology in order to show
that &, maps certain “relations” to the invariant part of R"f,.A°(n) under the X,
action constructed in (2.13). Let us first construct certain covers of X xg... xs X
which are X, invariant.

4.1 Lemma. Let X be a projective variety or a complex compact analytic variety.
Then there exists a cover {V;}ic; of X by open sets such that the higher coho-
mology groups of coherent sheaves on V; are trivial and such that {U,}ic; is an
open cover of X xgs--- xs X for

n
U=y VicXxs...xs X .
j=1

Proof. We may assume that S is affine or a Stein space. For given V; the open sets
U; cover X Xg ... xs X if and only if for arbitrary points x;,xz,...,x, € X there is
an i € I for which x,xy,...,x, are all in V;. If X is projective, one can choose
{Vi}ier to be the set of all affine subvarieties. In the analytic case one may choose
for each

i=(x1,...x,,)€I=Xxs...><sX

small Stein neighbourhoods ¥ (x;) which are not meeting each other for different x;
and define ¥; to be the union of the ¥ (x;). Of course, in both cases we may replace
the index set / by some finite subset. ]
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4.2 Notations. From now on let &/ = {U;} be the X, invariant cover of X Xs...

xs X constructed in (4.1). We denote by C*(A®(n)) the corresponding Cech com-
plex. One has

N
M) =P VA my)

=0

and the differential is
G VARRRY

where d is the differential in A*(n) and 9 is the Cech differential.
43. Let z®x ®...®x, be a local section of T’ ®; T’ ® ... ®x T'. In order to
compute ¢,(z ®x2 ® ... ®x,) let us return to the construction of the n extension

(&n) in (3.10). There we considered the one extension (¢) obtained as push forward
from the one extension

(&) 0 — A*(n) = A(n) = T RpA*(n — 1) = 0.
Let

BEZRn—lf*(T{l}kA.(" -1))—- R"f*.A/'(n)

be the induced edge morphism. As (g,) was the composition of (1Xe,—1) and (¢)
one finds

F,E®X® ... ® %) = By (pr ' 2 Py (32 ® ... ® Xn)))

where 7: R, A"*(n) — R'f, A%(n) is the natural map. Abusing notations we will,
until the end of this section, identify B, and t o By = B, and suppress the map T,
and we will replace pr=!z by z and X by ®.

By the choice of the cover {V;} of X in (4.1) z has on V, a lifting
Z,eT (Va,.ﬁ). We may assume, moreover, that @, ;(x2 ®...® x,) is represented
by a Cech cocycle

@ =(a"",....a") € C"H(A*(n = D)av(-1y+s 5
for @ € C'(A"!~i(n — 1)).

44 Lemma. ¢,zQ®x®...0x,) IS represented by the cocycle (b)=
(bn, bn—l, . ,bl) in C"(A.(n))d+(_1)n+l.5 == (C”(.Ao(n)) ®...0 Cl(An—l(n))d+(—1)n+l 5
with

b =d(Z®d)+(~1)'Z@a’™") = [Z,d] +(~1)'(62)0p ® dt
Of course this equality for b/ € C/(A"(n)) means that on
Uspy.. = Us NURN Uy O

one has

b, =dZ®d,y )+ (1028 Yapy.. = [Zo iy, 1+ (1 (0D ® P~
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Proof. The first equality is just the computation of the Bockstein By, whereas the
second one comes from (2.11):

dZ Q)+ (-1)y'8(Z®d ")
=[Zd1+ZQ@dd +(—1'(0Z)@d' ' + (~1)"'Z®da’" .
Since (q) is a cocycle the latter is equal to [Z,a/] + (—1)"(0Z) ® @/~ [
We now consider @, applied to a local section

y®Z®X3®...®xn+1
of
T'®kT’®k...®kT’.

Let égaih Y, and Z, be local liftings of y and z in I (Vy, A) and let
@=@",...,a")

be a Cech cocycle of @, (X3 ® ... ®x,—1) in C"1(A*(n — 1))as(—1y-s-
We denote by () = (c**),...,c") a Cech cocycle for

¢n+l(y®z®x3 ®...QXpt1) -

4.5 Lemma. One has in C/(A" '~ (n + 1)):
¢ = Yo [Zo, /1] + (—1)"[Ye, (0Z)up ® @’ ']
F (= 1)"(EY ) ® [Z5, /1] — (O )up ® (02)py @ /2.

Proof. As explained in (4.3) one has

() =Buy(y®By(z® (@) = B+ (y ® (D))

where (b) is the cocycle given in (4.4).
Hence taking into account that » is replaced by n + 1, one has

¢ =Y, 1+ (1) (Y )g @ B!
and, applying (4.4) a second time, one finds
¢/ =Yy [Zoy @11 + (= 1)'[Ya, 02)op @ @' ']
+ (=10 ® (25,1 + (1)1 (Y )up ® (5Z)py ® ' . |
As mentioned in (3.13) one can compose the map

Gp:T' ® ... ® T'(n times) — R, A*(n)
with the map

012: R A°(n) — R, D3(n+ 1) — R, A°(n + 1)

constructed in Sect. 2 (see (2.12)). Using this notation one has the following formula.
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4.6 Proposition.
G (@2 —2®Y) X3 @ ... ®Xnr1) = 012(F([1,2] ® X3 @ ... Xns1)

lies in the sheaf (R™\f, A*(n + )12, where ( )2 denotes the invariants under
the element (1,2) € X1

4.7. If one writes correspondingly
0,1 R'fuA*(n) — R fLA(n + 1)

for the morphism induced by considering
A._l(n)ipzi,i+l}(n +1)

for the subcomplex DY, ; e+ 1) of A®*(n + 1), which is built up by those Ap,.1

.....

with {i,i + 1} C I, for some v, then, due to the inductive definition of the morphism
@, one has as well that

Bt ® ... ®Yic1 ® (% @ Xig1 — Xig1 ®Xi) BYiv2 @ e @ Y1)
013, (1 ® ... ®Yic1 ® [ Xig1] ®Yir2 B .. @ Ynt1)
lies in R*Hf, A%(n + 1))EHD,
Proof of (4.6). Let us drop 6, keeping in mind that
G R A (n) > R [ A (n + 1)

comes from D§(n + 1) — A*(n+1) and the identification A"‘(n)(_—l)» D3(n+1).
One obtains maps

Cn-l—l(Ao—l(n)) —_ C"H('D;(n + l))
=1 |=
@Y C AN gy crpizs —  (@C(DF (4 Dayayizes
with e/ s (=1t . ¢/ for &/ € C/(AT)(n)).

To describe R"f,.A*(n) — R""'f,D*(n+ 1) one has to compose this map with
the shift operator

CM (A M) g (ryi-s = C* AT Da—iyrezes
given by e/ - (—1)Y - &/ for &/ € C/(A")(n)). Hence the map
R"ﬁ.A’(n) —>R”+1f*'D°(n+ 1)

is induced by the multiplication of Cech cocycles e/ with (—1)**1.
By (4.5) the first term in (4.6) is given by the cocycle
W = Yo, [ 24y @'1] — [Za, [ Yo, @' 1]
+ (= 1) ([Yer (62)ap ® @' = [20 8V ) ® ' ™'])
+ (~ 1Y )op ® (2,811 — (62)p @ Vo0’ ™D
— (87 )up ® (52)py — (02)ap ® (8Y)p) @ @~
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whereas the second one is given by
B =([Y,Z), @]+ (-1)'G[V, 2D @ ' .

Here [Y,Z], = [Ys, Z,] and (9[Y, Z])up = [Yp, Zp] — [Ya, Zs)-
Considering B’ as an element of

(D + 1) = AT (n+ 1)

one has to prove that the cocycle 4/ — (—)""'B/ is, modulo a coboundary, sym-
metric with respect to ¢ = (1,2) € 2,41.

4.8 Claim. One has [Y,,Z, @ a/] = (= 1) Y0, Z,] @ @ + 67 1(Z, ® [Ya, @’)).
Proof. Returning to the notations used in Sect. 2, one can verify (4.8) for

@ =a,X...Ray, ,
where n+1—j=n+1—r or j=r. By definition of [,] in (2.10), for /=
({1},{2}, L5, ..,1;) and n replaced by n+ 1, one has

r
v.z2edl=EP b,
v=2

where for v =3,...,r one writes

JO = {1} UL, {2}, 5,....1,,....1,)
and
by = (=1)""'[Y,a,RZRaR .. Ka,K. .. Kaj, -

The tuple J® is J@ = ({1} U {2}, 5,...,1,) and
b = ()Y ZINaRK. .. Ra, = (-)""[V,Z]®d .

If we take the bracket for I’ = ({2},h,...,1,) and the index set {2,3,4,...,
n+ 1}, then (2.10) gives

r
o 'ZY,d)=0"" (Z( P+ Iiy,a,RaR. . RapR. - a,,))

v=3
,
=Dbo-

v=3

4.9 Claim. One has
[(0Y)ap, (02)ap] = (O1Y, Z1)ap — [ Y2 (0Z)ap] + [Z, (Y )up] -

Proof. The left hand side is
[Yp — Yo, Zg — Z) = [Yp, Zg] + [Yar Za] — [Yp, Zs] — [Yar Zp]
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and the right hand side is
[Y/;,Zlg] - [Ya,Za] - [Ya,Zﬂ - Za] + [Za, Yﬂ - Ya] .

4.10 Claim. The Jacobi identity gives
[Ya [Zs, @/ 1] = [Zas [ Yoo @/ 1] = (=)' (1Y, 2] @] = 0.

Proof. As in the proof of (4.8) we consider a” = a5[X...Xay,. By definition, the
expression considered in (4.10) just occurs for index tuples

~
v

K=({1,2}Ul,bL,...,L,....I;)
and the expression is
(~ )" Yo [Zorar, ] = (1) [Za, Yo a,]]

—(— ) =Y Za), 4 DR
Xay, ...E;alm.. .ag, .
However the Jacobi identity (3.1) gives

[Yaa [Za’ alv]] - [Zas [Ym alv]] - [[YO(’ Za]’ alv] =0.

Applying (4.8) to the second term in A/ and rearranging according to the a
terms, one finds

A — (=Y B = [V [y 1] = [Zao [Yer @/T) = (= 1) (1Y, Z ] ']
+ (=Y (5Z)ap] + [Zas 8Y up] + O[Y, Z)up) ® &/
+ (=107 (82)ap ® [Yur @' 1= 67 (8Y )op ® [Zo, @'
+ (— 1O )op ® (2, @] — (62)sp ® [Yp,0 ')
— (O )ap ® (0Z)py — (8Z)ap ® (BY)p) ® /2.
Applying (4.10) to the first three expressions and (4.9) to the fourth one, one
finds (rearranging the other terms in a more complicated way):
A — (=1 B = [(8Y )ap, (3Z)op] ® @’
+ (=11 +0) (Y )ap ® [Zid™'])
+(=1)"(1 + 0) 7' (82)ap ® [Yus @' ')
+ (—1)"*(8Y g ® [(32)up, @’ ']
+ (= 1)"(62)sp ® [(8Y )upp @’ ']
— (67 )ap ® (3Z)py — (0Z)p ® (BV)p) ® @2 .

Here (1 + 0)~'(c) stands for ¢ + o7 !(c).

Let us write, for all j,

E=0Y)p ®(OZ)g®a .
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4.11 Claim. For any sheaf F and n,m € C'(F) with ém = én = 0 one has
8(map @ Naplapy = —Map ® npy — Mpy @ Nap .

Proof. The left hand side is
mgy @ ngy — Moy @ Nay + Map Q Nap
= mpy, @ ngy — (Mpy + Map) ® Moy + Mo @ Nap
=mg, @ (ngy — Nay) + Map & (Nap — Nay) - |
Using (2.11) and (4.8) the coboundary of (&/) has the expansion

d& + (=188~ = (=1 [(8Y )op, (3Z)up] ® @’
+ 07 (02)ap ® [(3Y )upr @]
+ (O )ap ® [(02)up, @' 1+ (0F Jop ® (3Z)ap ® d’ ™!
+ (= 1) 18((8Y )up ® (6Z)ap) ® @’ 2
+ (=12 )up ® (6Z)ap ® S0’/ 2.

a is a cocycle, and using (4.11), one obtains

(—1)™1dE + 887 = [(8Y )up, (0Z)up] @ /"
+ (=167 H(82)ap @ [(BY )op @ ')
+ (1" (8Y )op ® [(62)ap, @’ ']
— (8 )ap ® (0Z)g, + (Y )y ® (3Z)up) @ @’ 2 .

Altogether one obtains that the cohomology class in (4.6) is represented by the
cocycle

Aj _ (_l)rH—lBj _ (——-1)"+1(de + (_1)n+15£j—l)
= (=1 (A + 0) " (0V)up ® [Z @ ') + (= 1)"(1 + 0) ' (62)ap ® [Yar @ '])
+ (= 1)"(0Z)ap ® [0 )ups @11 — (1)1 07 ((0Z)ap ® [(6Y oy @’ ']
+ ((52)ap ® (O )y + (O )y ® (5Z)ap) ® /2
=1+ 0) (=" (0 )up ® [Zas @' 1) + (= 1)"((8Z)op ® [Yur @’ ' ])
+ (= 1)"((82)ap ® [(8Y )o@ ') + (82)ap ® (5Y)py ® @/ %} . *

5 Differential Operafors

In this section we recall a definition of the sheaf Dy of the ring of differential
operators on a non singular variety S, and of the left Os-module Dg.

5.1. The sheaf

T Z=@T$V=OSGBTs€BTs®k Ts®.. OTs Q... Isd...
v20
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is a sheaf of left Og-modules, where Og acts on Ts ® ... ® Ts by multiplication
from the left on the left factor.
5.2. A right Og-module structure on 7 is given (inductively) by the product
Ts x Os — Os ® Ts
XA~ x(A)+i-x.
For example,
xRy A=x@Ay+x- YA =x@ Ay +y(A)-x+x(¥(4) .

We drop the - in the sequel.

5.3. One defines a ring structure on 7 by the tensor product

v u Qv+pu
TS x TgH — T

and by the left and the right Og-module structure Os x T&" — T¢" and

v
v ®i
TS XOs—'@TS .
i=0

5.4. The ring Ds of differential operators on S can be defined as Ds = 7/I, where
I=x®y—y®x—[xykxy€Ts)r
is the two-sided ideal. In other terms, I is the Og-bisubmodule of 7 generated by
expressions (*)
P®...®pic1 @ (X ®Xip1 — Xi1 X — [Xi, Xit1]) @ Yi2 ® .. O Y
where n=2. One has for a local section A of Og
x®y-y®x—[yDl=-Ax®y-y®x—[xy])

+(xRy—y®x—[x,y])
+(x®y —y®ix — [xy])

by the definition of the right module structure in (5.2). Hence, as an Os-left module

I is as also generated by the expressions (x) for yy...yi—1,¥i+2, - - Y, XisXi+1 € Ts.

5.5. T is filtered by the Og bimodules 7" = )_, T&" and correspondingly Ds is
filtered by the Og bimodules

Dy=T"INT".
In general, since the relation () mixes up the degrees, one has no natural split-

ting Ds = D @ Ds/D§. However, for n =0, one has Dg = (g and the inclusion
Os — Dy gives an isomorphism of left Og-modules

Ds = Os & Ds/Os
and

) 5 = Os ® D§/Os ,
since -

IUOS={0}.
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5.6 Claim. One has a commutative diagram of exact sequences of Os bimodules

0 0
! l
Os — Oy
| l

0 — Dy' — D — Sp(Ts) — 0
| l |

0 — Di'/Os — D3/Os — Sp(Ts) — 0
| |
0 0.

Proof. One just has to show that the middle horizontal exact sequence exists. Since
the image of I in
Tg@n =7" /Tn—l

is generated by expressions
P®...RYi-1® X ®Xiy1 —Xiy1 QX)) ®Yit2® ... @ Yn
one has a surjection D} — S;(Ts) and hence a surjection Dy — S("DS(TS)- For
n>2, the kernel is generated by D’S"1 and by expression
r=y1®..0Yi-1Q X Q@ Miy1 — X @Xi+1) ®Yi42Q .. Qyn
for 4 € Os. However, in D§ one has that r € Dg‘l as, using the relation (5.4), (%),

one has x; ® Axiy1 — Ax; ® Xiy1 = Alxi1, %] + [xi, Axi1] € Dy,

5.7 Corollary. Assume that B(n), for n=1, are left Os-modules, with left Og-linear
morphisms
B(1)-2%BR)- % B3)... X Bn+1) — ... .

Assume moreover that one has left Os-linear morphisms
(p;ZTS@" =Ts Rk ... Is — B(n)

and a product
1:Ts @ B(n — 1) — B(n)

such that, for all n:
a) 7(id ® ¢;_) = ¢,
b) @ (Y B2 —28) 8% ® .. ® Xns1) — 2n(PH([1.2] B3 ® ... ® %)) = 0.
Then the induced morphism

&, = 3¢, = T"/05 — B(n)
v=1
factors through
&,:D§/Os — B(n) .
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Proof. By (5.4) one just has to show that &, (I) = 0 or, that

D ®...®Yi—1 ® (X ® Xiy1 — Xit1 @ X)) ® Yit2 ®...QYn)
—on 1 (@11 ® ... Qi1 B [Xi,Xit1] ®Yit2 ®...®Yn) =0.

By induction on # and using a) we have this property for i=1. For i =1 it is
just assumption b). !

6 The definition of the higher order Kodaira-Spencer class

For A as in (3.1) we had constructed in (2.14) an exact sequence
0 — (8. A (n— 1)) 52 = (3, A () 5 — (6. A°) "> — 0
where
0: X Xg...xs X = S"X)=X Xg... xg X/Z,

is the quotient map.
Unfortunately, due to the fact that the fixgroup of the diagonal

.....

is not X,_;, we have just the antiinvariants under X,_, on the left hand side. This
makes the definition in this section a little more unpleasant. From now on, we use

the trace maps %Zsign(r) .7 to consider the sheaves of antiinvariants as quotient

sheaves. We keep the notations from Sect. 3, in particular we write
[iXXsg...xsg X = §.

6.1 Definition. We define a quotient sheaf

B(n) = (R'fi A®(n))~Er 2n-1" 2
of (R"f. A*(n))~ % recursively by:
a) B(1) = R'f, A°(1) = R'fL A
b) Assume that we have defined B(n — 1). Since R, A(n— 1) -1 is a
quotient of (R*"'f, A*(n — 1))~%n~2 the complex B(n — 1) is a quotient of

R AN = 1)) 52
Let
0> Kn—1)— Rf,LA(n—1)"52 > Bn-1)—0
be the induced exact sequence.
By (2.14) we have an exact sequence

RS A = D) 7502 = R A )RS A )™

and we define
B(n) = (R A*(n)) % /g,_,(K(n — 1)) .
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c) In particular one has an exact sequence

B(n — I)Q:IB(n);(R”ﬁAO(n))‘Z” )

6.2 Remark. (i) Obviously B(n) is again an Oy left module.
(ii) If g,_, is injective, then g, is injective as well.
(iii) If 7, is surjective, y, is again surjective.

6.3. In (3.11), for Ts = T’, we had defined a left Oy linear morphism
@p:Ts Rk ... Ts — R'fLA%(n) .
By composition with
R, A%(n) — (R'fA°(m) > — B(n)
one obtains morphisms
¢0n:Ts Q... Ts — B(n) .
Together with g;: B({) — B(i + 1), as in (3.13), one gets

n
?:T"/0s = P T5™ — B
v=1
with
¢;|T§v = 0On—1 OQn—Z---OQvO(pC X

6.4 Theorem. The morphism

@, T"/Os — B(n)
factors through
®,:D"/Os — B(n) .

We will call @, the Kodaira-Spencer map of order n.

Proof. Let us remind that in (3.11) ¢, was constructed as the edge morphism of
an extension (g,) which was obtained composing (1[é,—1) With an extension (g).
Hence one has a commutative diagram

Ts Q... % Ts n, RY. A*(n)

1®k¢{l—1l T‘pﬂ
Ts@RfA(=1) - RLlpry ' Ts @ A= 1)

where ¢, is the edge morphism of (¢) and 7 the map induced by the Kiinneth
decomposition. The induced map

Ts Qk R A%(n — 1)¢—°>_B(n)

factors, by construction of B(n), through
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7: Ts @ B(n — 1) — B(n)

and (1 ® @},_,) = @).
The assumption b) of (5.7) has been verified in (4.6) and hence (5.7) implies
(6.4). O

Before we study some properties of @, and of the sheaves B(n), let us recall a well
known statement from cohomology theory.

6.5 Lemma. Let X, act on
Ao(n) = pl'l_lA ®f—los ven ®f—los prn—l.A
and on
R'YfA®o ... ®0; RYf, A (n times)
by permuting the factors. Then the Kiinneth map
R A®o ... ®og R'fA = RY(A(n)

sends the invariants S{’DS(R1 £, A) of the left hand side to the antiinvariants

(R (A°(m)) 2"
on the right hand side.

Proof. Tt is sufficient to verify (6.5) for a two cycle and hence one may assume
that n = 2.

Any X, invariant element in R'f.A®oq ® R'f, A is the sum of elements { =
m®@n+n®m for mn € R'f, A. For some covering {V,} of X let n = (n4p) and
m = (m,p) be representatives. The image of ¢ is represented by the 2 cocycle

DPapy = Map @ Ny + Nag Q@ mpgy .

One has for ¢ = (1,2) € 23:
(14 07" )Pagy = Mop ® ngy + Mg ® Mpy + 1y @ Map + Mpy @ Nap -
By (4.11) one has

(1 + 67 )pagy = —0(map ® nup + Nup ® Map)
and

E¢=—0"'¢.

6.6 Corollary. Using the notations from (6.1.c) and (6.3), the image of the
morphism

D}/ 0525 B(m) Lo (Rf A () >
lies in St (R'f+.A). Moreover, for
X®..0x €ETs Q... % Ts

one has
Tn 0 QL1 ® ... ®Xn) = 9] (x1) ® ... ® 9](xa) -
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Proof. By (6.5) the first statement follows from the second one. For the latter one
just remember that the extension (e,) which gave rise to @, is a lifting of the n
extension () U (g;)U...U (g) of

Ty - B Tny = pry T ® ... ®xcpr, ' T
by
-Ao(n) = PTI—I.A ®f—los ®f_los pr;]A .

(See (3.11)).
Putting everything together one has obtained up to now the first half of :

6.7 Theorem. Under the assumptions of (3.1) let
@1:Ts = RYfL A= B(1)
be the edge morphism of the exact sequence
0-A—-A-f'T5—0.
Then for ®, as in (6.4) one has a commutative diagram of exact sequences

0Dy /05— Di/Os — Sp(Ts) — 0

Pyl & | 1 ¥
B(n—1) o B(n) P R [ A (m)) %"

such that
a) ¢ = ¢
b) ¥, factorizes through

Sty (T5) =2 SB (R A) — R A(m) >
where the second map is the Kiinneth map.
c) If L A=0, then
on:B(n —1) — B(n)
is injective, .
St R A) = RfA ()~
and
¥, =S8"(¢1) .
d) If R'f,A =0, for i22, then again
Sty (R fuA) = (R A (m) ™"
and
¥, =S8"(¢1).

Proof. 1t just remains to show c) and d).
By the Kiinneth formula one has

R, A(n) = ©Rf. A 805 BRf A @0 ... ®05 RfuA,

where the sum is taken over all tuples (vy,...,v,) with Y v, =m.
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Under the assumptions made in c) and d), for m = n the only tuple is (1,...,1),
and in c), for m = n — 1, there is no such tuple. O

6.8 Corollary. Keeping the notations and assumptions from (6.7) assume that

f+A = 0. Then one has
a) If ¢, is surjective, then the sequence

0— B(n— l)e——le(n);:S?gs(Rl fuA) — 0

is exact and @, is surjective for all n.
b) If @1 is injective, then ®, is injective for all n.

Proof. By (6.7) g»—1 is injective. One obtains a) and b) by induction on #, starting
with (6.7.a). -

6.9 Corollary. Under the assumptions of (6.7.d), (i.e. Rf, A = 0 for i>2) one has:
a) If ¢, is surjective, then the sequence

0— B(n— l)g—:]B(n);Sz‘gs(le*A) -0

is exact and @, is surjective for all n.
b) If ¢\ is an isomorphism, then ®, is an isomorphism for all n.

Proof. The surjectivity of S"(¢;) implies the surjectivity of y,. By induction one
obtains the surjectivity of @,. Moreover, b) follows from a). Hence, (6.9) follows
from the following claim.

6.10 Claim. Under the assumptions made in (6.9.a) the morphisms
R%A'(n);»R"f,,A"(n)

are surjective for all i<n.

Proof. By induction on n we may assume that

R A(n—1) » R A (n— 1)

is surjective. In (3.10) we had constructed an extension (&) of T(1}&A*(n — 1) by

A*(n). If we write A’*(n) for the corresponding sheaf, this extension is a lifting of
(e1x1), i.e. one has a diagram

0—A(m)— A —TyRA -1 —0
! | !
0 —A%(n) — ARy 10, A% — 1)— T(1yBy-10,4%0 — 1)— 0

inducing
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RY(TyRpA (n— 1)) - Rf.A@n)

‘ el o
R A{T13R-10,4%n — 1)} s Rf.An) .

If
R @ RAA(n - 1))

is a Kiinneth component of R~'f,(T(1}XA*(n — 1)), then its image under ¢ lies
in

R T) ®og RfA(n— 1)

and by induction ¢ is surjective.
By assumption R/f, A =0 for j=2 and hence

RY. T — RIf, A

is surjective for j=2. For j = 1 this is nothing but ¢;, hence surjective by assump-
tion. B decomposes into a direct sum of maps

By: (RT"UT) ®og R A (n — 1) = (RT7ul) ®og (RAA(n = 1)),

which, as we just remarked, are surjective for all v. Then f is surjective, as well
as p; oo and ;. )

6.11 Remarks. a) The assumptions made in (6.7.c) are, for example, satisfied for
families f: X — S of non singular projective varieties X; without infinitesimal auto-
morphisms (see (3.4)), or for families of stable projective bundles (see (3.5), (3.6)).

b) The assumptions made in (6.7.d) are satisfied for families of projective
bundles over a curve (see (3.6)), or for families g: Y — S where Y, = g~ l(s) is
a projective bundle over a curve.

¢) Throughout this paper, except for the introduction, we avoided to talk about
moduli. However, if M is a fine moduli scheme for a moduli problem controlled by
a Lie algebra A satisfying (3.1) and the additional condition f,.A =0 or R/, A=0
for i =2, then (6.8) a) and b) or (6.9.b) imply that the sheaf of differential operators
D}o/Opyo is equal to B(n)|;00, where M® = M — Sing(M) and B(n) is the sheaf
constructed in (6.1), for the universal family over M.
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