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and Stiefel-Whitney classes
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J.-P. Serre considers in [23] a covering n:Y — X of degree n of Riemann surfaces
whose ramification indices e, for yeY are odd. One obtains a natural relative theta
characteristic
e, —1

y .
2

DY/X = Z

yeY
and therefore, via duality theory, a unimodular quadratic bundle
E=mn,0,(Dyy),
whose quadratic form g at the generic point C(X) of X is given by
Treyean (32 -
He proves a geometric formula ([23], Théoréme 1, (6)) relating the second Stiefel-Whitney
s w,(E,qp)e HA(X,Z]22) ~ Z|2Z
of (E, qg) to a class w3 (n) € Z/2 Z, characterised by the following property:
Let G be the Galois group of the Galois hull n**': Y#*! - X of = and
0> 2722 -G >G>0
be the extension obtained from the “pinor extension” [22]
0> 7/2Z - 0@n) » 0m) -0
as a pullback under the natural representation

(%) G- % ->0Mm.
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Then wj(n) = 0 if and only if G occurs as the Galois group over X of an étale quadratic

covering Y#®! of Y“‘.~0f course, the formula may be interpreted as a geometric obstruction
for the existence of Y#*!,

To this aim Serre uses a formula ([23], Théoréme 2, 9) relating w, (E, gg) to the
Atiyah-Mumford-Riemann invariant

X, Y®E)eZ2Z,

where % is any theta characteristic on X, a formula that he proves in the same spirit as
Mumford’s proof of the quadraticity of this invariant for E = Oy (see [2], [20]).

On the other hand, if L is a finite extension of degree n of a field K of characteristic 2,
Serre ([22], Théoréme 1) had proved earlier an arithmetic formula relating

wy (TrL/K(xZ)) €eH.(K,Z/22)
to the Stiefel Whitney class w, (n) of the Galois group G of the Galois hull L& of L.
w, (m) is obtained by pulling back through (*) the universal class
w,e H2(BO (n), Z/227)

to H2(G, Z/2Z) and sending it to HE, (K, Z/2Z). This formula can be interpreted as an
obstruction for the existence of a lifting of the representation

Gal(X) - G

to G.

In this article, we give a common generalisation of these two formulae, thereby
answering a question raised by Serre ([23], p. 549).

More precisely, let X be a Dedekind scheme on which 2 is invertible and let 7: Y —» X

be a tame finite flat covering of Dedekind schemes, whose ramification indices e, are all
odd.

Following Serre’s own hint ([23], § 3, remarque) of using Grothendieck’s theory of
equivariant cohomology [11], we define invariants

wi(n) € Hy (X, Z/2Z

by sending into H. (X, Z/2 Z) those naturally defined in H'(G, Z/2 Z) as the pull-back of
the universal Stiefel-Whitney classes in H'(BO (n), Z/2Z) via (x) (see §1). With this
definition, we prove the formula:

®) w3(E,45) + 0 (¥, X) = w; (m) + QU (Wi (E.q5)
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where (E, qg) = (m, Oy (Dy,x), Tty x(x?)), is a quadratic bundle defined as in the geometrical
case via duality theory, where (2) is the class of 2e I'(X, G,,) in HL(X, Z/2Z) via the
Kummer sequence, w;(E, qg) € H{ (X, Z/2Z) are the Stiefel-Whitney classes of (E, gp),
and where

2 _
o¥/X)= Y ( y &-1

e [kO): k(x)]) xePicX/2 ¢ HA(X,Z/22)
x closed point \ y closed point

in X inng~1(x) .

is a divisor on X modulo 2 (here k(x) is residue field of the closed point x).

Localizing (S) at the generic point K of X on which w(Y/S) = 0, one recovers Serre’s
arithmetical formula

(Se) Wy (E,qg) = wy(m) + Q) udg,,,) -

Going from k to C if X is a proper smooth curve defined over a field k of characteristic
zero, (2) becomes zero and (S) gives

(Sgeom) Lp) (E9 qE) + W(Y/ X) = w2 (7'[) .

In particular this proves a posteriori that Serre’s ad hoc geometrical invariant w3 () coin-
cides with the invariant w, () used here, as (S,.,y) is nothing but Serre’s formula in the
geometrical case. It also provides a proof of the geometric formula without using theta
characteristics on X and the related invariant

X, 2®E)eZ/2Z.

We proceed as follows:

Thanks to the Grothendieck style definition of w, (n), the right hand side of (S) is
functorial for base change ¢ : Z — X. Constructing such a ¢ for which

n,: T:=normalization of Z %X, Y —» Z

is étale (see (4.6)), (S) is then a consequence of two special formulae: the first one is (S,,)
when = is étale, the second one is

(Sic) W, (‘P* (E, ‘hz)) +o*0(Y/X) = w,(F, qF)

where (F, gp) == (n, Or, Try,z(x?)). Here Ic stands for local contributions as one has to
compute the difference between the 2nd Stiefel-Whitney classes of two quadratic bundles
(E, qg) and (F, g) which coincide at the generic point. We give in section 6 a general method
to evaluate those local contributions, using the theory of split bundles.

The first section of this paper contains an overview of Stiefel-Whitney classes w; as
obtained from the classifying space of the orthogonal group [15], [16]. We reproduce
Frohlich’s definition of the pinor group [7], appendix 1, and prove that w, is obtained by
the connecting map associated to the pinor extension 1.14. Actually this section contains
more details than really needed for the proof of the formula (S).
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Section 2 proves (S,,), section 3 defines the classes w; () mentioned above and section
4 contains a geometric construction needed for the reduction of (S) to (S,,).

Section S makes explicit the splitting principle of [18] for Stiefel-Whitney classes and,
in particular, gives detailed proofs of it.

In section 6 we prove (S,.) and finally (S) is proved in section 7.

This article would not have existed without [23] and [22]. We thank J.-P. Serre for
the interest he showed in our work and for his comments which helped us to improve it.

The second author thanks L. Breen and J. F. Jardine for helpful conversations and in
particular L. Breen for providing precise references to 1.21.

§ 1. Stiefel-Whitney classes

In this section we recapitulate various definitions of Stiefel-Whitney classes for ortho-
gonal vector bundles and equivariant such, and prove that they coincide.

Stiefel-Whitney classes for orthogonal vector bundles and for orthogonal represen-
tations of a finite group are special cases of more general Stiefel-Whitney classes associated
to equivariant orthogonal vector bundles. These in turn are special cases of Stiefel-Whitney
classes associated to a simplicial orthogonal vector bundle over a simplicial scheme. Even
though simplicial schemes are rather wild objects for usual needs, they provide the right
generality for constructions like the splitting principle to cover also the case of group
representations. It seems most convenient to develop the theory in this context in view of
future applications.

It would also be possible to attach Stiefel-Whitney classes to orthogonal vector
bundles over a locally ringed topos in the vein of [13] (provided 2 is invertible on the
topos). We do not do this because Jardine computed the étale cohomology of BO(n) in
[14], [15] as a simplicial scheme, not as a topos. In any case, the étale cohomology of the
simplicial scheme BO (n)/ X and that of the topos (BO (n)/X),, coincide for any scheme X
over Spec Z[1] by [8], th. 1.12.

For the étale cohomology of simplicial schemes (more generally, étale simplicial
sheaves over a base scheme) we refer to [15], § 2. All simplicial schemes are over Spec Z [1].
We recall once and for all that if X, is a simplicial scheme, the étale sheaf u, of square
roots of unity is constant over (X ),,, canonically isomorphic to Z/2 Z. The same applies to
all Tate twists u$’, and we shall switch between notations without mention, unless necessary
for the understanding.

For simplicity, we drop the subscript “‘ét” from étale cohomology groups, as no other
topology will be used here.

1.1. Notations. Let X. be a simplicial scheme (henceforth abbreviated to sscheme).
Recall ([9], ex.1.1) that a simplicial vector bundle over X, is by definition a morphism of
sschemes
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Eo""Xo

such that every
- X

defines a vector bundle and, furthermore, face and degeneracy maps induce isomorph-
isms of vector bundles. An orthogonal (or quadratic) vector bundle over X, is a simplicial
vector bundle Ees over Xo provided with an unimodular symmetric bilinear form

b:EeX Ee — 1,

where 1 denotes the trivial vector bundle of rank 1. Equivalently, b corresponds to a
symmetric isomorphism

b:Ee - Hom(E.,1).

Orthogonal vector bundles of rank n over X. are classified by two objects (compare [9],
ex.1.1, and [8], proof of lemma 4):

(i) The nonabelian cohomology set H!(X., O(n)). In particular, orthogonal line
bundles are classified by elements of

H' (X, 0(1)) = H' (Xo, 1)

(ii) The set of homotopy classes of maps

[X., BO(n)/Spec I:%:H .

From now on, we abbreviate the sscheme

BO(n)/SpecZ[%:I by BO(n).

1.2. Remark. The natural map

[X,BO(n)/X] — [X, BO(n)/SpeczBH = [X, BO(n)]

is bijective. Therefore we could work with BO(n)/X as well.

To an orthogonal vector bundle E. we will associate in the sequel characteristic
classes

wi(Es)e H (X, Z/22),
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called the Stiefel-Whitney classes of Ee. By convention, w,(Es) = 1. We denote by W(E )
the sum of all w;(E.) in H*(X., Z/2 Z). Stiefel-Whitney classes have the following pro-
perties:

1.3. (a) Functoriality. Let f:Ys — Xo be a morphism of sschemes, and f*E. the
inverse image of Ee over Ye. Then

w;(f*Ee) = f*w;(E.)
for all i = 0.

(b) Whitney formula. Let E. and Fa be two orthogonal vector bundles over X.. Then
W(Eo @ FQ) = W(Eo) : W(Fo) .

(c) Normalisation. Let Le be a line bundle over Xo. Then w;(Ls) = 0 for i = 2, and
w, (Ls) is the class of Le in H'(Xe, Z/227) (cf. 1.1 (i)).

(d) If rank Ee < 1, then w;(E.) =0 for i > n.

Properties (a), (b) and (c) characterize the Stiefel-Whitney classes w;. They can be
defined in one of the following ways:

* By means of the splitting principle.

* Via the cohomology of the simplicial scheme BO(n) [15], [16].

In this section we restrict ourselves to the second approach. In §5 we develop the
splitting principle, for simplicity only for orthogonal vector bundles over ordinary schemes.
However the simplicial case is the same, mutatis mutandis.

We proceed as follows. By 1.1 (ii), Ee defines a homotopy class of maps

[Ee] € [Xo, BO(n)] .

By [16], H*(BO(n), Z/2Z) is a polynomial algebra over H*(Z [4], Z/2Z) on certain
generators HW,, ..., HW, in degree 1, ..., n. We define w;(E.) as [E«]J*(HW)).

Note that BO(n) carries a canonical orthogonal vector bundle & of rank n,
corresponding to the class of the identity map in [BO (n), BO(n)]. This bundle is universal
in the sense that any rank n orthogonal vector bundle is the pull-back of & via its classi-
fying map.

1.4. Proposition. (i) The classes constructed via the splitting principle (see section 5)
and those constructed via the cohomology of the simplicial scheme coincide.

(i) Jardine’s class HW, coincides with w;(8), where & is the universal orthogonal
bundle on BO(n). : ‘
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Proof. (i) By the splitting principle, it is enough to treat the case where E, is an
orthogonal direct sum of line bundles L, ..., L,. In this case, each L, defines a class in
[X., BO(1)], hence a class

ce[X., BO(1)"]
such that 4 o ¢ = [E.], where
4:BO(1)" - BO(n)

is induced by the natural inclusion

o - Om).
Therefore,
[EJ*HW,=c*A*HW,.

But, by definition of the HW,, the inverse image A* HW, is the i-th elementary symmetric
function on the e;, where

e=19..HW,®..®1eH'(BO(1)", Z/22).
Here we have used the “cross product”
H'(BO(1), Z/2Z)®" - H'(BO(1)", Z/2Z).
On the other hand,
HW,e H'(BO(1), Z/2Z) = H'(I'*B(u,), Z/2Z) = H (I'*B(u,), i1,)

is by definition the image in H*(I'*B(u,), u,) of the generator of H'(B(u,), u,) via the
natural map. But this generator gives the class of the identity map in [B(u,), B(u,)]
(simplicial sets), hence in [I'*B(u,), *B(u,)] (constant simplicial sheaves over
Spec Z [4]). Therefore, [L,]* HW, is by the normalisation 1.3 (c) nothing else than w, (L,).
It follows, for all i, that c*A*HW, is the i-th elementary symmetric function in the
wy(L;), which is w;(E.) by the Whitney formula 1.3 (b).

(ii) is an obvious consequence of (i). O

1.5. Main example. Let X be an (ordinary) scheme and G a group scheme acting on
X. An equivariant orthogonal vector bundle over X is an orthogonal vector bundle provided
with an action of G which is compatible both with the action on X and the quadratic
structure. An equivariant étale sheaf on (X, G) is an étale sheaf provided with a continuous
action of G (in the sense that the stabiliser of any element is open in G). Equivariant étale
cohomology of (X, G) is the collection of derived functors of the functor

F — I'(X,F)¢

defined on the category of abelian equivariant étale sheaves on (X, G) (cf. [13]); they are
denoted by H} (X, G; #).
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Consider the simplicial scheme GXe = EG X; Xo. Any equivariant sheaf # on (X ,G)
gives rise to a simplicial sheaf :

G%#e = EG xGﬁ on GX..
This applies to abelian étale sheaves as well as to orthogonal equivariant vector bundles.

1.6. Definition. Let E be an equivariant orthogonal vector bundle over (X, G). The
i-th Stiefel-Whitney class w;(E) of E is w;(GE).

We can regard w;(E) as an element of H'(X, G; Z/2Z) in view of the following
1.7. Proposition. For any abelian group A, one has a canonical isomorphism
H*(X,G; A) >~ H*(GX., A) .

The proof is as in [8], th.1.12.

1.8. Special cases. (a) G = 1. One recovers the Stiefel-Whitney classes of § 3.

(b) X = Spec F, where F is a separably closed field (of characteristic +2), and G
discrete. An (X, G) orthogonal vector bundle is simply an orthogonal representation of G
defined over F. Its Stiefel-Whitney classes are the pull backs of the universal ones in the

cohomology of BO (n). However, the map

H*(BO(n), Z/2Z) — H*(G,Z[22)

factors through
H*(BO(n)/SpecF, Z/227)

(remark 1.2). By [6], the cohomology of BO (n)/Spec F canonically coincides with that of
BO (n, C) (the topological classifying space of the Lie group O (n, C)). Hence one recovers
the usual Stiefel-Whitney classes of an orthogonal complex representation.
(c) (Frohlich’s setting).
G = Gal(n’), where =n':Y" - X
is an étale Galois covering. Let E be an (X, G)-orthogonal vector bundle. We denote by
E=(n,n* E)¢, where G acts diagonally, its Fréhlich twisted bundle. This is an orthogonal
vector bundle over X. Let H be a subgroup of G and
n:Y > X

be the corresponding subcovering of n’. Let ¥ be an (X, H)-orthogonal vector bundle.
There is an (X, G) induced orthogonal vector bundle

E=Ind§V.
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Then E = (m, m* V) (cf. [7], th.6). When V = 0y with trivial H-action, this gives back
lemma 2.14. This is Frohlich’s approach to Serre’s formula, that we don’t develop here
(although one should).

1.9. The Clifford algebra and the group O (n). In this section, we “‘recall” the con-
struction of an algebraic group scheme O (n), following Fréhlich [7], appendix 1. Slightly
more generally, we construct an algebraic group scheme O (g) (denoted by Pin (g)in loc. cit.)
for any quadratic bundle (E, g).

Let (E,q) be a quadratic bundle over a scheme X. Its Clifford algebra Cl(q) is the
quotient of the tensor algebra T'(E) by the (two-sided) ideal generated by the

X ® X — q(x) 1 s
where x runs through E. It is a locally free Ox-algebra. If E has constant rank n, then
Cl(g) has constant rank 2". It inherits a p,-graduation: an element in Cl(g) is odd (even) if
itis a sum of products of odd (even) numbers of elements of E (viewed as embedded in Cl(g)).
The sheaf of algebras Cl(q) enjoys an involution (anti-automorphism with square 1)

x — x,, characterised by x, = x for xe E.

The Clifford group C*(q) is the subgroup of homogeneous invertible elements x in Cl(g)
satisfying x - v+ x~ ! € E for all v e E. It is representable by an algebraic group scheme over
X, and splits as

C*@=CX(@uCi(g).
The map N : Cl(g) — Cl(q) defined by N(x) = x - x, restricts to a homomorphism
N:C*@g) - G,.

We define O (g) as the kernel of this homomorphism. It is a smooth algebraic group scheme
over X.

Let an element x of CX*(g), for e = +1 or ¢ = —1, act on E by

r(x)v=¢-x-v-x"1.

This defines a homomorphism r:C*(q) » O(g). The restriction of r to O(g) has
kernel p,.

1.10. Lemma. Assume that X = Spec R, where R is a strictly henselian local ring.
Then the map on rational points

r:0(@@®R) - O@@R)

is surjective.
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Proof. Itisknown [14], cor. 4.3, that over a local ring, the group O (gq) is generated by
hyperplane reflections; therefore it is enough to see that every such reflection is in the image
of r. This reduces us to the case n = 1. In this case, we can write E = R - t (for some basis
element ¢) and g(x - ¢) = u- x? for some unit u. Since R is strictly henselian with residue
characteristic &2, the unit u is a square and we may even assume that ¥ = 1. Then

Cl(g) = R[T}/{T*-1>=R®R-t, for teO(g)(R) and r(t) = —1.

Lemma 1.10 shows that one has a short exact sequence of étale sheaves of groups
(hence of smooth algebraic group schemes):

(*) 1> p > 0m - 0m — 1.

Taking global sections on some sscheme X. one obtains a long(er) exact sequence:

(*x) 1 > p, » I'(Xe,0(m) > I'(Xe,0(n)) —2— H'(X, ,) —
- H'(X.,0(n) » H'(Xs,0(m) —21> H2(Xe,u,).

The map sp generalises the spinor norm ([7], p. 118).

1.11. Lemma. Let n = 2. The restriction of (x) to the “maximal torus” of diagonal
matrices i, X |, is the dihedral extension whose class in

H?(uy X pys 1)
is o - B, where
o« and BeH'(uyX py, py)

are the two “‘coordinate” characters of u, X u,.

Proof. As the cohomology H*(u, X u,, p1,) is a polynomial algebra on the two
‘coordinate’ characters, it is enough to check that further restriction of (x) to each factor

U1 and 1xu,

is trivial while its restriction to the diagonal subgroup is non trivial. For the first two we
are reduced to the case n = 1. Then CI(E) is commutative, and the generator v of E such that
g(v) =1 is in O(1) and satisfies r(v) = —1 (notation as in 1.9); furthermore v? = 1. For
the last one, consider an orthonormal basis (v,w) of E. Then v-we O(2). Using the
relations

2

v ’=w?2=1 and v-w+w-v=0,

we compute:
vweu(w)l=owerwo= 0w W= —0 W W= —0;

vww-wl=vwwwo=vwo=—vvw=—w,
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therefore r(v - w) = diag(—1, —1) € O(2). On the other hand:
- wl=vwovw=—vvww=-—1,
so that the restriction of (*) to the diagonal is not split. O
Low degrees.

1.12. Proposition. Let Xe be a sscheme and Ee a quadratic bundle on X of rank n.
Then w,(Es) = w,(A"EL).

Proof. Reduce by the splitting principle to the case where Eo is a sum of line
bundles. O

1.13. Corollary. With the notations of 1.12, let [ E+] be the class of Ee in H' (Xe, O (1))
and det : O(n) - u, be the determinant map.

Then det, [Es] = wy (Ee).
1.14. Theorem. With the notations of 1.12, let
A4:H (X.,0(n) = H*(Xe, u,)
be the map defined in 1.10, (»x). Then A[Ees] = w,(Es).
Proof. 1t suffices to prove the statements in the universal case for which
Xe=BO(n) and E.=46..
Consider the commutative ladder:

H'(BO(),0(m) ——  H*(BO(™),u,)
) sl
H'(BOQ2),0(m) ——  HX(BOQ),pu,)
i -1
H'(BO(2),0(2) ——  H?(BO(2),u,)
! nl
HY(T*Bu,)?, 0(n) —— H*(I*B(u,)% 1)
T =1
HY (C*B(u,)?, (1)?) —— HYX(T*Buy)* u,)
T al

H! (B (ﬂz)z, (#2)2) —_ H 2(B(llz)z, #z)
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where I'*B(u,)* denotes the sscheme B(u,)?/Spec Z[1] while B(u,)? denotes the sim-
plicial set which classifies the discrete group (+1)2, and the map

r*B(u,? - BO(2)
comes from the embedding of (u,)? into O(2) as diagonal matrices. The morphism 7y is
obviously injective; ¢ is bijective and # is injective by [16], th. 2.8, and its proof (see end of
proof in Joc. cit.). By lemma 1.11, the class of the restriction of (*) to (u,)? and

w, € H2(BO(2), u,)

have the same image in H2(I'*B(u,)?, u,). Therefore, to prove the theorem, it is enough
to prove

1.15. Lemma. Let
1> 2Z-5G->G-1

be a central extension of finite groups, with class ee H 2(G, Z). Let G act on itself by inner
automorphisms and on G by the action induced by inner automorphisms of G. Let

4,: HY(G,G) » H?*(G,Z)

be the nonabelian boundary associated to this extension and —1¢€ H'(G,G) be the class of
the cocycle g+ g~ 1. Then

4,(-1)=e"1.
1.16. Remark. The map g+ g does not define a 1-cocycle, unless G is abelian!
Proof. Choose a section s: G — G of the projection; then g s(g)~! is a cochain

of G with values in G lifting the cocycle of the lemma. By definition of 4, (see [24], annex
to ch. VII), 4,(—1) is represented by the cocycle

con="5(g)" " s(h)™' - s(gh).
But %s(h)~! = s(g) - s(h)~! - s(g) !, hence
Con =31 5(8)7" s(gh)=s(gh)-s()™'-5(g)"" = (s(g) - s(h) - s(gh)~")~*

(we used that c, , is central). The cohomology class of this cocycle is precisely e™* (e.g.
[24], ch. VIL, §3). O

1.17. Corollary (cf. [25], formula (4.6) when X is the spectrum of a field). Let (E, q)
be a quadratic bundle over X and [E] be its class in H.(X,O(n)). Let

0: Hy(X,0(m) —~ Hi(X,u,)

be the boundary map associated to extension (»).
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Then, 0[E] = w,(E).
1.18. Corollary. Let I be a profinite group, let K be a separably closed field of charac-

teristic 2, let ¢:I' - O(n, K) be a continuous orthogonal representation and [o] be its
class in

HY(I,O0(n,K)) = Hom (I, O(n,K))/~
(here <~ denotes the conjugation by elements of O(n, K)). Let
§:H (IO, K)) » H*(T,p,)
be the boundary map associated to the K-points of extension (x).
Then, 6[r] = w, ().

1.19. Corollary. Let X be a scheme, ¢ : 1, (X)) —» O(n, K) be a continuous orthogonal
representation of mn,(X), and [g] be its class in H*(n, (X), O (n,K)). We also write [g] for
the image of [o] in HA(X,0(n,K)). Let

§:HL(X,0(n,K)) - HX(X,u,)
be the boundary map associated to the K-points of extension (%).

Then, 6[¢] = w, (o).

1.20. Remark. Theorem 1.14 can also be obtained as a consequence of the following
more general functoriality principle.

Let G be a sheaf of groups over Xg,, the big étale site over X. Let S be an Xg,-sim-
plicial sheaf and E — S be a principal homogeneous space with structural group G. As in
1.1(i) and (ii) we can associate to E a class. in two different sets:

* a class [E] in the nonabelian cohomology set H!(S, G);

e aclass {E} in the set [S,BG/X ], of homotopy classes of X-maps from S to the
classifying simplicial sheaf BG/X.

Let A be an abelian sheaf over Xg, and « € H2(BG/X, A). We associate to it a class
w(E):={E}*aec H*(S,A).
On the other hand, « defines a central extension of sheaves of groups

1 > 456G -G-1
with a boundary map:
4,: H'(S,G) —» H*(S,4).

11 Journal fiir Mathematik. Band 441
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1.21. Theorem. A4,([E]) = a(E).

Proof. This follows from [10], VIII. 6.2.10 (ii), taking account of op. cit., IV.2.5.8,
IV.3.5.4(ii), IV.3.6.1 and VIIL. 6.2.10 (i). Presumably there is a more elementary “cocycle”
proof along the lines of the proof of lemma 1.15, 6.4. 0O

§ 2. Serre’s formula in the étale case
In this section we consider a connected scheme X over Z[4] and an étale covering
n:Y - X
of (constant) degree n. To © we associate elements
w,(E) and w,(n)
in H} (X, u,) in the following way.
2.1. (A) On the bundle E = n, 0y there is a unimodular symmetric bilinear pairing
EQ®o E — O
defined over an affine open set U = Spec 4 < X by
(f,8) = Tigu(f8),

where B = I'(n~'(U),0y) and f, g€ B. We consider the i-th Stiefel-Whitney class w;(E)
of the quadratic bundle E (see section 1).

(B) Let 7, (X) be the fundamental group of X (based at some geometric point). The
covering © corresponds to a permutation representation of 7, (X) of degree n, that is an
action of 7, (X) on a set with » elements. Let K be a separable closure of the residue field at
some point x of X and

o:n,(X) » §,«0(nK)

be the orthogonal representation naturally associated to this action. We define w;(n) as
the image of w;(¢) € H'(n,(X), u,) in H}, (X, u,) (1.8, b)).

2.2. Remark. Actually the choice of X is irrelevant (see 1.8 (b)). We take the separ-
able closure of the residue field at some point to make an argument below a little more
obvious.

Serre’s formula relates w,(E) and w,(n) as follows:

2.3. Theorem. w,(E) = w,(n) + (2) - d, where

d=w,(E)=w,(n)e Hj(X, n,)
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is the “discriminant™ of the covering m, (2) is the image of 2e I'(X, G,,) in HL (X, u,) by
the boundary map associated to the Kummer exact sequence of étale sheaves

1—»”2—)6'"—3—-»6"'—)1,

e

and the cup-product is induced by the pairing
HaX Py = Hy

obtained from the canonical identification of p, with Z|2Z (i.e.¢-¢' = —1ife=¢"= —1,
¢+ & = +1 otherwise).

2.4. Conjecture (cf. [22], p. 665, question). For any i =1,
w(E)=wi(n) ifiisodd, w(E)= wi(m)+(Q2) w;,_,(n) ifiiseven.

This conjecture is compatible with the Wu formulae. In particular it is true for
i=3.

2.5. Notations. In this section, we consider a sheaf of groups G and an abelian sheaf
A over X,, provided with an action of G.

We denote by # (G, A) (resp. Hj (G, A)) the derived functors of the left exact functor
A A® (resp. A+ I'(X, A%)), where A (resp. I' (X, A%)) is the sheaf U A(U)® (resp.
its global sections). There is a Grothendieck (composite functor) spectral sequence:

H2(X, #'(G, A)) = HE'9(G, A).
One knows that extensions
(@) 1 >4-5G-G-1
are classified by a € HZ (G, A).

From now on, we assume that G acts trivially on 4. Then an extension («) as above
is central. We associate to it, as in [11], cor. a la prop. 3.4.2, a “boundary map”:

4,: HL(X,G) —» H2(X,A).

The map 4, depends functorially on a in the following sense: if

1 > A > G —— 1

7l gl

» G
!
1—s 4 —5 G — @ — 1
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is a commutative diagram of extensions, where the lower extension is denoted by (a'),
then the diagram

HL(X,G) —2 HZ(X,A)
ftl ) g"l
HA(X,G') -2 H2(X,4')

commutes.
2.6. Lemma. Let a,, a, be two elements of H} (G, A). Then

Aa1+a2 = Aa; + Aaz .

Proof. Let

(a,) 1 >4, -G -G -1
and

(2) 1 >4, > G, -G -1

be two central extensions. We define their direct sum
(o, + ;) 1 5> 4,04, >G> G -1
by G = G, X G,. Then, functoriality implies that:
4y 00, = (An;’ 4,,).

Assume now that 4, = 4, = 4. Let 2: A @ A — A be the sum defined by Z(a,b) = a + b.
Then the extension corresponding to a, + a, is X, (a, @ a,). Therefore one has:

buytar = A1,01000 = 24 ° dnj00, = 200 (4o 40)) = 40, + 4, D
From the spectral sequence 2.5, we get in particular a differential
di': HA (X, #(G, A)) - H3(X,x#°(G, 4))
and a surjective map
Ker (HZ (G, A) - HJ(X,#?*(G, A))) — Kerd}'.
On the other hand, consider the cup-product
Hi(X, (G, 4)) x Hy(X,G™) - Hi(X, 4),

induced by the natural pairing
KU (G, AXG® - 4.




Esnault, Kahn and Viehweg, Stiefel-Whitney classes 161
Observe that, by assumption, one has

H(G, A) = #1(G™, 4) = Hom(G™, 4).

2.7. Lemma. Let

ae Ker(H#(G, 4) - HY(X,#%(G, 4))),

and denote by f its image in Ker d}'. Then, for any x e HX (X, G), one has
4,(x) = f- det(x),

where det(x) denotes the image of x in HX (X, G™).

Proof. The hypothesis means that « is locally split. Since G acts trivially on A4, the
map #1(G*®, 4) - # (G, A) is an isomorphism. Therefore a comes from a locally split
extension:

(a*®) 1> 4->G > G® > 1.
The fact that G’ is locally split implies in particular that it is abelian. By [17], prop. A 3.1
(for i=1), A(y)=f-y for any ye HA:(X,G*®). The lemma follows by func-
toriality. O

2.8. Proposition. Let a,, a, be two locally isomorphic (central) extensions of G by A.

Let fe HY (X, #1(G, A)) be the element associated to a, — o, as in 2.7. Then for any
xe€ H}, (X, G), one has

Aal(x) - Aaz(x) =f det(x) ’
where det(x) denotes the image of x in HL (X, G*).

This follows from lemmas 2.6 and 2.7.

2.9. Two extensions of the symmetric group S,. In this section we consider extensions
of the constant sheaf G = S, by the constant sheaf 4 = u,, which are not necessarily
constant.

Let O(n) be the standard orthogonal group of rank n. This is a group scheme over
X (even over Z). We associate to it two sheaves of groups:

a) the sheaf O(n): U O(n, U);

b) the constant sheaf with stalks O(n, K) everywhere, where Spec K is some fixed
geometric point of X. We denote this sheaf by O(n, K).

Let Q be the standard quadratic form of rank »

Q(Xygy.eer Xp) =x2+ - +x2,
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with orthogonal-group O(n), and let C1(Q) its Clifford algebra 1.9. One constructs from
Cl1(Q) a two-fold covering O(n) of O(n) (1.9):

) 1 - 4, » 0@ - O - 1,
which defines two exact sequences of étale sheaves:

b)) 1 -y - O - 0@ - 1,
and

3) 1 > p, > O, K) > O(m,K) » 1.

Actually (3) is just the K-points of (2), considered as an exact sequence of constant sheaves
over X,,. We now consider the symmetric group S, on n letters. It acts on Z" by permuting its
canonical basis. This defines an orthogonal representation S, < O (n) where we view S, as
an algebraic group of dimension zero. At the sheaf level, this representation yields two
sheaf homomorphisms,

S, > O(m) and S, - O(n,K).
This defines two central extensions of S, by u,, the pull-backs of (2) and (3):
@) 1> p, -8 -8, -1,
()] 1—+uzf>§n—>Sn-»1.

The sheaf 5,, is constant, as the pull-back of a constant sheaf by another. It can be checked
that its value is the group defined at [22], p. 654 (or [21], p.355) (see [22], p. 662, re-
marque 2), but we shall not need this. We shall see in lemma 2.11 that the sheaf 5,’, is not
constant in general. However:

2.10. Lemma. The two extensions () and (B) are locally isomorphic.

Proof. 1t is clear that (a) and (8) coincide at the geometric point Spec (K). But if &
and K are two separably closed fields, a standard argument shows that the extensions
§,’, (k) and S’(K) are isomorphic. Indeed, this is obvious if k'c K, hence if k¥ and K have
the same characteristic. If K = @, and k = F, for (p + 2), we get the same conclusion passing
through the Witt vectors of k. More generally, if R is strict henselian with residue field £,

S,R) - 8,k
is an isomorphism. Hence the conclusion holds in general. O

As in 2.7, to the class
«—peHZ(S,, 1y)
one associates an element

fEHL (X, (S, 15)) = HL (X, 1) .

We now determine this element.
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2.11. Lemma. a) The image of S,(Z[4]) in S, equals the alternating group A,.
b) The homomorphism S'(Z[3, 1/5]) — S, is surjective.

Proof. We argue as in [22], p. 659. Denote by (e;) the canonical basis of V = Z[1]",
and also that of

VIy21= V®Z[%]Z[%"/2-]'

We provide ¥V with the quadratic form Q, with standard orthonormal basis e;. Then

V[]/i] inherits by extension of the scalars the form Q ® Z [1/5.] with the same ortho-
normal basis. Let i & j. The elements

1
T ﬁ (e, —¢)

belong to Cl{(Q® Z []/5]) and are of norm N(x;;) = 1. Therefore they are elements of

the group O (n) (Z [, ]/5) (see 1.9). More precisely, one checks that (with the notations of
section 1.9):

r(xj)e,=e, if k+ij;

r(xij)ei = €;; and r(xij)ej =e.
Hence r(x;) = (/) € S,. As S, is generated by transpositions (i), this proves b).

To prove a), we first observe that for any i, j, k, / one has

X;; X, € I (Z [%]) .

Since 4, is generated by products of two transpositions, it just remains to prove that

em(5 () )

Let (if possible) x € 5,’, (Z [1]) such that r(x) = (12). Then, in
o(z|L /2
29 b

x lxekerr=yp,.

one has

This implies that x,, € 0 (n)(Z[$]), a contradiction. O
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2.12. Proposition. For any scheme X over Z[%], the image of o.— B in H}(X, u,)
is equal to (2).

Proof. By functoriality, it is enough to see this when X = Spec Z[4]. Let f be this
image. By lemma 2.11, a) (resp. 2.11, b)), f is non trivial (resp.

e (e g) - (e [13])

The conclusion now follows from the fact that

ker (H1 (Z [%], ﬂz) - H! (Z [%, l/i]’ ﬂz))
is generated by (2). O
Denote by 0 (resp. by ) the boundary map:
HL(X,S,) » HA(X, )

associated to the extension (a) (resp. (f)). From propositions 2.8 and 2.12, we obtain:

2.13. Proposition. Let xe H. (X, S,); denote by det(x) its image in H} (X, u,) via
the map induced by the signature:

0(x) —6(x) = (2) - det(x).

Proof of Serre’s formula 2.3. Let e:n,(X) — S, be the permutation representation
associated to m; denote by [e]e H} (X, S,) the image in étale cohomology of the class
of e in H'(n,(X), S,) and by [E] (resp. []) the class of E (resp. n) in H (X, O(n))
(resp. H} (X, O(n, K))), cf. 2.1.

2.14. Lemma (cf. [22], 1.4). With the notations introduced above, [E] (resp. [n]) is
the image of [e] via the coefficient homomorphisms !

S, On) and S, O(n,K).
In view of 2.14, 2.13, 1.19 and 1.21, to prove 2.3 it suffices to observe that both

composites

S, = O — y, and 5, » O@,K) —= p,

coincide with signature. Hence,
det(e) =det[E] =det[n] =w,(E) =w,(n). O

2.15. A generalisation. The arguments of this section apply in fact to any subgroup G
of I'(X, O(n)) instead of S,, provided we know the difference f; € HX (X, Hom (G, ,))
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between the classes of the corresponding extensions (x;) and (8;). By functoriality, it is
enough to treat the ‘maximal’ case

G=T(X,0(n)=0(,X).

This leads to Frohlich’s theory of the “spinor class” [7]. We shall not develop it here.

§ 3. Stiefel-Whitney classes attached to a tame covering with odd ramification

3.1. Equivariant cohomology. Let Y be a scheme and G a group acting on Y. Con-
sider the category A of étale G-sheaves on Y. In [13], § 2, Grothendieck studies equivariant
cohomology, i.e. the derived functors H* (Y, G; —) of the left exact functor

F - TY,F), for FeA.

There are two spectral sequences converging to H*(Y, G; %#):

(a) I = H*(G,H(Y, %));

(b) I = H*(Y/G, #(G, F)),
(cf. [13], pp.244-245 and [11], formulae 5.2.5). The second one is defined when the
quotient Y/G exists in an appropriate sense, e.g. when Y is covered by G-invariant open
affine subschemes. By definition, 2#7(G, —) is the g-th derived functor of #°(G, —), where
H°(G, F) is the sheaf on Y/G associated to the presheaf

U— F(U)°.

These are Leray spectral sequences associated to appropriate morphisms of sites.

For yeY, let D, denote the decomposition group of y, i.e. the stabiliser of y in G.
Then D, acts on the residue field k, of y. Let I, be the kernel of this action, the inertia
group of y.

3.2. Proposition (cf. [11], cor. to th. 5.3.1). Assume that for any point y€Y, the
inertia group I, of y in G has finite order &, and that multiplication by ¢, on ¥ is an iso-
morphism. Then

HUG,F)=0 forany ¢>0;
therefore the spectral sequence (b) degenerates into isomorphisms:
H(Y/G, #°(G, F)) = H'\(Y,G; F).

3.3. Corollary. Assume that & is the constant sheaf Z|2 Z and that all the ¢, are odd.
Then there are canonical isomorphisms:

H(Y|G,Z/22) = H'(Y,G;Z/22).
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In particular this defines “‘edge homomorphisms”:

H{(G,Z/|2Z) - H'(Y/|G,Z/22)
for all i =2 0.

This follows from 3.2 and the spectral sequence 734.

3.4. Functoriality. We keep the notations of 3.1, and assume G to be finite. Let X
be a scheme provided with the trivial action of G and #n: Y — X be an equivariant, finite
and flat morphism. We assume that:

(a) = identifies X with the quotient Y/G.
(b) For any y €Y, the inertia group I, of y in G has odd order ¢,.
By corollary 3.3, one obtains homomorphisms:
n*:H(G,Z/2Z) - H'(X,Z|22).
The following lemmas 3.5 and 3.6 are obvious by functoriality.

3.5. Lemma. Let Y' be another scheme on which G acts, ' . Y' — X an equivariant
morphism satisfying condition 3.4 (a). Suppose that there exists an equivariant map g:Y' - Y
such that n’ = nog. Then n’ satisfies condition 3.4(b) and n'* = n*.

3.6. Lemma. With the notations of 3.4, let ¢ : Z — X be a morphismand p:T' - Z
be the pull-back of n by ¢. Then p satisfies conditions 3.4 (a) and 3.4 (b). Furthermore one
has p* = ¢* o n*.

3.7. Proposition. With the notations of 3.4 and 3.6, assume Z to be locally noetherian
and normal. Assume further that 7 is separable (i.e. separable at all generic points of Z). Let
T be the normalisation of T' and n,:T — Z be the composite

T ->T - Z.
Then m, satisfies conditions 3.4(a) and 3.4(b), and (n,)* = ¢* o n*.

Proof. By 3.6 and 3.2, we need only to show that =, satisfies condition 3.4 (a). For
this, we may assume that Z is affine, integral and noetherian, say Z = Spec 4. Since 7 is finite
and flat, so is n,, and T = Spec B with B a flat finitely generated 4-module. We also set
T’ = Spec B'. Let A’ = B’S. We have to show that 4’ = 4.

First assume that A is a field. Then B is a finite dimensional 4-algebra, with radical
R, and B’ = B/R. By assumption, B = [| B, where the B, are separable field extensions of
A. Therefore the projection B — B’ has a unique splitting. Let us still write B’ for the image
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of B’ in B via this splitting. By uniqueness of the splitting, G keeps B’ invariant in B, there-
fore the injection

A =BG —_ BIG= A
has a section, hence is surjective.

In general, let L be the total quotient ring of B. Since 4 = B and Bis finite over 4, we
have K = L€. Besides, the total quotient ring L’ of B’ is the integral closure of L. By the
special case above, 4’ = B’Y is identified to a subring of K containing 4. On the other hand,
since L’ is a product of separable extensions of K, the algebra B’ which is the integral closure
of A in L’ is finite over 4 (see [3], V, §3, n°7, cor. 1 to prop. 18). Since A4 is noetherian,
A’ is finite over A; since A is integrally closed, it follows that 4'= 4. O

Oddly ramified coverings.

3.8. Definition. A scheme X is a Dedekind scheme if it is noetherian, normal and one-
dimensional.

3.9. Remarks. (i) We are mostly interested in two cases, in smooth curves over a
field and in schemes of the form Spec ), where (), is the ring of integers of a number field
k. Another example of possible interest is

X = Spec(R) — {x},
where R is a normal two-dimensional local ring and x is its maximal ideal.
(ii)) An open subscheme of a Dedekind scheme is Dedekind.

(iii) Assume that X is a Dedekind scheme. Then X is either a curve defined over a
field or X is a quasi-affine scheme. In fact, if 4 = H°(X, ¢y) then the induced morphism
S X - Spec A either maps X to a point, or it is quasi-finite. By [12], IV, 18.12.13, f is
quasi-affine in the second case and by definition of a quasi-affine morphism X is a quasi-
affine scheme.

3.10. Definition. (i) Let n: Y — X be a finite, flat morphism of Dedekind schemes.
We say that n is a ramified covering if furthermore, for any generic point { = Spec K of X
and any generic point n = Spec L of Y above (, the extension L/K is separable. Then there
is an open subset U of Y such that x|, is étale. The complement Z’ of a maximal such U is

called the ramification locus of n in Y; its image Z in X is called the ramification locus of
min X.

(i) We define the ramification index e, of a closed point y €Y as follows:

Oy,, is a discrete valuation ring containing O ,, where x = n(y). Then e, is the
ramification index of the extension

Oy, of 0Oy,.

34

So ¢,>1 if and only if ye Z".
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(iii) We say that = is tame if for all y, the ramification index e, is prime to the
characteristic of the residue field of y and the residue extension at y-is separable.

(iv) Let ! be a prime number. We say that = has ramification prime to / if all the ¢,
are prime to /.

Assume that z is Galois and let G = Gal (%) be the Galois group. By definition G acts
on Y and X = Y/G. For any y €Y, the numbers ¢, and ¢, coincide, where ¢, is as in 3.2,

3.11. Proposition. Let
n:Y—> X and n':Y - X
be two ramified coverings. Let n":Y" — X denote the normalisation of

Yx ¥ > X.

Then " is a ramified covering.

If = and =’ are tame, so is n". If moreover n and n' have ramification prime to I, so
does n".

Proof. The claim is local so we may assume that X = Spec R, where R is a discrete
valuation ring. Then Y = Spec .S and Y’ = Spec S, where S and S’ are semilocal principal
ideal rings. Let K (resp. L, L') be the field of fractions of R (resp. of S and S’). Then L/K
and L'/K are finite extensions, S and S’ are the integral closures of R in L and L', and
Y x, Y’ corresponds to the integral closure of R in a compositum L” of L and L' Up to
completing K, we may even assume that K, L, L' and L” are complete; then S, S’ and S”
are discrete valuation rings. Let k be the residue field of K. Since ramification indices do
not change by unramified extensions, we may assume that k is separably closed (cf. [24],
ch. III, th. 2). Then, by the structure of complete tame totally ramified extensions (e.g. [19],
ch.Il, prop.12), L/K and L'/ K are cyclic and the proposition becomes obvious.

3.12. Corollary. Let X be an irreducible Dedekind scheme, with function field F. Let
E, be a separable closure of F and I = Gal(F,/F).

Given a prime number 1, there exists a quotient n,(X)'™' of I with the following
property:

Let F'' be the extension of F corresponding to n,(X)"™' and n'™' = Spec F*"',
Then for any ramified covering n:Y — X such that Y is irreducible, n is tame
with ramification prime to | if and only if the canonical morphism n'™' - X
factors through =.

There is an anti-equivalence of categories between the category of tame coverings of X with
ramification prime to | and the category of finite sets provided with a continuous n,(X)™"
action. In particular, any tame covering n:Y — X with ramification prime to I, such that Y
is irreducible, is covered by a Galois covering of this type.
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By 3.3, there exist canonical homomorphisms
Hi(n, (X)"2,2Z/2Z) - H'(X,Z/22).

3.13. Proposition. Let Z be another Dedekind scheme and ¢ : Z — X a morphism.
Assume Z irreducible. Then ¢ defines a continuous homomorphism

¢:m (Z)"? > m(X)"2.

Furthermore, the diagram

Hi(n,(X)"2,Z/2Z) — H'(X,Z/22)
¢*] ¢*]
H(n,(Z)"?,Z/2Z) — HY(Z,Z/22)
is commutative.
Proof. This follows from 3.6 and 3.10. O
3.14. Stiefel-Whitney classes. Let n:Y — X be a tame covering of degree n, with
odd ramification. By 3.12, & corresponds to a continuous permutation representation of

degree n of m,(X)™ 2. This in turn corresponds to a continuous homomorphism G — ¥,.
By composition with the natural embedding

%o 0@ 0),
we obtain a continuous orthogonal representation

e:m(X)"? » O, C),

hence Stiefel-Whitney classes:

w; (@) e H'(n,(X)*"2,Z/22),
asin 1.8 (b).

3.15. Definition. The i-th Stiefel-Whitney class of = is the image
wi(m)e H(X,Z/2Z) of w;(o)
by the homomorphism of 3.4. The total Stiefel-Whitney class of = is
w(n) =Y w;(nr) where we define wy=1.

3.16. Theorem. Let nt be asin3.10and Z, T, T', ¢, p, n, be as in 3.5 and 3.6, with
Z a Dedekind scheme. Then, w(n;) = ¢* w(n).

Proof. This follows from 3.13. O
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3.17. Remark. If = is étale, w,(n) coincides with the class of 2.1.

§ 4. Reduction to the étale case

4.1. Definition. In this section X and Z are Dedekind schemes and ¢ :Z - X is a
ramified covering (see 3.8 and 3.10).

We say that the covering ¢ is a Kummer covering if the extension of the fields of
rational functions K,/K is Kummer, that is, a field extension obtained by adding to K a
N-th root of some element fe K.

A closed point z is totally ramified if e, = [K, : K], the degree of the field extension.
In this case one has k(z) = k(¢ (2)).

4.2. Kummer coverings. We shall construct Kummer coverings as follows.
A natural number N = 2 being given, let &/ be an invertible sheaf such that
dN g 0x(2vx : x),

where D = ) v, - x is an effective divisor on X. Then the section s of & with zero set D or
rather its inverse

Oc(=Lve ) = &
N-1
gives the Oy-module &' = P o ~' and Oy-algebra structure.
[

Define Z = Spec,, # to be the normalization of Spec, %"
For example, if X = Spec 4, we have &/ = (); and fe 4 with zero divisor
(f)=2vex.

Of course, Z = Spec R where R is the integral closure of the ring R’ = A[t]/{¢¥ — f).

In general, each point has an affine neighbourhood U such that

rU, &)= A1/~ 1>,

where A = I'(U, @) and f is the local equation of ) v, x on U, that is of the shape
% - u in the localization @) , of 4 in x, where ue @f , is a unit in Oy , and 7 is a local

parameter. Of course I'(¢ ™1 (U), 04) is again the integral closure of I'(U, ®').

We will assume, for simplicity, that for n = gcd {v,, v, = 1} one has either n =1 or
otherwise the section s is not the n-th power of a section

s’eI‘(X,(Dx(Z%‘x)).
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4.3. Proposition. Under the assumptions made in 4.2 one has:
(1) Z is irreducible and ¢ : Z — X is a Kummer covering.

(i) @ has ramification index 1 at the points x for which v, = 0, and has ramification
index

N
ng (N’ vqp(z))

=21

(z) =

2='® (3% ] )

Proof. This ought to be well-known, at least if X is a curve over a field k (see for
example [5]). We give a proof for the reader’s convenience. Of course we may assume that
N 2z 2. Locally at some point x € X,

at a point z € Z such that v,

(iii) One has

R =0y [t]/<tN =17 - u).

If n = ged {v,, v, 2 1} = 1 then ¥~ - u cannot be a power. For n > 1 we assumed that
s and hence 1"~ - u is not a power. So Z is irreducible and this proves (i).

If v, = 0, then R’ is normal as ¢ is unramified at x. If v, =1, then R’ is normal and
o is totally ramified.

If0<ij<N with i+j<N,

(e (5
(e

Otherwise i +j= k + N for some 0 £ k<N, and

e ()42 9

injects into

injects into

Therefore
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is an O-algebra containing £’ and contained in
X
N-1

K, = (? A @ K.

(iii) says that this algebra is normal, which we can prove locally. So we may assume
that

R =A[]/N =1V u)
where 4:=0y , and v(=v,) 2 2.
If one defines d = gcd(N, v), Md = N and ud = v one has gcd (M, p) = 1. Consider
Ay=A[v]/{v* —u).

As before, A, is normal and unramified over 4 and, of course, v e A¥. One considers the
map

N-1 y
ALK =10y » T = @ Ariz~[F]
0

defined by
t>t and v M.ogor= M- R

Then one has

M-1 .
T=@ 4,0 5]
0 .

Localize 4, at a point x, above x, and call 4, the local ring, with local parameter 7. We
now want to show that

M-1 .
T= @ 4,0 [#]
V]
is a discrete valuation ring.
Let a be the unique integer such that 1 <a < M —"1 and pa =1+ IM for some /

with 1 £ /. Set

si=t7~ 5] = par-1,
Then for b:=a+j

tit™ [Eﬂl]s =gatig~ [EMI] = g [Lbﬂ——l'] .

Regarding this formula for different values of j one finds s to be a local parameter of T

If 0<b < M, then %—;9@/\/ and

(=515 )
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That is
po~ [l = oo~ (5281,
If b= M+ B and 0 < B < M, then similarly
r= ) g = gm0 -[29 0 _ - (521
Ifb=M,

. - J ‘M-1
tlt_[EMl]s = tMt_['u——M—] = 1.

Therefore 7 /{s) = A,/{z) is a field. This proves that J is a discrete valuation ring, and
therefore (ii).

Also one has s™ = tv°. This proves that the point defined by s in T is totally
ramified over x,, and therefore its ramification index over x is

N
M= ——.
ged (N, v,)
4.4. Remark. In fact, if we remove from our assumptions 4.1 the condition that X’
has dimension 1 and we just assume that X is a regular scheme over some localization of Z,

then the computation above remains word by word the same on X — Sing(Zy), where Zy
is the reduced ramification locus in X. Hence outside of codimension 2 one has:

'%lX—SingZx = f'x—smgxx .

AS B = j,R|x - singzy» Where j: X — Sing 2y — X, one still obtains:
N1 v i
SR
0 N

4.5. Assumptions. In the rest of this section, we will assume that n: Y — X is a rame
covering of Dedekind schemes of degree n, whose ramification indices e, are all odd.

in this case.

We define some natural numbers

2 _
m_ = Z e, —1

yen~1(x) 8

[k(»:k(x)],

n=lem{e, yen (%)},

N=Iem{n,xeX} =Ilem{e,yeY}
where x is a closed point in X. For any x, any y, one has

ged (e,, char k(n (x))) = ged (n,, char k(x)) = ged (N, chark(x)) = 1.

12 Journal fir Mathematik. Band 441
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We define divisors
o¥/X)=)Ym xeDivX,

e,— 1

Dy =3 -yeDivY,

N
D= ) —-xeDivX.

nx>1 nx

Often we abuse notations by denoting by the same letter the class of the divisor in Pic or
in Pic/2.

The covering n being tame, one has Oy(2Dyx) = wyx. Hence there is a trace
n, Oy(2 Dy,x) = Oy which defines on the bundle E:=n, Oy (Dy,x) a unimodular quadratic
bilinear form qg

E)< E — n*@y(sz/x)

S

(DX
given by Tryx(x - y).

4.6. Proposition. Let © be as in 4.3. Then there is a Kummer covering ¢ :Z — X
of degree N such that one has:

Denote by T the normalization of
T'=Y%yZ,

and denote the morphisms as in the diagram

T 2.1 P,y

N

zZ — X.
¢

J

Then =, is an étale covering of irreducible Dedekind schemes.

Proof. Of course N =1 if and only if = is already étale, in which case we take
¢ =id.

Assume N 2 2. As noted in 3.9 a Dedekind scheme is either a curve over some field
and therefore quasi-projective or it is quasi-affine. In both cases we have ample sheaves on X.
If X is quasi-affine, then by definition of ampleness one can take 0y.

Assume that X is projective. Then we choose a closed point x € X — D,. Let &/ be an
ample sheaf. Replacing o/ by some power one can assume that &/~ (— D, — x) is generated
by global sections. Then &/~ = 0y(D) where D = D, + x + D, and where D, is a divisor
with |D,|n|x+ D,| = 9.
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If X is not projective it is quasi-affine and ¢, (— D, ) is generated by its global sections.
We find a divisor D, with | D,| n|D;| = @ and a section s of @ with zero set D = D, + D,.
Multiplying s by a unit, we can assume that s is not a power of some other section.

In fact, if X = Spec 4 # | D,| we can as well use the Chinese remainder theorem to find
a function fe 4 whose divisor (f) is of the shape (f) = D where

D = Dl + X + Dz
for an effective divisor D, and some point x ¢ |D,| with |D,|n|x+ D,| = .

In any case the conditions of 4.2 are fulfilled. Set %#:=n*s/ Then Z = Spec, %,
T = Spec,, & with
N i D,-i
@ (x5

N i-e, (n*Dy) - i
r=ga( 1L [52)+["R])

yern~1(x)

As m|y_p, is étale, o]y _ p, is the identity, and therefore n,|yx_p, = p,|x_p, is étale.
It te T, such that p, 6(f) = y e n~*(x), where x € D,, then the ramification index of

t over y is
N

ged (N, Ne, >
nx

and therefore the one of ¢ over x is n,. The ramification index of z = m,(¢) over x being

nx
=,
ey

N

—_— e = N
N ol
g (’n>

x

t is unramified over z. Further, separability of the residue field extensions is computed
locally, at points above D,.

We denote again by 4 and B the local rings of X at x and Y at ye n~(x), and we

setv=vy, = —Al Then locally, we obtained the normalizations R and T as follows:

nx
Bv][w][1] o  B[v](«] o  B[v] . B
O —u, 0 — v, " — 10) T —u, 0 — v) T —u)
\ l= 1K
A[v][] . AlY] s A

' —u t"—Tv) s T —u)
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The right square is cartesian. Therefore a, is separable as 7 is separable. As
(e, chark(x)) =1,

and v is a unit in B[v]/{v' —u), a, is separable; a, and « are totally ramified, hence
separable. Therefore a5 o m, = a, o a5 o a, is separable, as well as n,.

This shows that 7, is étale. O

4.7. Notations. Considering ¢ as in 4.6, we define as in 4.5: F:=n, Or, together with
its unimodular quadratic form

qr = Trp )z (x - y).
As J|y_p, is an isomorphism, one has by base change:
o*(E, qis)lx—p1 = (F, qF)lx—D, .

Let j: Z— ¢~ *(D,) » Z be the open embedding. We define ¢ to be the subsheaf of
Ju®*Elx_p, = joFlx-p, generated by ¢*E and F. That is, one has a diagram:

Q*E®F —» 9 o j,Flx_p,,
(p*e®f) — o*e—f.

As Z is a Dedekind scheme, ¥ is a locally free ¢, sheaf (of course, not unimodular qua-
dratic in general).

We denote by a: F — ¢ the inclusion. One has an exact sequence

deta

0 - detF —— det¥ — Y k(2)'® - 0.

It defines a divisor I':=) I(z) - ze DivZ which we want'to compute in the sequel. We
first observe that our definition is symmetric as one has the little

4.8. Lemma.

(i) w,(@*E) = (det p*E, det p*q;) = (det F,detq;) = w,(F) in HA(Z, Z/22).
(i) c,(p*E)=c (F) in PicZ.

Gii)) ' =c¢, (%) — c;(F)=c,(%)— c,(¢*E) in PicZ.

Proof. As HL(Z,Z/2Z) injects into HA(K,, Z/2Z) and

@* (E, q5) ®oy Kz = (F, q5) Qo K7,
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one has (i). Via the map
H)(X,Z/2Z) - H.(X,G,)=PicZ
one obtains (ii), which implies (iii)). O

4.9. Proposition. Let I and w(Y/X) be as in 4.7 and 4.5. Then one has

2 _
0= 5 =G0 n0)kee)

yen-1(p(z)) €
and
I'=¢*w(@/X) in DivZ/2.

Proof. Base changing by ¢ one has ¢* E = p, p? 0y(Dyx) (notations are as in 4.6),
and one also has F = p, é,Or, where

04 Orlx-p, =Pt Oy(Dy;x)lx-p, =PI Oylx_p, -
Denoting by
J:T'=pyle™ (D) » T’

the inclusion, we define 4’ to be the subsheaf of
Jx Pt Oy(Dy;x)x - p, = js0xOrlx - p,
generated by p} Oy (Dy x) and J, Or. That is, one has morphisms
pY Oy(Dy x) ® 0,0 — 9" o J';‘S* Orlx-p, >
where “—"" stands for the surjection (e @ )+ e — f. As p, is finite, one has
P9 =%, a=p,a,

where o' is the inclusion 6,0 — ¥'. As [(2) is also the dimension over k(z) of cokernel
o ® k(z), one has

&= Y alk@):k@)],

v'ep; (z)
where q, is the dimension over k(¢’) of the cokernel of a’ ® k(¢’), supported in
prle D) <=T.
Therefore we may compute locally at xe D, < X. Set

V=Specd,; and W = SpecB,,
with
4;=A[v]/{»*—u) and B, = B[]/ —u),
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for
A = QX,x and B = @x’x ®0X0Y,= n*(px’x .
One has
k) : k)] = Y [k(w):k@)].
w—y

Recall that V (resp. W) has ramification index 1 over X (resp. Y). Denote the maps as
in the Cartesian squares:

T 6 R Ty pl N W ql > Y
nl l I
Z > V » X .
e c
One has
nx—1
0.0, = @ A4,¢,
0
ne—1
P1,0p = @ B,¢,
1]
* % * " —i o e, —1
Py, P14y Oy (Dy,x) = Pi,P1 Ow (Dy,y) = (‘B B Z 2 "W
0 w—y
as e, = e, ., Where #; ! is the invertible sheaf associated to B, ¢. One also has
nx—1 - ' e, i
P1,0,0p = @ 2 ( > [_n'_:lw>
0 w3y x
This says: ' o
nx—1 . .7 _1
4 = @Q;'(Zsup{[ew I:I,e”' }w)
1] W nx 2
Therefore T

t'-ow i=0 n

o) e,—1 [e, i n, el—1
= Z 2 — T .
i=0 x

Z at'[k(f’)Ik(w)] = "::2-:1 sup {0’ ew2-;1 _ [ew' l]}

This implies, as Z/V is totally ramified, that:

@)= ) a [k@):k@)]= X [kw): k@] ¥ a - [k():kw)]

t'—y w—y t'—w
n, e2—1 'n,c el —1
=(Z [k(W)ik(U)])';—‘T-‘- T 22 ¥ k) k)]
W=y w y+x vy ‘x:";

2 _
5 25 k() kI,

y=+x vy
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as claimed. On the other hand

2 _
o*o¥/X)= T ¥ (nx-ey8 1[k(y):k(x)])-z

zZ=Xx y—+x

and as (nx - %) € 2Z, this proves as well that I' = p*0(Y/X). O
y
§ 5. Stiefel-Whitney classes of quadratic bundles; the splitting principle

5.1. Let X be a scheme over Z[1] and (E, q;;) be a unimodular quadratic bundle of
rank n. Equivalently E is a vector bundle of rank n together with an isomorphism

gg: E —» E:=om, (E,0y),
for which gg(x, y):= §z(»)(x) is symmetric. Then (E, gz) has Stiefel-Whitney classes
wi(E, qp) € H, (X, 2/22).

The first one is just the isomorphism class of (det E, detq;) in HL (X, Z/2Z). There are
different ways to understand the higher ones.

Either by computing the cohomology of the classifying space
H*(BO(n)/X,Z/2Z) = H*(X, Z|2Z)[w,, ..., w,]
(see section 1) or — as far as w, is concerned — by the universal central extension
0 » Z2Z - O(n) - O(m) - 0

(see 1.17), or via Grothendieck’s splitting principle for quadratic bundles [18], [4], which
we now “‘recall”.

5.2. On the projective bundle p: P:= P(E) - X we consider the composite map

ge'

5:0p(—1) —— p*E¥Y L p*E 1 0,(1)

which is nothing but the following section of S?E:

Oy — EQE = Som, (E,E) —2%, EQE —» S*E.

The section s is not trivial as g, is symmetric. We denote by Q its zeroset. In fact Q is the
relative quadric of isotropic vectors, which is smooth over X as gy is unimodular. On
U= P — Q, 5|, is an isomorphism and gives O(1)|, a unimodular quadratic structure of
rank 1. We denote by

(0(1),5) e Hy(U, Z/22)

its first Stiefel-Whitney class. Set p’:= p|y.
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Claim. For all m one has a splitting

Min{m,n— 1}

Hi (U, Z2/27) = PYHETI(X,Z2[2Z) v (0(1),5)% .
j=0

J

Proof. The composition of the maps
Rip,Z)2Z % Ri'p|p2/2Z -ty Ri*2p, z27

vanishes as it is the cup product with the (relative) first Chern class of Ox(Q) = Op(2) in
R%*p,Z|2Z. By [4], (3.3), the sheaves

R*-1 P|Q* Z,
are zero and the sheaves
R 2"p IQ‘ ZZ
are locally constant Z, modules of rank one, for 2j+ n—2, and of rank two, for
2j = n — 2. Hence the same holds true if one replaces Z, by Z/2 Z. By the “Weak Lefschetz
Theorem” and by base change for the proper morphisms p and p|, the map « is bijective,
and hence B; the zero map, for i < n — 2. Moreover a,, _, isinjective. By duality one obtains as
well that f,_, is surjective and that, for i > n — 2, the map f,; is an isomorphism. Therefore
one has R'p, Z/2Z =0, for i 2 n. As
R2j+1p* Z/22= R21+1PIQ"’Z/ZZ= O s
for all j = 0, the restriction map
R*p,Z|2Z - R¥p,Z/2Z
is an isomorphism, for 2j < n. The residue map

R¥*1p. 7/27 » R¥p|n.Z[22

is an isomorphism for 2j+1 <n — 1. Since the right hand side is the free Z/2Z module
generated by a,;(c, (0(1))%), the left hand side is generated by

(0@),5) v e, (OM)1y)™ .

In fact, its residue is the cup product of the residue of (¢(1), 5) in p|g. Z/2Z with

1 (O(M)1g)™ = ay;(c, (0 (1)) € R*plo. Z/2Z .

If n is even, then Ker(f,_,) is a Z/2Z module of rank one. Hence

Kef(ﬁn-z) = Im(“n-z)




Esnault, Kahn and Viehweg, Stiefel-Whitney classes 181

and, as above,

n—2
2

O, s)ue (OM)y)”
is a generator for R""!p, Z/2Z.
Aé R%p, Z|2Z is generated by the relative class of
c,(O()|y) ¥ e HE (U, Z/27Z) for2j<n,
and as R**1p. 7/2Z is generated by the relative class of
@), s)ve,(O)|,) e HY T (U, Z/2Z) for2j+1<n,
one obtains the splitting

H3 (U, Z/2Z) = P PTHI (X, Z[2Z) v e  (O(1)|y)Y

2j<Min{m,n— 1}

® @ pHITYTUXZ22) v (0(),5) ue, (O1)]p)™ .

2j+1 =Min{m,n—1}
Finally, one has
e (OM)1y) = (O, ) + (=1 u(0),s)

where (—1)e p’”"H} (X, Z/2Z) (see 5.3 below). This proves the claim. O

In particular there are classes w,_;(E, qg) € H} (X, Z|2 Z) which are defined by the
expression

(O1),5)°" = D p" W ;(E, g) v (0(1),5)" .

j<n
One defines
wo(E, qg) = 1€ Hj (X, Z/22),

and w,(E, qg) = 0 for m > n. Furthermore, as in Grothendieck’s general principle [13],
the Stiefel-Whitney classes are functorial and additive.

5.3. For any unit u e I'(X, G,) we denote by () its class in HZ (X, Z/2Z) via the
connecting morphism of the Kummer exact sequence

0 - Z)2Z » G, —> G,, - 0.

As HL(X,Z/22Z) injects into H} (SpecK, Z/2Z) = K*/K*?, (u) is just the quadratic
residue of u in K*/K*2,

For any rank 1 unimodular quadratic bundle (L, s) e H: (X, Z/2Z), one considers
its class ¢, (L) in H2 (X, Z/2Z) via

H\(X,Z/2Z) - H\(X,G,) ~ Hi(X,Z/22),
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 that is, via the connecting morphism of the exact sequence
(*) V=g =gy > opp — 1.

Lemma. One has
cl(L) = (L9 S)u2 + (—1) v (La S) .

Proof. One can make a direct computation:
as (*) is the twist of the sequence
(%) 0 - Z/2Z - Z|AZ - Z|2Z - 0

by (—1) e H} (X, Z/2Z), one has 5, ((L, s)) = 6,,((L, ) +(—1)U (L, s) where &, (resp.
0,,) is the connecting morphism of (x) (resp. (x+)) (see for example [17], A 3.1).

It remains to show that 8, (L, s) = (L,s)"2. Let fap be an étale cocycle for (L, s)
in Z/22, of representative {,;€{0,1} = Z. One has 6{,;€2Z, and 3;6{,,mod2 is a
cocycle representing 4, (L, 5).

But (L, 5)V? is represented by the cocycle {ap - {5y mod 2. One has:

205 gy = Cap+0p)* — 02— 03, = Cay + 0Lp)* — 02— 03,
= (2 — (% — {2, (mod 4) = §{ (mod 4),

o
or L’ap . CM = —2€mod2. 0

Remark. If X is smooth proper over an algebraically closed field, then
HL(X,Z/2Z) = ,PicX

and ¢,(L) =0. But (—1) =0 and v is antisymmetric. So the formula does not say
anything. !

5.4. Notation. On X which we now assume to be regular, one considers the exact
sequence

0 - PicX/2 —» HZ(X,Z/2Z) » H2(K,Z/2Z)
coming from the localization
Z/2Z2=j,Z[2Z -~ Rj, Z[2Z
where j: Spec K — X is the inclu§ion of the generic point.
So if we H2(X, Z/2Z), we denote by w|y its reduction to the generic point Spec K.

It is the arithmetical part of w. If w|, = 0, then we Pic X/2. We say that w is algebraic,
that is, supported by algebraic cycles.
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5.5. One says that the unimodular quadratic bundle (E, g;) of rank 2n is split if
there is a subbundle ¥V < E of rank n which is totally isotropic, that is gg|,v = 0. As E

is isomorphic to EV via §j (see 5.1), the quotient E/ V" is isomorphic to ¥, and further-
more for any local sections v" of V'V, e of E, of image ve E/ V" ~ V, one has

e (v, €) = v’ (v).

Equivalently: (E, g) is split if one has a commutative diagram:

0 > VY > E > V—3 0
lid 1qE lid
0 > Y > EV > V > 0.

Proposition. One has for a split bundle E

w(E)= Y wi(E)=Y (1+(=D)" " ve)
izo 0
where ¢;(V) = c¢;(V")e H3' (X, Z/2Z) are the Chern classes of V.
Proof. Assume n =1. By 5.2 one has:

(0(1),5)°% = p"*w,(E, gg) + p"*wy (E, gg) v (0(1), ) ,
and by 5.3 one has
(0(1),9)°? = ¢, (W) + (=D U (0(1),9) .

This implies that
wy (E, qg) = (=1)

(which we could have computed directly on Spec K!), and that

Py (B, qg) = ¢, (O()]y) in PicX/2 o HZ(X,Z/22),

as
p'*:PicX - PicU

is an isomorphism. But one has p'*¥ V|, ~ 0(1)|,. This is the proposition in this case.
If n> 1, we will develop a “splitting principle for split bundles’:

On P one has the morphism «:Op(—1) — p*V, which is the composite of the
morphism §; ! o ¢¥ considered in 5.2 and of E — V. The image of a|, is a subbundle.

In fact, assume that x e U such that a ® k(x) = 0. Then §; - ¢* ® k(x) factorizes
through p*VV®k(x). Hence ¢q® k(x) factorizes through p*V® k(x) and for
§=godgoq"’ one has s ® k(x) = 0, which is excluded.
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Letg: Py:= P (p'*V) — U be the projective bundle and let ¢*p'* V — { be the map
to the tautological bundle { of P,. The morphism

6:0*Op(—1)|y <5 o*p*V > {

defines a section of { ® ¢* 0, (1)|, whose zero set is denoted by L. Then L is fiberwise for
¢ of degree 1. By homotopy invariance one has
Q*HE(U,Z/27Z) = H;(Ay, Z/22),

where
0 :Ay=Py,—L - U

is the affine bundle.

Since (¥ is a subbundle of ¢'*p’* V" and since o|,, is an isomorphism o' *p'*E
contains

('®e™*@s o q)(Gy(~1)=F
as a subbundle. The form gy, is unimodular and split. In fact, since {" is contained in

V'V it is totally isotropic. Moreover, ¢|,, gives an isomorphism of ¢'* (G * < ¢")(COy(—1))
with {, and one has g;|;(x", y) = x¥ (a(y)) for all

x'el" and ye™*(ds'°q")(Oy(-1).
Let F* be the orthogonal to Fin ¢'*p’*E. Then F* is isomorphic to W' @® W, where W
is the subbundle which is the kernel of ¢"*p'*V — {, and g .. again is split, as WV is

‘totally isotropic.

Applying the case n =1 to w(F) and the induction to w(F*), one obtains:

(n—1)
¢*p*w(E gp) = (1+ (=1 +e"*¢, (O (1)) v Z(:, A+ o)

il
o=

A+ D)y ulaW) +e* ey (O D) e (W)

A+ (=) ~rue™*p*e (V).

Il
o=

As @'*p'* is injective, one obtains 5.5. O

§ 6. Local contribution to Stiefel-Whitney classes of quadratic bundles

6.1. Definitions and Notations. In this section X is a Dedekind scheme over Z[4]
(see 3.8), K is the field of rational functions of X and (£, q;;) and (F, g;) are two quadratic
bundles of rank n such that (E, ¢z)|x = (F, g5)|x. One example was considered in 4.7 where
(E, qg) is replaced by ¢*(E, g5). We shall use the locally free @y-sheaf ¥ defined by

E®F —=»9 o Elg.
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The purpose of this section is to prove the

6.2. Theorem. The Stiefel-Whitney classes of E, F are related to the Chern classes
of E, 4 as follows:

WFDE, gz ® —qg) = Z(l +(“1))"—iu (%),
0

W(E®F,q;® qr)w(E, —g5)°* = g I+ D)V a(@ @ E).
We first show the
6.3. Corollary. w,(E, qg) + w,(F, q5) = ¢,(%) + ¢, (E) in
PicX/2 o HL(X,Z/22).
In particular w,(E, qg) + w,(F, q¢) is algebraic.
Proof of corollary. 'We know by 4.8 (i) that w, (E, q5) = w, (F, q5), and of course one

has w, (E, —qg) = n - (—1)+ w,(E, qg). So the degree 2 part of the left hand side of the
second equation of 6.2 becomes

wa(E, qg) + W, (F, qr) + wy (E, gg) U w, (E, q5)
+ (" (=1 +w, (E, QE))U(” (=1)+w (E, QE))
= W, (E, qg) + w,(F, gg) + n* - (=) u(—1)

whereas the degree 2 part of the right hand side becomes
2
¢ (@) + ¢ (E) + ( 2") (=Du(=D)=c; @) +c (E)y+@2n*—n) - (=)u(~1). O

Proof of 6.2. For the second equality one considers the quadratic bundle
(E@E, qg® —9g) -
This is a split bundle. To prove this one considers the isomorphism

EQE—5 EQ®E,

X+y x—Yy
(x@y)H( 7 ©— )

Then
=D —9)(c(x®y), c(x D) = gg(x, ).

Considering as in 5.1 the isomorphism §: E — E", one has that (E® E, q; ® —qg) is
isomorphic to (E® E", c), where c is the bilinear form whose quadratic form is the
contraction

cx@y, x®y)=y"(x).
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Let 6: E - E® E be the diagonal map x+ (x,x), and let d: E@ E — EY(~ E) be the
x-—

map (x D y)— 5 Y Restricting

0 Elg —— E@E|x=F@Elx —— Elg > 0
to F@® E c F® E |, one obtains the exact sequence
0 - ENnF - FOE - %4 - 0
where % is the subbundle of E|y = F| generated by
(e—f) for eeE and feF.

Therefore (F@E, q-® —qg) is a split bundle with maximal isotropic subbundle
EnF>%", and
(EQEDFOE, qp® —qr P qr® —9q5)

is split with maximal isotropic subbundle 4¥ @ E. One obtains the second equality
using 5.5:

WEBF,qz®qp) VW(E, —qs)* =wEDEDFDE, ;D —q: D g D —9g)
2n 2n
=Y+ (D))" Vg(E@F) =Y 1+ (-1 (E®Y).
0 0

For the first equality, one writes

WEDEDFOE, qz® —q: D qr® —q5)
=wE®E,q:® —qp) VWFOE, ¢ ® —qp) .

Again by 5.5, one has
WEBE, q:® —qg)=[[(1+(-D+a)
1

where the «; are the Chern roots of E. The right hand side of the second equality of 6.2
reads: ’

I;'](1+(—1)+a{)I:I(1+(-—1)+ﬁ,.)

where the f; are the Chern roots of %. Therefore the first equality is a consequence of the
second one. O

§ 7. Serre’s formula

7.1. Theorem. Let X be a Dedekind scheme, and let n:Y — X be a tame covering
with odd ramification indices. Consider

-1
(E,qg) = (n,@,( Z fz“z‘_) 'Y, Trnx(a : b)) s

yeY
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and as in 4.5 the divisor

2 _
o= 3 (3 ST Ee)ke) x

xeX \yern~ 1(x)
supported in the ramification locus of n. Then one has
() wy(E, qg) + o (Y[ X) = wy(m) + (2) U w, (E, q) ,

where the w;(E, qg) are the Stiefel-Whitney classes of (E, q;) and where w,(n) is the class
defined in 3.15.

Proof. Llet ¢:Z - X be a coveﬁﬁg of Dedekind schemes of odd degree as con-
structed in 4.6. Then

o*: H\(X,Z/27) - H\(Z,Z/2Z)

is split (and therefore injective) as for any w e H}, (X, Z/2Z) one has Q. 0*w = (degp) - w
and deg ¢ acts as a unit on H}, (X, Z /2Z). Therefore (S) is equivalent to

®*(S)  ¢*w,(E, qp) + ¢* oY/ X) = ¢*w, (1) + (2) U 0*w, (E, q5) .

Take the notations of 4.7. By 4.8(i) one has ¢*w, (E, ¢z) = w, (F, g;), by the second
equality in 4.9 and by 4.8 (iii) one has

e*o(Y/X)=c (%) —c;,(F)=c (9)—c,(p*E),
by 6.3,
c1(9) — ¢, (9*E) = ¢*w,(E, q5) + w,(F, q5)

and by 3.16 one finally has ¢*w,(n) = w,(n;). Therefore ¢*(S) is equivalent to
(Se) Wy (F, gp) = wy(mz) + (2) U wy (F, gF)
which has been obtained in 2.3. O

7.2. Corollary. Let ¢ : Z — X be a covering of Dedekind schemes of odd degree and
let T be the normalization of Z X, Y. Assume that n,: T — Z is tame with odd ramification
indices. Then w,(E, qg) + w(Y/X) is functorial, that is:

@* (W, (E, g5) + 0 (Y| X)) = w,(F, qp) + 0(T| Z)

where

(F,qp) = ("z,@T < ) @1, t), Trp z(a- b)) .

teT 2

7.3. Remark. Actually it is this fact, which is transparent in [23] once one believes

that there is a functorial definition of w, (r) which inspired the formulation and the proof
of 7.1.
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Added in proof. Conjecture 2.4 is false. The correct answer is given in B. Kahn,
Equivariant Stiefel-Whitney classes, preprint 1992.
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