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In this note we take up methods from [3] and [14], III, to give some criteria for certain
direct image sheaves to be ample. To give a flavour of the result obtained let us state:

Theorem 0.1 Let f : X → Y be a flat projective Gorenstein morphism of complex
reduced schemes whose fibres are irreducible normal varieties with at worst rational sin-
gularities. Assume that for some N > 0 the map f ∗f∗ω

N
X/Y → ωN

X/Y is surjective and that
for some µ > 0 the sheaf det(f∗ω

µ
X/Y ) is ample on Y . Then for all η ≥ 2 the sheaf f∗ω

η
X/Y

is ample, whenever it is non zero.

Similar statements, replacing ”ample” by ”maximal Kodaira-dimension” and allowing
degenerate fibres, played some role in ”Iitaka’s program” (see [1] or [9] and the references
given there).

The proof of (0.1) is more or less parallel to the proof of a similar result in [3], where
we assumed Y to be a curve and allowed degenerate fibres. Therefore it is not surprising
that (0.1) is effective again, i.e. that one can measure the ampleness of f∗ω

η
X/Y with

det(f∗ω
µ
X/Y ) and invariants of the fibres.

The interest - if ever - in results like (0.1) comes from the theory of moduli spaces.
Let Ch denote the functor of families of compact complex canonically polarized manifolds
with Hilbert-polynomial h and Ch the coarse moduli scheme. If ν > 0 is choosen such
that ων

X is very ample for all X ∈ Ch(Spec(Cl )), and if λη ∈ Pic(Ch) ⊗ Ql denotes the
”sheaf” corresponding to det(f∗ω

η
X/Y ) for f : X → Y ∈ Ch(Y ), then the ample sheaf on

Ch obtained by the second author in [14], II was of the form λa
ν ⊗ λb

µ·ν for µ, a, b >> 0.
Adding (0.1) to the methods employed in [14], II, we will show in §4 that in fact λν itself
is ample.

A quite similar improvement of the description of ample sheaves on moduli spaces Mh will
be obtained in §5 for the moduli functorMh of pairs (f : X → Y,H), where f is smooth,
ωX/Y numerically effective along the fibres and H a polarization with Hilbert polynomial
h, up to isomorphism. As we explained in [14], III, §1, this is not the moduli functor



Ph of polarized manifolds usually considered, at least if one allows the irregularity of the
manifolds to be positive. Ph is a quotient of Mh. In [16] the second author constructed
coarse quasi-projective moduli spaces Ph for Ph. As explained in (5.11) the natural mor-
phism Mh → Ph is finite, if for all (F,H) ∈ Mh(Spec(Cl )) one knows that ωδ

F = OF for
some δ. Under this assumption (5.10) implies:

The coarse moduli space Ph of polarised manifolds F with ωδ
F = OF exists as a quasi-

projective scheme. If γδ ∈ Pic(Ph) ⊗ Ql denotes the ”sheaf” corresponding to f∗ω
δ
X/Y

for
f : X → Y ∈ Ph(Y ),

then γδ is ample.

The same result, for moduli of K3 surfaces, is due to Pjatetskij-Šapiro and Šafarevich
[12].

The final version of [16] will contain a discussion of ample sheaves on Ph in the gen-
eral case, building up on the results explained here.

This note does not really contain any substantially new ideas. We use the proof of
(0.1) and of the ampleness of λν to recall and clarify some of methods from [3] and [14], III.

In §1 we consider the relation between weak positivity and ampleness. §2 contains a
discussion of the invariant e(Γ) introduced in [3] to measure the singularities of a divi-
sor Γ on some manifold X. As sketched in [14], III, we extend the properties of e(Γ)
to varieties X with rational Gorenstein singularities. In fact, the arguments in [14], III,
were a little bit too sketchy at this point and one statement has to be corrected (see 2.12).

In §3 we prove (0.1) and some similar result needed for the polarized case. We include a
short discussion about the ”effectivity” of (0.1).

After the discussion of ample sheaves on the moduli spaces Ch and Mh in §4 and §5
we will sketch in §6 some generalizations of (0.1) to fibre spaces with degenerate fibres.
However, the arguments in §6 should be considered as a guide line to the possible proofs,
far from being complete.

We keep the conventions from [14], II. Especially one should have in mind, that all
schemes are supposed to be seperated and of finite type over Cl , that points should be
Cl -valued and that locally free sheaves should be of finite rank, which is the same for
different components of the base.

1 Weak positivity and ampleness

Whereas in [14] we had to use the notation ”weakly positive over some open set and with
respect to a desingularization of a compactification”, we will get along in this note with a
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much simpler set up, related to ampleness. Using this, the properties of weakly positive
sheaves needed in the sequel can be deduced in a quite simple way.

Let Y be a reduced quasi-projective scheme, H be an ample invertible sheaf and F be a
locally free sheaf on Y .

Definition 1.1 F is called weakly positive over Y if for all a > 0 one can find some b > 0
such that the natural map H◦(Y, Sa·b(F)⊗Hb)⊗Cl OY → Sa·b(F)⊗Hb is surjective.

If F is invertible and Y is compact then ”weakly positive over Y ” is equivalent to
”numerically effective”. More generally we have:

Lemma 1.2 F is weakly positive over Y if and only if for all η > 0 the sheaf Sη(F)⊗H
is ample.

Before proving (1.2) let us recall some simple properties of ample sheaves.

Lemma 1.3 The following conditions are equivalent:
a) F is ample.
b) For some η > 0 the sheaf Sη(F)⊗H−1 is generated by global sections.
c) For some η > 0 the sheaf Sη(F)⊗H−1 is weakly positive over Y .

Proof. The equivalence of a) and b) is shown in [5], 2.5, and obviously b) implies c). If
c) holds true, then

S2·bSη(F)⊗H−2·b+b

is generated by global sections, as well as the quotient sheaf

S2·b·η(F)⊗H−b.

Hence S2·b·η(F) is ample as a quotient of an ample sheaf and by [5], 2.4, we are done.

The last condition in (1.3) motivates the following definition, which will be used in §3.

Definition 1.4 Let F and A be locally free sheaves on Y , A of rank 1. We write
F � b

η
· A if Sη(F)⊗A−b is weakly positive over Y .

If A is ample in (1.4), then the statement F � 1
η
·A implies that F is ample and measures

”how ample” F is compared to A.

Lemma 1.5 Let τ : Y ′ → Y be a finite morphism such that OY → τ∗OY ′ splits. Then F
is ample on Y if and only if τ ∗F is ample on Y ′.
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Proof. It follows directly from the definition of ampleness that τ ∗F is ample if F is
ample.

Assume that τ ∗F is ample. Let us choose b such that τ∗OY ′ ⊗ Hb is generated by
global sections. For some η >> 0 the sheaf Sη(τ ∗F) ⊗ τ ∗H−b−1 is generated by global
sections. Since τ is finite we have surjections

⊕τ∗OY ′ → τ∗OY ′ ⊗ Sη(F)⊗H−b−1 → Sη(F)⊗H−b−1

and ⊕(τ∗OY ′)⊗Hb → Sη(F)⊗H−1.

By the choice of b and by (1.3), F must be ample.

Of course the assumption made for τ in (1.5) holds true if Y is normal and τ is finite.
Other examples frequently used here are:

Lemma 1.6 Let L be an invertible sheaf on Y .
a) If for some N > 0 and some effective divisor D one has LN = OY (D), then one can
find some scheme Y ′, a Cartier divisor D′ on Y ′ and a finite flat morphism τ : Y ′ → Y
such that τ ∗D = N ·D′ and such that OY → τ∗OY ′ splits.
b) For all N > 0 one can find a finite flat morphsim τ : Y ′ → Y of schemes and an
invertible sheaf L′ on Y ′ such that τ ∗L = L′N and such that OY → τ∗OY ′ splits.

Proof. In a) we may take

Y ′ = Spec(
⊕
i≥0

L−i/(L−N ↪→ OY )).

Since L = OY (B − C) for effective divisors B and C it is enough to consider b) for
L = OY (B). For H ample and µ >> 0, Hµ·N(−B) is generated by global sections. If H
is the zero set of a general section we can apply a) to (Hµ)N = OY (H + B).

Proof of 1.2 Let F be weakly positive and η > 0. We find some τ : Y ′ → Y , by
(1.6,b), satisfying the assumption made in (1.5) with τ ∗H = H′η for some ample sheaf
H′. By definition weak positivity is compatible with pullback and S2·b(τ ∗F)⊗H′b will be
generated by global sections for some b > 0. Then S2·b(τ ∗F) ⊗H′2·b is ample as well as
τ ∗F ⊗H′ and Sη(τ ∗F)⊗ τ ∗H. By (1.5) we are done.

On the other hand, if Sη(F) ⊗ H is ample we can find some b > 0 such that
SbSη(F)⊗Hb is globally generated as well as its quotient Sb·η(F)⊗Hb.

The close connection between ample and weakly positive sheaves can also be expressed
using coverings.

Lemma 1.7 The following conditions are equivalent:
a) F is weakly positive over Y .
b) There exists some finite morphism τ : Y ′ → Y such that τ ∗F is weakly positive over
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Y ′ and such that OY → τ∗OY ′ splits.
c) There exists some µ > 0 such that for all flat finite morphisms τ : Y ′ → Y and all
ample sheaves A′ on Y ′ the sheaf τ ∗F ⊗A′µ is weakly positive over Y ′.
d) There exists some µ > 0 such that for all flat finite morphisms τ : Y ′ → Y and all
ample sheaves A′ on Y ′ the sheaf τ ∗F ⊗A′µ is ample.

Proof. The equivalence of a) and b) follows from (1.2) and (1.5). Obviously a) implies
d) and d) implies c) for given µ > 0. Assume that c) holds true and let η > 0 be given.
Let τ : Y ′ → Y be the finite morphism constructed in (1.6, b) with τ ∗H = H′η·µ+η. Then

τ ∗F ⊗H′(µ+1) as well as Sη(τ ∗F)⊗H′η·(µ+1) is ample and (1.5) implies the ampleness of
Sη(F)⊗H.

(1.7) allows to carry over properties of ample sheaves to weakly positive sheaves.
Translating the corresponding statements in [5] one obtains as in [14], III, 2.4.:

Lemma 1.8 a) Let F and G be locally free and weakly positive over Y . Then F ⊗G and
F ⊕ G are weakly positive over Y .
b) Let F be locally free. Then F is weakly positive over Y , if and only if for some r > 0,
⊗rF is weakly positive over Y .
c) Positive tensor bundles of sheaves, weakly positive over Y are weakly positive over Y .

The more general notation of weakly positive sheaves one has to use in order to prove
the existence of quasi-projective moduli schemes will only appear in §6:

Definition 1.9 Let Y be a reduced scheme, j : Y◦ → Y be an open dense subscheme
and σ : Y ′ → Y be a desingularization. Let H be ample and invertible on Y , let F
be a coherent sheaf on Y and F ′ be a coherent sheaf on Y ′. Then we call F0 = j∗F
weakly positive over Y0 with respect to (Y ′,F) if the hollowing holds true:
i) F0 is locally free
ii) For all ν > 0 one has inclusions

Sν(F0)→ j∗δ∗S
ν(F ′)

iii) For all a > 0 one finds some b > 0 such that the natural map

Va,b ⊗Cl OY0 → Sa·b(F0)⊗ j∗Hb

is surjective where

Va,b = H0(Y, δ∗S
a·b(F ′)⊗Hb) ∩H0(Y0, S

a·b(F0)⊗ j∗Hb).

Here the reader should keep in mind that Sη(F ′) := i∗S
η(i∗F ′) and det(F ′) := i∗det(i∗F ′)

where i : U ′ → Y ′ is the largest open subscheme such that i∗F ′ is locally free.
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In fact, (1.9) does not really coincide with the definition used in [14], II and III, since
there we assumed Y to be compact. Nevertheless, the properties stated in [14], II, 2.4 and
III, 2.4 which are similar to (1.7) and (1.8) remain true for ”weakly positive with respect
to”. Again there is a close connection to ampleness:

Lemma 1.10 Keeping the notations from (1.9) assume that both, F0 and F ′ are invert-
ible. Then the following two conditions are equivalent:
a) For some η > 0 the sheaf Fη

0 ⊗ j∗H−1 is weakly positive with respect to

(Y ′,F ′η ⊗ δ∗H−1).

b) The condition ii) in (1.9) holds true, and for µ >> 0 the map

Vµ ⊗Cl OY0 → F
µ
0

is surjective, where
Vµ = H0(Y, δ∗F ′µ) ∩H0(Y0,Fµ

0 ),

and the induced morphism φ0 : Y0 → IP(Vµ) is an embedding.

Proof. Assume that a) holds true. Choosing a = 2 in (1.9) we find that

F2·η·β
0 ⊗ j∗H−β

is generated by sections which lie in H0(Y, δ∗F ′2·η·β ⊗H−β) for some β > 0. We obtain a
sujection

⊕j∗Hβ → F2·η·β
0 .

For β >> 0, j∗Hβ is globally generated by sections of H0(Y,Hβ) and those sections
seperate points and tangent directions. Hence we obtain b).

Let us assume b). By [14], II, 2.4,a), we are allowed to blow up Y as long as the centers
do not meet Y0. Hence we can assume that φ0 extends to a morphism φ : Y → IP(Vµ).
Choosing µ big enough and replacing F ′ by some smaller invertible sheaf we can moreover
assume that φ is an embedding and that F ′ = δ∗φ∗OIP(Vµ)(1). Since a) is independent of
the choice of H we can take H = φ∗OIP(Vµ)(1) and a) is trivial.

By (1.10) it makes sense to define

Definition 1.11 Let F ,F ′, Y, Y ′ and Y0 be as in (1.9). Then we call F0 ample with
respect to (Y ′,F ′) if condition (1.9, ii) holds true and if for some η > 0 and some ample
invertible sheaf H on Y the sheaf Sη(F0) ⊗ j∗H−1 is weakly positive with respect to
(Y ′, Sη(F ′)⊗ δ∗H−1).

æ
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2 Singularities of divisors

In this section we recall and clarify some properties of the invariant e introduced in [3],
§2, in order to measure singularities of divisors. At the end of this section we correct a
mistake from [14], III.

Definition 2.1 Let V be a normal Gorenstein variety with at worst rational singularities,
let M be an invertible sheaf on V and Γ be an effective divisor with M = OY (Γ). We
define:
a) C(Γ, e) = coker(τ∗ωV ′(−[Γ

′

e
]) → ωV ) where τ : V ′ → V is a desingularization of V

such that Γ′ = τ ∗Γ is a normal crossing divisor.
b) e(Γ) = min{e ∈ IN− {0}; C(Γ, e) = 0}.
c) e(M) = sup{e(Γ); Γ zero divisor of s ∈ H0(V,M)}.

By [13], 2.3, the cokernel C(Γ, e) does not depend on the desingularization τ : V ′ → V
choosen.

Assumptions 2.2 Throughout this section f : X → Y will be a flat Gorenstein mor-
phism whose fibres Xp := f−1(p) are all reduced and normal with at most rational
singularities. Γ denotes an effective Cartier divisor on X.

Proposition 2.3 Assume in addition that Y is smooth, that Xp is not contained in Γ and
let ∆ be an effective normal crossing divisor on Y . Let τ : X ′ → X be a desingularization
such that Γ′ = τ ∗Γ as well as ∆′ = τ ∗f ∗∆ and Γ′+∆′ are normal crossing divisors. Then
Xp has a Zarisky open neighbourhood U such that

τ∗ωX′(−[
Γ′ + ∆′

e
])→ ωX(−f ∗[

∆

e
])

is surjective over U for e ≥ e(Γ|Xp).

Proof. We may assume that [∆
e
] = 0. In fact, if ∆ = ∆1 + e ·∆2 for effective divisors ∆1

and ∆2, then

f ∗[
∆

e
] = f ∗[

∆1

e
] + f ∗∆2

and Γ′+∆′

e
] = [Γ

′+τ∗f∗∆1

e
+ τ ∗f ∗∆2] = [Γ

′+τ∗f∗∆1

e
] + τ ∗f ∗∆2.

By projection formula we can replace ∆ by ∆1.
Let D be a smooth Cartier divisor containing p. If p ∈ ∆, we choose D to be a

component of ∆ and we write α for the multiplicity of D in ∆. Then

f |H : H := f−1(D)→ D

fulfills again the assumptions made in (2.2). We can assume that the proper transform
H ′ of H under τ is non singular and that H ′ intersects Γ′ + ∆′′ transversally for

∆′′ = ∆′ − τ ∗f ∗α ·D = ∆′ − α · τ ∗H.
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By induction on dim(Y ) we may assume that

τ∗ωH′(−[
(Γ′ + ∆′′)|H′

e
])→ ωH(−f ∗[

(∆− α ·D)|D
e

]) = ωH

is surjective over W ∩H for some open neighbourhood W of Xp in X.

We have 0 ≤ α < e and

[
Γ′ + ∆′

e
] ≤ [

Γ′ + ∆′′

e
] + [

α · τ ∗H
e

] + (τ ∗H −H ′)red ≤ [
Γ′ + ∆′′

e
] + (τ ∗H −H ′).

Therefore there is an inclusion

ωX′(−[
Γ′ + ∆′′

e
] + H ′)→ ωX′(−[

Γ′ + ∆′

e
] + τ ∗H).

As in [3], 2.3, we consider the commutative diagram

τ∗ωX′(−[Γ
′+∆′′

e
] + H ′)

α−−−→ τ∗ωH′(−[Γ
′+∆′′)|H′

e
])

β−−−→ ωHy ∥∥∥
τ∗ωX′(−[Γ

′+∆′

e
])⊗OX(H)

γ−−−→ ωX(H) −−−→ ωH

By [13], 2.3, α is surjective and hence β ◦ α is surjective over H ∩W . Therefore we can
find a neighbourhood U of Xp in W such that γ is surjective over U .

Corollary 2.4 Keeping the notations from (2.2) we assume in addition that Y is a nor-
mal Gorenstein variety with at worst rational singularities and that Xp is not contained
in Γ. Then Xp has a neighbourhood U with

e(Γ|U) ≤ e(Γ|Xp).

Proof. If Y is non singular this is nothing but (2.3) for ∆ = 0. In general let δ : Y ′ → Y
be a desingularization and

X ′ δ′−−−→ X

f ′
y y
Y ′ δ−−−→ Y

be the fibre product. (2.3) applied to f ′ and all p′ ∈ δ−1(p) gives the existence of an open
neighbourhood U ′ of f ′−1δ−1(p) = δ′−1(Xp) with

e(δ′∗Γ|U ′) ≤ e(δ′∗Γ|X′
p′
) = e(Γ|Xp) = e.

Of course we can choose U ′ = δ′−1(U) for an open neighbourhood U of Xp. If τ : X ′′ → X ′

is a desingularization and Γ′′ = τ ∗δ′∗Γ a normal crossing divisor then

τ∗ωX′′(−[
Γ′′

e
])→ ωX′
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is an isomorphism over U ′ and

δ′∗τ∗ωX′′(−[
Γ′′

e
])→ δ′∗ωX′

is an isomorphism over U . By flat base change and projection formula we have

δ′∗ωX′ = ωX/Y ⊗ δ′∗f
′∗ωY ′ = ωX/Y ⊗ f ∗δ∗ωY ′ = ωX .

Proposition 2.5 In addition to (2.2) assume that f is projective with connected fibres
and that e ≥ e(OX(Γ)|Xp). If Y is a normal Gorenstein variety with at worst rational
singularities and if Xp is not contained in the support of C(Γ, e), then there exists an open
neighbourhood U of p in Y such that C(Γ|f−1(U), e) = 0.

Proof. If Γ does not contain Xp, then (2.5) follows from (2.4). In general we have

Claim 2.6 There exist a desingularization δ : Y ′ → Y and an effective normal crossing
divisor ∆ on Y ′ with: let

X ′ δ′−−−→ X

f ′
y f

y
Y ′ δ−−−→ Y

be the fibre product and Γ′ = δ′∗Γ− f ′∗∆. Then Γ′ is an effective divisor which does not
contain any fibre X ′

p′ = f ′−1(p′).

Proof. Of course this follows from the ”flattening” of Hironaka. However in this simple
situation one can as well argue in the following way:

In order to prove (2.6) we can replace Γ by Γ + H for an ample divisor H. Hence we
may assume that M = OX(Γ) has no higher cohomology on the fibres and hence that
f∗M is locally free and compatible with base change. If s : OY → f∗M is the direct
image of the section ofM whose zero divisor is Γ, then we just have to choose δ : Y ′ → Y
such that the zero locus of δ∗(s) becomes a normal crossing divisor ∆. In particular

OY ′(∆)→ δ∗f∗M = f ′
∗δ

′∗M

splits locally and we get (2.6).

Since OX′(Γ′)|X′
p′
' OX(Γ)|Xp , for all p′ ∈ δ−1(p), we have e ≥ e(Γ′|X′

p′
). Let us

choose a desingularization τ : X ′′ → X ′ such that Γ′′ + ∆′′ is a normal crossing divisor
for Γ′′ = τ ∗Γ′ and ∆′′ = τ ∗f ′∗∆. By (2.3) there is a neighbourhood W ′ of f ′−1δ−1(p) such
that

τ∗ωX′′(−[
Γ′′ + ∆′′

e
])→ ωX′(−f ′∗[

∆

e
])
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is an isomorphism over W ′. Since τ is proper one can take W ′ = δ′∗(W ) for some
neighbourhood W of Xp. Hence the cokernel of

δ′∗τ∗ωX′′(−[
Γ′′ + ∆′′

e
])→ ωX

is over W isomorphic to

C = coker(δ′∗ωX′(−f ′∗[
∆

e
])→ ωX).

By flat base change

δ′∗ωX′(−f ′∗[
∆

e
]) = ωX/Y ⊗ f ∗δ∗ωY ′(−[

∆

e
])

and C = f ∗(coker(δ∗ωY ′(−[∆
e
])→ ωY )).

Since we assumed that Xp does not lie in the support of C(Γ, e), for sufficiently small
W around Xp one has

C(Γ, e)|W = C|W = 0.

Since f is proper, W contains f−1(U) for some open neighbourhood U of p.

Theorem 2.7 Let f : X → Y be a proper morphism satisfying (2.2) and Γ be an effective
divisor not containing any fibre of f . Then the function e(Γ|Xy) is upper semicontinuous
on Y .

Proof. For p ∈ Y given, let e = e(Γ|Xp). Define

∆ := {y ∈ Y ; e(Γ|Xy) > e}.

We have to show that p does not lie in the Zariski closure ∆ of ∆. Assume that p ∈ ∆
and let σ : T → ∆0 be the desingularization of some component ∆0 of ∆ containing p. If
g : S → T is the pullback of f and B the transform of Γ on S, then g and B satisfy the
assumptions made in (2.3). Hence, if τ : S ′ → S is a desingularization and B′ = τ ∗B a
normal crossing divisor, then

τ∗ωS′(−[
B′

e
])→ ωS

will be an isomorphism over some open neighbourhood U of g−1(σ−1(p)). Since g is
proper, U contains g−1(W ) for some neighbourhood W of δ−1(p), and for simplicity we
may assume W = T . Let T0 be the open subvariety of T over which g′ = g ◦ τ : S ′ → T is
smooth and B′ is a relative normal crossing divisor. In contradiction to our assumption
we have:

Claim 2.8 For t ∈ T0 one has e(B|g−1(t)) ≤ e.
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Proof. If D is a smooth divisor passing through t and H = g−1(D), then H ′ = τ−1(H)
is irreducible and smooth and B′ intersects H ′ transversally.

We have
τ∗ωS′(−[B′

e
] + H ′) −−−→ τ∗ωH′(−[B′|H′

e
])∥∥∥ y

τ∗ωS′(−[B′

e
])⊗OS(H)∥∥∥ y

ωS(H) −−−→ ωH

and therefore τ∗ωH′(−[B′|H′
e

]) = ωH . Since H ′ → D is again smooth and B′|H′ is a relative
normal crossing divisor we can repeat this step until we obtain

τ∗ωg′−1(t)(−[
B′|g′−1(t)

e
]) = ωg′−1(t).

Theorem 2.9 Let Z be a projective normal Gorenstein variety with at most rational
singularities and X = Z × . . . × Z the r-fold product. Let L be an invertible sheaf on Z
and M = ⊗r

i=1pri∗L. Then e(M) = e(L).

Proof. Obviously e(M) ≥ e(L) = e. Let Γ be any effective divisor with M = OX(Γ).
By induction we may assume that (2.9) holds true for (r − 1)-fold products. Hence (2.5)
applied to pri : X → Z tells us that the support of C(Γ, e) is pr−1

i (Ti) for some subscheme
Ti of Z. Since this holds true for all projections, C(Γ, e) must be zero.

In [3], 2.3, we obtained for smooth Z and very ample sheaves L that

e(Mν) = e(Lν) ≤ ν · c1(L)dimZ + 1.

One has the slightly more general

Corollary 2.10 If in (2.9) Z is non singular and H a very ample invertible sheaf on Z,
then e(M) = e(L) ≤ c1(H)dimZ−1 · c1(L) + 1.

Proof. By (2.9) it is enough to verify the inequality. If Γ is the zero set of a section of
L, H a smooth divisor with OZ(H) = H, then we choose τ : Z ′ → Z such that Γ′ is a
normal crossing divisor and such that the proper transform H ′ of H in Z ′ intersects Γ′

transversally. As in (2.3) we have the diagram

τ∗ωZ′(−[Γ
′

e
] + H ′)

α−−−→ τ∗ωH′(−[Γ
′|H′
e

])
βH−−−→ ωHy ∥∥∥

τ∗ωZ′(−[Γ
′

e
])⊗OZ

H β−−−→ ωZ(H) −−−→ ωH
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where again α is surjective. By induction we can assume that for

e ≥ c1(H|H)dim(H)−1 · c1(L) + 1

βH is surjective. Moving H we obtain 2.10.

Corollary 2.11 Assume in (2.9) that L is an ample invertible sheaf on Z and that there
exist a desingularization τ : Z ′ → Z and an effective exceptional divisor E such that
τ ∗L ⊗OZ′(−E) is very ample. Then

e(M) = e(L) ≤ c1(L)dimZ + 1.

Proof. Obviously e(L) ≤ e(τ ∗L) and E · (c1(τ
∗L)− E)j · c1(τ

∗L)dimZ−1−j ≥ 0 for all
0 ≤ j ≤ dimZ − 1. Hence

e(L) ≤ (c1(τ
∗L)− E)dimZ−1 · c1(τ

∗L) + 1 ≤ c1(L)dimZ + 1.

Remark 2.12 In [14], III, 2.2 the second author claimed that (2.10) holds true for all Z
with rational Gorenstein singularities. He overlooked that a hyperplane section through
a rational singularity might have non rational singularities. In fact, we doubt that (2.10)
can be generalized in that way. However, the results of [14], III, are not really affected.
It was only used that e(Hν) is bounded for all pairs (X,H) ∈ Mh(Cl ) where Mh is a
bounded moduli functor of polarized varieties with rational Gorenstein singularities. This
follows from (2.7) anyway. (2.11) gives a second way to correct this ambiguity: In [14],
III, just before (1.4), one has to add (see also §5):

1.3’: Since M′′
h is bounded we may even choose ν large enough such that for all

(F,H) ∈M′′
h(Cl ) one has:

(*) There exist a desingularization τ : F ′ → F and an effective exceptional
divisor E on F ′ such that τ ∗H⊗OF ′(−E) is very ample.

The same property (*) with H replaced byM0|F has to be added to (2.7, a) in [14], III,
(See Remark 3.10, c)). æ

3 Ampleness of certain direct image sheaves

Notations 3.1 Throughout this section f : X → Y will denote a flat projective Goren-
stein morphism between reduced quasi-projective schemes whose fibres Xp = f−1(p) are
irreducible normal reduced varieties with at worst rational singularities.

Definition 3.2 For f : X → Y as above let L be an invertible sheaf on X. We will
call L relatively semi-ample over Y (or relatively semi-ample for f) if for some N > 0
the map

f ∗f∗LN → LN

is surjective.

12



Theorem 3.3 Using the notations (3.1) let L be an invertible sheaf on Y , Γ be an effec-
tive Cartier divisor on X and e ∈ IN− {0}. Assume that:
a) For p ∈ Y the divisor Γ does not contain Xp and e(Γ|Xp) ≤ e.
b) Le(−Γ) is relatively semi-ample over Y .
Then one has:
i) For i ≥ 0, Rif∗(L ⊗ ωX/Y ) is locally free and compatible with arbitary base change.
ii) If for some M0 > 0 and all multiples M of M0 the sheaf f∗(Le(−Γ))M is locally free
and weakly positive over Y , then f∗(L ⊗ ωX/Y ) is weakly positive over Y .

Remark 3.4 In fact, (3.3, ii) is quite similar to the main technical result of [14], III.
There however we assumed in Theorem 2.6, that beside of (3.3, a) we know that Le(−Γ)
is semi-ample. Moreover we assumed f∗(L ⊗ ωX/Y ) to be locally free and compatible
with arbitary base change, which by part i) is automatically true.

The proof of (3.3, i) is mainly due to J. Kollár, as explained in [14], II, 2.8, 4 (see also
[7]).

Proof of 3.3, i. By ”Cohomology and base change” (see [10]) it is enough to show
that for i ≥ 0 the sheaves Rif∗(L ⊗ ωX/Y ) are locally free. Moreover (loc. cit.) there is
a finite complex E . of locally free sheaves such that for a coherent sheaf C on Y the i-th
cohomology of E . ⊗ C is Rif∗(L ⊗ ωX/Y ⊗ f ∗C). Hence, to verify the local freeness we
may assume that Y is a curve and, taking for C the integral closure of OY , that Y is non
singular. If τ : X ′ → X is a desingularization and Γ′ = τ ∗Γ a normal crossing divisor
then Riτ∗ωX′(−[Γ

′

e
]) = 0 for i > 0 (see [13], 2.3) and τ∗ωX′(−[Γ

′

e
]) = ωX by assumption a)

and (2.3). Hence for L′ = τ ∗L and f ′ = f ◦ τ we have

Rif ′
∗(L′(−[

Γ′

e
])⊗ ωX′/Y ) = Rif∗(L ⊗ ωX/Y ).

Now the proof ends, as usual, by using Kollár-Tankeev’s vanishing theorem: Assume that
for some i ≥ 0, Rif ′

∗(L′(−[Γ
′

e
])⊗ωX′) is not locally free. Then for some ideal I = OY (−q)a

on Y ,

αi : Rif ′
∗(L′(−[

Γ′

e
])⊗ ωX′)⊗ I → Rif ′

∗(L′(−[
Γ′

e
])⊗ ωX′)

will have a kernel. In order to get a contradiction we can replace e and Γ by some common
multiple such that f ′∗f ′

∗Le(−Γ′)→ Le(−Γ′) is surjective. Moreover we can compactify Y
and X ′ and assume that Γ′ extends to a normal crossing divisor on the compactification.
Replacing L by L ⊗ f ∗H for some very ample sheaf H on Y , we can assume moreover
that the sheaves Rif ′

∗(L′(−[Γ
′

e
]⊗ωX′) have no higher cohomology on Y and that for some

N0 and all multiples N of N0, L′e(−Γ′)N ⊗ f ∗I is generated by its global sections.
Hence, if D is the zero divisor of a general section of this sheaf then

B = D + N · Γ′ + f ∗a · q

is a normal crossing divisor and [ B
N ·e ] = [Γ

′

e
] for N sufficiently big. The non injectivity of

αi implies that

H i(X ′,L′(−[
B

N · e
])⊗ ωX′)→ H i(X ′,L′(−[

B

N · e
])⊗ ωX′(f ∗a · q))

13



is not injective. However, this contradicts [2], 3.3,1, where we have shown, that the dual
of this map

Hn−i(X ′,L′(−[
B

N · e
])−1 ⊗OX′(−f ∗a · q))→ Hn−i(X ′,L′(−[

B

N · e
])−1)

is surjective for all i.

Proof of 3.3, ii. The assumptions a) and b) are compatible with arbitary base change
and the assumption added in ii) is compatible with flat base change. Using (3.3, i) and
the equivalence of a) and c) in (1.7), it is enough to show that for an ample invertible
sheaf A on Y the sheaf f∗(L ⊗ ωX/Y ) ⊗ A is weakly positive over Y . For some multiple
M of M0 the map

f ∗f∗(Le(−Γ)M)⊗ f ∗AM ·e → (Le(−Γ)⊗ f ∗Ae)M

will be surjective by assumption b) and by the assumption made in ii)

Sb(f∗(Le(−Γ))M)⊗AM ·b·e

is globally generated for b >> 0. Hence, (L⊗ f ∗A)e(−Γ) is semi-ample. (3.3, i) allows to
apply [14], III, 2.6, to obtain the weak positivity over Y of

f∗((L ⊗ f ∗A)⊗ ωX/Y ) = A⊗ f∗(L ⊗ ωX/Y ).

In some way (3.3, ii) can be seen as a generalization of [3], 1.7. As in [3], 1.9, we
obtain:

Proposition 3.5 Let f : X → Y be as in (3.1) and let L be an invertible sheaf on X.
Assume that:
a) L is relatively semi-ample over Y .
b) For some M > 0 and all multiples M of M0 the sheaf f∗(LM) is locally free and weakly
positive over Y .
c) For some N > 0 there is an ample invertible sheaf A on Y and an effective Cartier
divisor Γ on X, not containing any fibre of f , with LN = f ∗A⊗OX(Γ).
Then f∗(L ⊗ ωX/Y ) is ample.

Addendum 3.6 Under the assumptions of (3.5) let e ≥ sup{N, e(Γ|Xp) for p ∈ Y }
(which exists by (2.7)). Then the ampleness of f∗(L⊗ ωX/Y ) is measured by (see (1.4)) :

f∗(L ⊗ ωX/Y ) � 1

e
· A.

Proof. We have to show that Se(f∗(L ⊗ ωX/Y ))⊗A−1 is weakly positive over Y . Using
the equivalence of a) and b) in (1.5) we are allowed to replace Y by a finite flat cover
τ : Y ′ → Y such that OY → τ∗OY ′ splits. Hence, using (1.6, b) we may assume that A is
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the e-th power of some invertible sheaf A′ on Y and we have to show that f∗(L′ ⊗ ωX/Y )

is weakly positive over Y for L′ = L ⊗ f ∗A′−1. We have L′e(−Γ) = Le−N and the as-
sumptions a) and b) of (3.3) hold true for L′ and Γ. The additional assumption made in
(3.3, ii) is nothing but b) in (3.5) if N < e and, since f∗OX = OY , it is trivial for N = e.
Therefore we can apply (3.3, ii) to end the proof of (3.3) and (3.4).

Just copying the arguments used in [3], 2.4, we can now prove theorem (0.1) as well
as

Addendum 3.7 Using the notations and assumptions from (0.1) we have:

Let e ≥ sup{µ, e(ω
µ·(η−1)
Xp

) for p ∈ Y }. Then

f∗ω
η
X/Y �

η − 1

e · rank(f∗ω
µ
X/Y )

· det(f∗ω
µ
X/Y ).

Remark 3.8 In particular if f is smooth, if ωX/Y is relatively ample over Y and if Y is
connected, let N > 0 be an integer such that ωN

Xp
is very ample for all p. Then we can

choose
e = µ · (η − 1) ·NdimXp−1 · c1(ω

dimXp

Xp
) + 1

for any p ∈ Y . If f is not smooth but ωX/Y relatively ample, then the same choice of
e is possible, if we take N to be big enough, such that the condition (*) in (2.12) holds
true for H = ωN

X/Y .

Proof of 3.7 and 0.1 Set r = rank(f∗ω
µ
X/Y ) and consider f r : Xr → Y , where Xr is the

r-fold product of X over Y . Of course, f r is again a flat projective Gorenstein morphism
and the fibres of f r still have at worst rational singularities (see [14], III, 2.9, for example).
By flat base change one finds that

ωXr/Y = ⊗r
i=1pr

∗
i ωX/Y

is again relatively semi-ample over Y . By [14], II, Theorem 2.7, f r
∗ω

γ
Xr/Y is weakly positive

over Y for all γ > 0. In fact, there we added some assumptions on base change properties,
which by (3.3,i) are no longer necessary. In order to apply (3.5) and (3.6) to L = ωη−1

X/Y

we consider the natural inclusion

det(f∗ω
µ
X/Y )→ ⊗rf∗ω

µ
X/Y = f r

∗ω
µ
Xr/Y .

Since this inclusion splits locally, the zero divisor Γ of

f r∗det(f∗ω
µ
X/Y )η−1 → ω

µ·(η−1)
Xr/Y

does not contain any fibre and by (2.9)

e(Γ|Xp×...×Xp) ≤ e(ω
µ·(η−1)
Xp×...×Xp)) = e(ω

µ·(η−1)
Xp

).
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By (3.5) and (3.6) we obtain

f r
∗ (ω

η
Xr/Y ) = ⊗rf∗ω

η
X/Y �

1

e
· det(f∗ω

µ
X/Y )η−1

and hence

Sr(f∗ω
η
X/Y ) � 1

e
· det(f∗ω

µ
X/Y )η−1.

By definition of � in (1.4) one obtains:

f∗ω
η
X/Y �

1

e · r
· det(f∗ω

µ
X/Y )η−1.

For application to moduli of polarized varieties we need a second application of (3.3)
and (3.5) generalizing (0.1) (by takingM = OX ).

Theorem 3.9 For f : X → Y as in (3.1) let M be an invertible sheaf on X. Assume
that for some e ∈ IN− {0} one has:
a) M is relatively semi-ample over Y .
b) f∗M is locally free of rank r′.
c) e ≥ e(M|Xp) for all p ∈ Y .
d) M⊗ ωe

X/Y is relatively semi-ample over Y .

e) f∗(M⊗ ωe
X/Y )N is locally free for all N > 0.

Then one has:
i) (⊗r′f∗(M⊗ ωe

X/Y ))⊗ det(f∗M)−1 is weakly positive over Y .

ii) If for some µ > 0 the sheaf det(f∗(M⊗ ωe+1
X/Y )µ)r′ ⊗ det(f∗M)−µ·r(µ) is ample for

r(µ) = rank(f∗(M⊗ ωe+1
X/Y )µ), then (⊗r′f∗(M⊗ ωe+1

X/Y ))⊗ det(f∗M)−1 is ample.

Remarks 3.10 a) As in (3.5) and (3.7) one can give effective bounds on the degree of
ampleness in part ii) of (3.9).
b) Part i) of (3.9) is a straightforward generalization of [14], III, 2.7. However, since we
weakend the assumptions we sketch the proof.
c) If as, in [14], III, 2.7, we assume that M is ample we can give bounds for e:
Assume that for all p ∈ Y there exists a desingularization τ : X ′

p → Xp and an effective
exceptional divisor Ep on X ′

p such that τ ∗M|Xp ⊗OX′
p
(−Ep) is very ample, then (3.9, c)

can be replaced by the assumption

c’) e ≥ c1(M|Xp)
dimXp + 1.

Proof of 3.9 Obviously the assumptions are compatible with flat base change. Using
(1.6, b) and (1.5) we can assume that det(f∗M) = λ′r

′
for some invertible sheaf λ′ on Y .

Replacing M by M⊗ f ∗λ′−1 we may as well assume that det(f∗M) = OY . We have to
show in i) that f∗(M⊗ ωe

X/Y ) is weakly positive over Y and in ii) that the ampleness of

λµ = det(f∗(M⊗ ωe+1
X/Y )µ) implies the ampleness of f∗(M⊗ ωe+1

X/Y ).
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For r ∈ IN let f r : Xr → Y be the r-fold product of X over Y . We write

N = ⊗r
i=1pr

∗
iM.

In order to prove i) we choose r = r′. Hence N has a section induced by

det(f∗M) = OY → f r
∗N = ⊗rf∗M.

Let Γ be the zero divisor. Γ does not contain any fibre of f r and for N > 0 and Γ′ = N ·Γ
we have by (2.9) and by definition

e(Γ′|Xp×...×Xp) ≤ N · e(Γ|Xp×...×Xp) ≤ N · e(M|Xp) ≤ N · e.

Let H be an ample invertible sheaf and m ≥ 0 be an integer. For e′ = N ·e let us consider
the sheaf

L = NN ⊗ ωe′−1
Xr/Y ⊗ f r∗Hm·(e′−1)·r.

Then Le′(−Γ′) = (NN ⊗ ωe′

Xr/Y ⊗ f r∗Hm·r·e′)(e′−1)

and the assumptions a) and b) of (3.3) hold true. By (1.8) weak positivity is compatible
with tensor products and (3.3) implies:

Claim 3.11 If for some M0 > 0 and all multiples M of M0 the sheaf

f∗(M⊗ ωe
X/Y )N ·M ⊗Hm·e·N ·M

is weakly positive over Y , then

f∗(M⊗ ωe
X/Y )N ⊗Hm·(e·N−1)

is weakly positive over Y .

SinceM⊗ωe
X/Y is relatively semi-ample over Y we can find some N0 such that for all

multiples N of N0 and M >> 0 the multiplication maps

α(N, M) : SM(f∗(M⊗ ωe
X/Y )N)→ f∗(M⊗ ωe

X/Y )N ·M

are surjective. For those N and

m = Min{µ > 0; f∗(M⊗ ωe
X/Y )N ⊗Hµ·e·N weakly positive over Y }

the surjectivity of α(N, M) implies the weak positivity over Y of

f∗(M⊗ ωe
X/Y )N ·M ⊗Hm·e·N ·M

for all M >> 0. Hence (3.11) gives that

f∗(M⊗ ωe
X/Y )N ⊗Hm·e·N−m
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is weakly positive over Y . By the choice of m this implies that

(m− 1) · e ·N < m · e ·N −m

or that m < e·N . Hence f∗(M⊗ωe
X/Y )N⊗He2·N2

is weakly positive. Since this holds for all

finite flat coverings of Y as well we obtain by (1.7) the weak positivity of f∗(M⊗ωe
X/Y )N .

Applying (3.11) for m = 0, N = 1 and M0 = N0 defined above, we obtain part i) of (3.9).

To prove ii) we take r = r′ · r(µ) and L = N ⊗ ωe
Xr/Y . We have natural inclusions,

splitting locally
OY = det(f∗M)r(µ) → f r

∗N = ⊗r′·r(µ)f∗M

and λr′
µ → f r

∗ (N ⊗ ωe+1
Xr/Y )µ = ⊗r′·r(µ)f∗(M⊗ ωe+1

X/Y )µ.

If ∆1 and ∆2 denote the corresponding zero-divisors on Xr, then ∆1 + ∆2 does not
contain any fibre of f r and

L(e+1)·µ = (N ⊗ ωe+1
Xr/Y )e·µ ⊗N µ = f r∗λr′·e

µ ⊗OX(e ·∆2 + µ ·∆1).

Hence for A = λr′·e
µ and N = (e+1)·µ the assumption (3.5, c) holds true. The assumption

(3.5, b) is just part i) and e) of (3.9) and (3.5, a) is implied by (3.9, d). Hence

f r
∗ (N ⊗ ωe+1

Xr/Y ) = ⊗rf∗(M⊗ ωe+1
X/Y )

is ample. æ

4 Ample sheaves on moduli schemes of canonically polarized
manifolds

Let us consider the moduli functor C ′h of canonically polarized normal Gorenstein varieties
with Hilbert polynomial h and with at worst rational singularities. Hence for a scheme S
defined over Cl ,

C ′h(S) = {f : X → S; f flat, projective, Gorenstein; ωX/Y relatively ample
for f ; all fibres F of f are irreducible normal varieties with at most rational
singularities and h(ν) = χ(ων

F )}/ '.

Let Ch be a submoduli functor of C ′h such that Ch is bounded, separated and such that
for f : X → S ∈ C ′h(S) the subset S0 = {s ∈ S; f−1(s) ∈ Ch(SpecCl )} is constructible in S.

By [6] we can choose Ch = C ′h, if n = deg(h) ≤ 2, and in all dimensions

Ch(S) = {f ∈ C ′h(S); f smooth }

will work by ”Makusaka’s big theorem”. In any case we have (see [14], I, §1 and II, §6)
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Assumption 4.1
i) There exists ν > 1 such that for all F ∈ Ch(Spec(Cl )) the sheaf ων

F is very ample.
ii) There exists a Hilbert scheme H and a universal family g : X → H ∈ Ch(H) together
with an H-isomorphism

IP(g∗ω
ν
X/H) ∼= IPr−1 ×H.

iii) The action of G = IPGl(r, Cl ) on H obtained by ”change of coordinates in IPr−1 ”
is proper.
iv) Let us write λη = det(g∗ω

η
X/H) and r(η) = rank(g∗ω

η
X/H). Then for µ >> 0 the sheaf

L0 = λr(ν)
ν·µ ⊗ λ−µ·r(ν·µ)

ν is ample on H.

Corollary 4.2 λν is ample on H.

Proof. Of course we may assume H to be reduced. By [14], II, 2.7 the sheaf g∗ω
ν
X/H

is weakly positive over H and hence λν has the same property. By (1.2) λν·µ is ample
and as we have seen in (0.1), g∗ω

η
X/H as well as λη will be ample for all η > 1 with r(η) > 0.

Let L be a G-linearized sheaf on H ([11], Def. 1.6). In [14], I, 5.2, we denoted by
H(L)s the set of stable points of H with respect to L and under the G-action (see [11],
Def. 1.7). Obviously the sheaves λη are G-linearized for all η > 0.

Corollary 4.3 One has H = H(λν)
s.

Proof. In [14], II, we proved that H = H(L0 ⊗ λη
ν)

s for some η >> 0. However we only
used ”L0 ample” and not at all the specific shape of L0. Hence, if we start with λν instead
of L0 we obtain 4.3.

The stability criterion used in [14], II, was formulated in a more general set up in [15], 3.2.

By [11], 4.3 implies the existence of a geometric quotient H/G and H/G is embedded
into some projective space by G-invariant sections of λp

ν for p >> 0. Therefore λp
ν descends

to some ample sheaf on H/G, which we denote by λ(p)
ν . As it is shown in [11] Ch = H/G

is a coarse moduli scheme for Ch. Hence we obtained:

Theorem 4.4 Let Ch be the moduli functor of canonically polarized manifolds with Hilbert
polynomial h (or any moduli functor satisfying (4.1)). Then there exists a coarse moduli
scheme Ch and an ample invertible sheaf λ(p)

ν for ν as in (4.1, i) and p >> 0, such that:
For f : X → S ∈ Ch(S) let ϕ : S → Ch be the induced morphism. Then

ϕ∗λ(p)
ν = det(f∗ω

ν
X/S)p.

Corollary 4.5 For f : X → S ∈ Ch(S) assume that ϕ : S → Ch is affine over its image.
Then for all η > 1 with h(η) > 0 the sheaf f∗ω

η
X/S is ample.
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Proof. By (4.4) the sheaf det(f∗ω
ν
X/S) is ample and (4.5) follows from (0.1).

It is easy to show, that for all η > 0 with h(η) > 0 the sheaves λη on H descend to
invertible sheaves λ(p(η))

η on Ch for some p(η) > 0 (see for example [8]).

Corollary 4.6 Let τ : C ′
h → Ch be the normalization. Then for all η > 0 with h(η) > 0

the sheaf τ ∗(λp(η))
η ) is ample on C ′

h.

Proof. By [8], §2, there exist a finite cover ϕ : Y → Ch and f : X → Y ∈ Ch(Y ) such
that ϕ is induced by f . We may assume that ϕ factors through ϕ′ : Y → C ′

h. Hence

ϕ′∗τ ∗(λ(p(η))
η ) = (detf∗ω

η
X/Y )p(η)

is ample by (4.5) and by (1.5) ampleness descends to C ′
h.

(4.6) suggests the following question, which, in fact, would have an affirmative answer
if we could choose in the proof of (4.6) ϕ : Y → Ch such that OCh

→ ϕ∗OY splits.

Question 4.7 Are the sheaves λ(p(η))
η ample on Ch for all η > 1 with h(η) > 0 ?

æ

5 Ample sheaves on moduli schemes of polarized manifolds

As in [14], III, §1 let us consider the moduli functorM′
h with

M′
h(S) = {(f : X → S,H); f flat, projective and Gorenstein andH invertible,

relatively ample over S, such that: for all p ∈ S Xp = f−1(p) is a normal
variety with at worst rational singularities, χ(H|Xp) = h(p) and Xp is not
uniruled }/ '.

Differently from the definition of moduli of polarized varieties in [11] or [16], we define

(f : X → S,H) ' (f ′ : X ′ → S,H′)

if there is an S-isomorphism τ : X → X ′ and an invertible sheaf B on S such that

τ ∗H′ ' H⊗ f ∗B.

We takeM′′
h to be a bounded and separated submoduli functor ofM′

h such that for all
S and all (f : X → S,H) ∈M′

h(S) the subset

S0 = {s ∈ S; (f−1(s),H|f−1(s)) ∈M′
h(Spec(Cl ))}
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is constructible in S.

By [6] again, we can choose M′′
h = M′

h, if deg(h) = 2 and by ”Makusaka’s big the-
orem”

M′′
h(S) = {(f : X → S,H) ∈M′

h(S), f smooth }

will always work. By boundedness we can find some ν > 0 such that for all (F,H) ∈
M′′

h(Spec(Cl ))) the sheaf Hν is very ample. We can even choose ν big enough to have:

Assumption 5.1 There is some ν > 0 such that for all (F,H) ∈M′′
h(Spec(Cl )) one has:

a) There is a desingularization τ : F ′ → F and an effective exceptional divisor E on F ′

such that τ ∗Hν ⊗OF ′(−E) is very ample.
b) H i(F,Hν) = 0 for i > 0.
c) For all numerically effective sheaves L on F, the sheaf Hν ⊗ ωF ⊗L is very ample and
without higher cohomology.

Proof. By boundedness, for some smooth Y , there is a family (g : X → Y,H′) ∈M′′
h(Y )

such that all (F,H) ∈M′′
h(Spec(Cl )) occur as fibres. For a) we consider a desingulariza-

tion of X. We find a) to be true for all (F,H) over some dense open subscheme of Y .
Repeating this for the complement we obtain a).

In a) we are allowed to replace ν by any multiple. Then b) is obvious and c) follows
from [14], III, 1.3, if we replace ν by ν(n + 1) for n = deg(h).

Notations 5.2 For ν as in 5.1 let c be the highest coefficient of h and

e ≥ (n!) · c · νn + 2

for n = deg(h). Especially e ≥ e(Hν) + 1 for all (F,H) ∈M′′
h(Spec(Cl )) by (2.11). Let

us choose

Mh(S) = {(f : X → S,H) ∈M′′
h(S);Hν ⊗ ωe

X/S relatively very ample over S}.

As in [14], III, 1.4, we may assume, that χ(F, (Hν ⊗ωe
F )η) and χ(F,Hν·η+1⊗ωe·η

F ) are the
same for all (F,H) ∈Mh(Spec(Cl )) regarded as polynomials in η.

By (5.1, c)Mh(Spec(Cl )) will contain all (F,H) ∈M′′
h(Spec(Cl )) with ωF numerically

effective. But, since we do not know wether ”ωF nef” is a constructible condition we are
not able to consider just

Mnef
h (S) = {(f : X → S,H); ωX/Y numerically effective on each fibre }.

However, the functorMsa
h can replaceMh in the results following where

Msa
h = {(f : X → X,H); ωX/Y relatively semi-ample over S}.

21



Lemma 5.3 Using the notations and assumption introduced above one has for all

(f : X → S,H) ∈Mh(S) :

a) Hν is relatively ample over S and f∗Hν is locally free of rank r′.
b) Hν ⊗ ωe

X/S is relatively ample over S and f∗(Hν ⊗ ωe
X/S)η is locally free of rank r(η)

for η > 0.
c) f∗(Hν ⊗ ωe

X/S) is weakly positive over Y .

d) If for some µ > 0 the sheaf λµ = det(f∗(Hν ⊗ ωe
X/S)µ)r′ ⊗ det(f∗Hν)−µ·r(µ) is ample,

then (⊗r′f∗(Hν ⊗ ωe
X/S))⊗ det(f∗Hν)−1 is ample.

Proof. a) holds true since we have no higher cohomology along the fibres and everything is
compatible with base change. Moreover Hν⊗ωe

X/S is relatively ample over S by definition

ofMh. Hence Hν·η ⊗ ωe′

X/S is relatively ample over S for o ≤ e′ ≤ η · e. By (3.3, i) all the
sheaves

f∗(Hν ⊗ ωe′

X/S)η

are locally free for e′ = e or e′ = e− 1. Since e ≥ e(H|F ) + 1 for all fibres F of f , c) and
d) are implied by (3.9, i) and (3.9, ii).

Let H be the Hilbert scheme considered in [14], III, 1.5, d. Especially we have a
”universal family”

(g : X → H,H) ∈Mh(H)

and an isomorphism
ϕ : IP(g∗(Hν ⊗ ωe

X/H))→ IPr−1 ×H.

Again, G = IPGl(r, Cl ) acts on H properly and G/H will be a candidate for Mh (see [11]).

Lemma 5.4 For ν as in (5.1) the sheaf λ1 is ample on H (see (5.3) for the notations).

Proof. For µ >> 0 the Plücker coordinates give an embedding of H into some projective
space and the induced ample sheaf is

L0 = det(g∗(Hν ⊗ ωe
X/H))−µ·r(µ) ⊗ det(g∗(Hµ·ν ⊗ ωe·µ

X/H))r(1).

Hence Lr′
0 = λ

−µ·r(µ)
1 ⊗ λr(1)

µ is ample. By (3.9, i) λ1 as the determinant of a weakly
positive sheaf is weakly positive over Y and hence λµ is ample. Since we have choosen
e ≥ e(H) + 1 for (H, F ) ∈ Mh(Spec(Cl )) we can apply (3.9, ii) for (e− 1) and we obtain
the ampleness of

(⊗r′g∗(Hν ⊗ ωe
X/H))⊗ det(f∗Hν)−1

and hence of λ1.

As in (4.3) and (4.4) we obtain
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Corollary 5.5 One has H = H(λ1)
s.

Theorem 5.6 Let Mh be the moduli functor of (5.2), ν as in (5.1) and e as in (5.2).
Then there exists a coarse moduli scheme Mh and an ample invertible sheaf λ(p) for some
p > 0, such that:
For (f : X → S,H) ∈Mh(S) let ϕ : S →Mh be the induced morphism. Then

ϕ∗λ(p) = (det(f∗(Hν ⊗ ωe
X/S))r′ ⊗ det(f∗Hν)−r)p

for r′ = rank(f∗Hν) and r = rank f∗(Hν ⊗ ωe
X/S).

Remarks 5.7 a) In fact, if one compares (5.4) with [14], III, 1.11, then the choice of e
is slightly different. However in [14], III, we only used that e ≥ (n!) · c · νn + 1 and not,
as stated there, that one has equality. This is obvious if one takes the stability criterion
[15], 3.2.
b) Kollár [8] and Fujiki-Schumacher [4] developed independently methods to study sheaves
on analytic moduli spaces, the first one by estimating the degree on complete curves of
certain natural sheaves on moduli spaces, the two others by curvature estimates. Both
methods give ampleness criteria for sheaves on compact subspaces of moduli spaces. The
comparison of the results of [4] with those of this note should give some candidates beside
of λ(p) for ample sheaves on Mh and some hope that question (4.7) has an affirmative
answer.

Corollary 5.8 For (f : X → S,H) ∈ Mh(S) assume that ϕ : S → Mh is affine over its
image. Then for ν, e, r′ as above the sheaf ⊗r′f∗(Hν ⊗ ωX/S)⊗ det(f∗Hν)−1 is ample.

Proof. Use (5.6) and (3.9, ii)

Notations 5.9 It is quite easy to see, that invertible G-linear sheaves on H have some
power which descends to Mh (see [8] for example). Since det(g∗ω

δ
X/H)q is G-invariant,

for q >> 0 we can descend this sheaf to some sheaf γ
(q)
δ on Mh. Especially, if we have

choosen Mh such that for some δ > 0 and all (F,H) ∈Mh(Spec(Cl )) one has ωδ
F = OF ,

then for (f : X → S,H) ∈Mh(S) and the induced morphism ϕ : S →Mh one has

f ∗ϕ∗γ
(q)
δ = ωq·δ

X/S.

Corollary 5.10 Assume that for some δ > 0 and all (F,H) ∈ Mh(Spec(Cl )) one has
ωδ

F = OF . Assume moreover that the integer e used in the definition of Mh is divisible

by δ. Then γ
(q)
δ is ample on Mh.

Proof. By (5.6) λ(p) is ample on Mh. For e = δ · e′ we have for

(f : X → S,H) ∈Mh(S)

that
f∗(Hν ⊗ ωe

X/S) = f∗(Hν)⊗ (f∗ω
δ
X/S)e′
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and ϕ∗λ(p) = (f∗ω
δ
X/S)e′·r′·p. Hence λ(p) = γ

(e′·r′·p)
δ .

(5.10) generalizes the result of Pjatetskij-Šapiro and Šafarevich on moduli of K3 sur-
faces [12]. In fact, the quite simple ample sheaf obtained in [12] was one of the motivations
to reconsider the proof of the existence of quasi-projective moduli schemes and to try to
improve the ample sheaves obtained in [14], III.

Remark 5.11 a) Replacing ”isomorphisms of polarizations” by ”numerical equivalence
of polarizations” (see for example [16], §4) one obtains the ”right” functor Ph of polarized
varieties. In [16] we constructed a coarse quasi-projective moduli space Ph for Ph. The
natural morphism

Σ : Mh → Ph

is proper, and, replacing H by some high power and h(t) by h(η · t), we may assume
moreover that the fibres of Σ are connected. If for all (F,H) one has

q(F ) = h0(F, Ω1
F ) = 0,

then Σ will be an isomorphism and (5.6) gives an ample sheaf on Ph as well.
b) On the other hand, if Mh satisfies the assumptions of (5.10), then the ampleness of

γ
(q)
δ just implies, that Mh can not contain projective curves C such that the induced

family (f : X → C ′,H) over some finite cover C ′ of C satisfies X ' F × C ′. Hence Σ
is finite and (5.10) gives an ample sheaf on Ph again.
c) Regarding the construction of Ph in §3 of [16], the fact that Σ is finite just means
that one has:

If F is a manifold with ωδ
F = OF , H ample invertible on F and ν sufficiently

large (as in (5.1) for example), then for each L ∈ Pic0(F ) one can find an
automorphism τ : F → F such that τ ∗(Hν) = Hν ⊗ L or L = τ ∗(Hν)⊗H−ν.

æ

6 Degenerate fibres

The ampleness criteria (0.1) and (3.9) are strong enough to be applied to moduli schemes.
However, from the point of view of fibrespaces it seems natural to keep track of the be-
haviour of sections with respect to compactifications, as we also did in [3].

For simplicity we stay in the category of quasi-projective complex schemes, even if the
result remain true for analytic spaces, if one modifies the definition of weak positivity, as
it was done in [14], II, §5.

Since it is not at all understood how to get the natural compactification of the total
space of a smooth morphism to a singular scheme, we have to return to the notations
used in [14], II and III:
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Assumptions 6.1 Let

X0
i−−−→ X ←−−−

σ
X ′

f0

y f

y yf ′

Y0
j−−−→ Y ←−−−

δ
Y ′

be a commutative diagram of morphisms of reduced quasi-projective schemes such that
a) i and j are open dense embeddings and σ and δ are desingularizations
b) f and f ′ are surjective and X0 = f−1(Y0).
c) f0 is flat and Gorenstein. All fibres Xp = f−1

0 (p) are reduced irreducible normal vari-
eties of dimension n with at worst rational singularities.
d) If (...) is a sheaf or a divisor on X (or Y ) then (...)0 will always denote the restriction
to X0 (or Y0) and (...)′ will be the pullback to X ′ (or Y ′).
e) ωX0/Y0 is the dualizing sheaf of f0 and ωX′/Y ′ = ωX′ ⊗ f ′∗ω−1

Y ′ .

The main purpose of this chapter is to sketch the changes of the arguments employed
in §3 and §4 to obtain:

Claim 6.2 Under the assumption (6.1) assume that f ′ : X ′ → Y ′ is semi stable in
codimension one (see [9], 4.6), that ωX0/Y0 is relatively semi-ample over Y0 and that for
some µ > 0 the sheaf det(f0∗ω

µ
X0/Y0

) is ample with respect to (Y ′, det(f ′
∗ω

µ
X′/Y ′)). Then for

all η ≥ 2 with f0∗ω
η
X0/Yo

6= 0, the sheaf f0∗ω
η
X0/Y0

is ample with respect to (Y ′, f ′
∗ω

η
X′/Y ′).

Claim 6.3 Under the assumptions (6.1) assume that f0 : X0 → Y0 ∈ Ch(Y0) and that the
induced morphism ϕ : Y0 → Ch is quasi-finite over its image. Then for all η > 1 with
k(η) > 0 the sheaf f0∗ω

η
X0/Y0

is ample with respect to (Y ′, f ′
∗ω

η
X′/Y ′).

Contrary to [14], II and III, we do not assume here in (6.1) that Y, Y ′, X and X ′ are
compact. The main reason is that (6.2) will be needed for partial compactifications in
order to prove (6.3). Hence to give complete proofs of (6.2) and (6.3), one has to verify
first, that neither in the definition of ”weak positivity with respect to” nor in [14], II, 2.7,
or [14], III, 2.6, the compactness of Y (or X) was really necessary.

Since this can not be done in all details here, and since we just give a coarse outline
of the proofs, the reader should regard (6.2) and (6.3) with certain doubts.

Remark 6.4 In (6.2) and (6.3) the conditions (1.9, i and ii) hold true. In fact, using (3.3,
i) one finds that f0∗ω

η
X0/Y0

is locally free and compatible with base change and hence the
inclusion of sheaves asked for is just given by

Sν(f0∗ω
η
Xo/Yo

)→ Sν(f0∗ω
η
X0/Y0

)⊗ j∗δ∗OY ′ ' j∗δ∗S
ν(f∗ω

η
X′/Y ′).

Sketch of the proof of 6.2 First of all, the equivalence of a) and c) in (1.7) extends to
”weakly positive with respect to” by [14], II, 2.4, b, and one can even assume there that
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τ : Z → Y is flat. In [14], III, 2.6 the assumption that:

(Le
0(−Γ0))

N is globally generated by H0(X0, (Le
0(−Γ0))

N)∩H0(X ′, (L′e(−Γ′))N) over X0

can be replaced by:

a) Le
0(−Γ0) is relatively semi-ample over Y0

b) For some M0 > 0 and all multiples M of M0 the sheaf f0∗(Le
0(−Γ0))

M is locally free
and weakly positive over Y0 with respect to (Y ′, f ′

∗(L′
e(−Γ′))M).

The proof remains the same. In order to be able to apply [14], II, 2.4, b one has to
use [14], II, 2.5. In the same way (3.5) can be modified to

Claim 6.5 For f : X → Y as in (6.1) let L be an invertible sheaf on X. Assume that:
a) L0 is relatively semi-ample over Y0 .
b) For some M > 0 and all multiples M of M0 the sheaf f0∗(LM

0 ) is locally free and weakly
positive over Y0 with respect to (Y ′, f ′

∗(L′
M)).

c) For some N > 0 there is an ample invertible sheaf A on Y and an effective Cartier
divisor Γ on X, not containing Xp for p ∈ Y0, with LN = f ∗A⊗OX(Γ).
Then f0∗(L0 ⊗ ωXo/Y0) is ample with respect to (Y ′, f ′

∗(L′ ⊗ ωX′/Y ′)).

Now, using (2.10, c) of [14], III, the proof of (0.1) carries over to prove (6.2).

Sketch of the proof of 6.3 Using [9], 4.6 and [14], II, 1.10 and 2.4, a, we can as-
sume that f ′ : X ′ → Y ′ is semi-stable in codimension one. Hence, by (6.2) it is enough
to show that det(f0∗ω

µ
X0/Y0

) is ample with respect to (Y ′, det(f ′
∗ω

µ
X′/Y ′)).

If one forgets about the compactification, i.e. if Y = Y0, (6.3) is obtained in (4.5)
using the ampleness of λν on Ch. However [14], I, §2 and §4 contain a direct proof of the
ampleness of det(f0∗ω

ν
X0/Y0

) in that case, parallel to methods from ”Geometric Invariant
Theory”. The only necessary modification is that in §4 of [14], I, one uses the ampleness
of L0 and (6.2) to get the ampleness of π∗det(E).

However, since in (6.3) we want to allow degenerate fibres, one has to modify the
arguments used to prove [14], II, 5.2. The necessary changes are more difficult to explain:

The ”Ampleness Criterion” [14], II, 5.7, should be applied to the multiplication maps

Sµ(f0∗ω
ν
X0/Y0

)→ f0∗ω
ν·µ
X0/Y0

and Sµ(f ′
∗ω

ν
X′/Y ′)→ f ′

∗ω
ν·µ
X′/Y ′ ,

hence for s = 1, T1 = Sµ and F (1)
0 = f∗ω

ν
X0/Y0

in the notation of [14], II, 5.6. Using
the notations from the proof of [14], II, 5.7 we have to consider

F = δ∗(f
′
∗ω

ν
X′/Y ′) ∩ j∗(f0∗ω

ν
X0/Y0

)
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and Q = δ∗(f
′
∗ω

ν·µ
X′/Y ′) ∩ j∗(f0∗ω

ν·µ
X′

0/Y ′
0
)

and we may assume that both sheaves are locally free. On some blowing up IP′ of
IP = IP(F) we found an effective divisor E, not meeting IP0, such that

π
′∗(det(Q)a ⊗ det(F)−a)⊗OIP′(E)|IP′−τ∗(D)

is ample on IP′ − τ ∗(D).

Since det(F) is weakly positive over Y0, π
′∗det(Q)a will be ample over IP0 − D. From

(6.2) applied to be the pullback families over IP′ − τ ∗D we find that

π
′∗(det(F))a′ ⊗OIP(E ′)|IP′−τ∗(D)

will again be ample for some E ′ and a′ > 0. As in [14], II, p 220, we will get for α >> 0
and for an effective divisor D′ supported in τ ∗D that

π
′∗(det(F))α ⊗OIP′(E ′ + D′)

is ample. As in [14], I, 4.7 one can descend this to obtain the ampleness of det(F).
æ
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