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Let X be a complex algebraic variety. In [E2] we have defined a regulator map ¢, :‘.K‘.ll:’I -

%"(n) from the Zariski sheaf of Milnor K-theory to some sheaf 9% (n), which coincides with
Bloch-Beilinson's regulator if X is smooth. In this little note, we compute examples for which
Chn helps to detect elements in the kernel of ‘.K.?]d - KI::I((I:(X)) , where €C(X) is the

function field of X, as well as in the cokernel of ‘er - T, ‘}CnMY ,where T. Y > X isa

desingularization of X . It turns out that in the two cases, those elements are generalized (or
"Loday") symbols as defined in [6] .In [E2] we have computed explicitely the image of
generalized symbols in HI.;S (Y.E; Z(n)), the Deligne-Beilinson cohomology , relative to some

subvariety E . As we may relate %"(n) on X and H%(Y,E; Z2)) on Y for some E, we

basically make the computation in the later group.

Except for (2.2) 1) , where we slightly improve the sheaf 3%™(n) , the main facts used in this
note are proved in [E1] and [E2] : we emphasize how to use the methods developed there to

compute examples.

I would like to thank M. Levine for useful discussions, as well as the organizing committee of
the conference in honor of Prof. A.I. Maltsev for giving me the possibility to participate in it.
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400 HELENE ESNAULT
1.1 Let Y be an algebraic variety over € , the field of complex numbers. We denote by

H?L‘) (p) the Deligne-Beilinson cohomology groups [b] , [E.V]. Let a;,...,.a, be regular

functionson Y , f be an invertible regular function on Y , whose value is 1 along the
subvariety T defined by the reduced ideal associated to a,..a .Define S tobe the

subvariety of Y such that S + T is the subvariety of Y associated to (f-1). One has f €
H.llg (Y, S+T ; 2(1)), a, € HO (Y, OY) . In [E1], we give explicit formulae for the

generalized symbol {f,al,...,an} g € H:gl(Y, S; 2(n+ 1)) mapping to the cup product

n+l

(fUa; U ..Ua)g in H‘@ (Y-T,S N Y-T; 2(n + 1)) . (To be precise , we define an

n+1

element {f’al""’an}S+T € HJS) (Y,S+T;2(n+1)) whoseimage in H:gl(Y, S:20n +

1)) is the generalized symbol as defined by A. Beilinson in [B] ).

12 If ;e Hy (Y, Z(1)) , thatisif a; is invertible, then
{fa,..a)lg =fUa U . Ua) e Hn+1(Y, S;2m+1))

N

maps to the cup product

n+1
(fUa, U ..Ua)e H.IS Y,2(n+1))

So whenever the map

H'EI(Y, S;:2(n+1) — H'EI(Y, Z@+1)

is not injective , {f,al,‘..,an}S will contain a priori more information than

U aU .U a).

1.3 Recall briefly how to define  {f.a,,....a }q -
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We choose an analytic open cover Y; of Y such that log, f is single valued on Y;, vanishes
. . . -1
along S+T (which implies that Z?Oil 1= (810gf)i0il :=log, f-log, f is identically zero on
1 0
Yioi1 whenever Yioil meets S+T ), and 1°gi0...ik ay is single valued on YiO"'ik whenever
YiO"'lk does not meet S+T ([E1], (1.4)). Then we define a "product” ([E1], (1.5)), show
that its restriction to Y-T is homotop to the Deligne-Beilinson product ([E1], §2), and that the
element so defined in the cohomology HEI(Y, S+T;2(m+ 1)) does not depend on the

choices made above ([E1], (3.8)).

Then { f,al,...,an}S 4T 18 represented by a Eech cocycle

da da

sn M2 2+1 n

-1 . . loe. N —

-1 Zij,..i, oglou_,l a, Bl Ao A 2
e HO(Y, Qrt )

where Ql; S+T is the sheaf of Kihler k-forms vanishing along S+T , 2% is defined

) . 2 n-(2-1) 5 R .
inductively by 2" =8(Z‘0"":-1 1°gi0...i2_1 a 2_1), and z™* isidentically zero if Yiomi.t

meets S + T and lies in Z(2) otherwise.

1.4 To be honest, we were consideringin [E1] only smooth varieties Y . The formulae in
(1.3) define a class in H'BI(Y, j12@+1)-> Q(\){,s T Q';{’S +T)’ where j is the open

embedding Y-S-T — Y .If Y is smooth, then this group is H:gl(Y, S+T; 2@+ 1),

which contains HEI(Y, S+ T; 2(n+ 1)) asthe subgroup of classes x whose curvature
dx has logarithmic growth at infinity. Recall that if Y is smooth, then H'J‘9 (Y, j1 ©/2(n + 1))

is the subgroup of Hn‘él(Y, S+T; 2+ 1)) of curvature zero, and that

ar da da, 3
dlfaptlser =F A A A (B (12 A3).
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1.5 Consider b; e H'(Y, ®y), and assume moreover that =1 on T, defined by the
i

reduced ideal associated to b; =0. As {f,al,...,an}S +1 does not depend on the cover choosen
in (1.3) with the properties explained there, one obtains
Proposition
{fa1m02 1 20y 2,4, ""an}S+T+Tb
i

= {fa,, “"an}S+T+Tb. +{fap. 8, b, ai+1"”’an}S+T+Tb
i i

HY (Y, S+T+T. :2(n+1

1.6 Similarly, let g e ng (Y, S +T; Z(1)) . Then one has

Proposition
{fg,al,...,an}S+T ={fa;,....a .} s+T+ {g,al,...,::ln}s_';T

n+l

Hpy

(Y,S+T;2mn+1)

1.7 One has also obviously

1
(f 'al""’an}S+T =- {f’al’“"an}S+T

-1
{f.a),.8; 1,8 58, ""an}S+T =- {f,al,‘..,an}S+T
if a, is invertible.

1.8 Let us compute a very simple example.
Set Y=C-{0}=SpecC [t,:—]

$={(1,-1)
f=t%a =€t withe=+1 or - 1

n=2.
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One has a commutative diagram

Ky(Y.9) - Ky(¥Y)
el eyt
H(Y,ji C/2Q) =Hy (Y, §:2Q) -  Hy(Y,2@) =H(Y; /)

We denote by <, >g the generalized symbols in K,(Y,S) and by { , } the Steinberg
symbols in K,(Y).

We consider <t2, Et >g in K2(Y,S).
Its image {t2, et} =2{- et, et} in K2( Y) vanishes. Therefore Cyy <t2, Et>g = {t2, st}s

lies in

K : =Ker (H'(Y, 1 ©/22)) » H(Y, ©/2(2))) = C/2(2)

Let [yl € H/(Y,S; 2) be the homology cycle such that <[y], K> generates C/2(2). We

may take a representative y of the following shape :

Y:[0,n] > Y

0 —el®

We want to compute x : = <[y], {t2, et} ¢> in T/2(2).
Cover a tubular neighbourhood ‘U of y by two open sets U, U,, with

{1}eU,-U,,{-1}eU,- U,

3n
YNU; = (8¢ [0,7)
T

YOU, ={0elzn);

Choose log; t with

log, 2= log , 2 +2in on U

and
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log ;,et on U,,.

Then {t2, et}g isgivenasa Cech cocycle by
(0, - (Blogt?)_; log., et , log, ? =)
€t
BX(U, 1 ¢/2@) x B'(U, 0% ) xBA(U, Q) o)

One has

log, 2 ‘-15;3 = 7 d((log; &) .

Therefore {t, &t }g is given by the Eech cocycle
(0, X :=- Blog) ;, log_,, et +7 & ((log, ), 0),

and one has x = x modulo Z(2).

One has
X = (810gt2)_ll (- dlog ,, &t +21;10g1 2+ lelog_1 )

= im) (- Slog,, et + 5log ; & +7).

Therefore
. im
0#x = (211t).-f e C/2(22) for e=1

= - Qin). € T/2Q) for e=-1

1.9 Remark.

Let V be any Zariski open setin Y containing S. Then the restriction map K — Ky, where
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Ky : = Ker (H'(V, j €/2(2)) - H'(V, C/2(2)))

is obviously an isomorphism.

Therefore the restriction of {t2 et }g to V doesnotdiein Hl(V, i1 ©/Z(2)). We will use

this remark in (2.3) in order to construct an element in
Ker ((K,R) »K,(QR))),

where R is alocal domain and Q(R) is its field of fractions.
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2.1 Let X be areduced algebraic variety over @, whose singular locus X is of dimension d.
Fix an integer n with n>d +1 and n2>2. In [E2], we construct a Zariski sheaf 3% (n) on
X, together with a regulator map ¢, : ‘.K‘.II:/I — %™(n) , which is functorial and coincides with

Bloch-Beilinson's regulator map when X is smooth. (Here ‘.K.Ir is the Zariski sheaf of

Milnor K-theory).
Roughly, the construction goes as follows.

Let ®: Y — X be a desingularization such that E : = (r! Z)oq is a divisor with normal

crossings, and such that F = m" Q')‘(/torsion is a locally free sheaf, where QY are the

Kihler differentials. Define j: Y-E—Y and i: X-Z—-X.

One observes that & embeds into Q';{(log E)(- E), and therefore that g 2n maps to

j1 ©/2Z.(n), where

(= =5, (" =04(logE)-E), for 2>n

=0 for 2 <n.

This gives a map

¢, : Rm, (F>") - iy C/Z(n)

and one defines %"(n),  ; to be the Zariski sheaf in X associated to H" (cone ¢; [-1]). It
does not depend on the desingularization ® choosen. Then one defines ‘.}{a"(n)i by taking in

2 those sections which have logarithmic growth at infinity (see (2.2), 1)). Finally, there is
a subvariety X'C I of the shape Sing (Sing ... (Sing Z) ... )), in such a way that if ¥%"(n)
is the sheaf (with logarithmic growth condition at infinity) associated to H™ (cone ?; [-1»,
where i': X-X'— X and @, : R, (F2") - i'yC/2(n) , the natural cup product of
elements of ‘K.l lands in ([E2], (1.4)). This defines at the same time c_ ([E2], (2.2)).
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2.2 Remarks

1. Let us be more precise on the logarithmic growth at infinity. Let U be an open set in X,
Take a good compactification of V : =n"1(U) :

nl In

such that X is any compactification of X, V is smooth and (V - V) is a normal crossing
divisor. The one defines

gk:= 2, 55N O, (log (V- V),

and ¥%"(n); is the sheaf associated to

H" (X, cone R 7, 92 - Rk, i €/2(n)) [- 1]).
Once again, it does not depend on the choices of X, V, V.
One defines similarly %6"(n) by replacingi by i'.

One has for degree reasons

H" (X, cone (R T, 3" - Rk, iy C/2()) [- 1))
= H" (X, cone (R" T, " — Rk, i; C/2(m)) [- 1]).

One has maps of sheaves
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RDT-C* 92“

\)

k, Ker (Qf; » ') - k, R 1, &0

Define Q:, g to be the fiber product. As the verticél arrow is injective, QB % is a subsheaf of
ky Q-

As HYX,R" 7, 92") and HOU,R" %, F2") do not dependon X, V, V, HI(X,
Q?] % ) does notdependon X, V, V either. Define %“(n) ; to be the Zariski sheaf associated

to

H" (X, cone (Q;’)-( - Rk, i C/2()) [- 1]),

and similarly for % ) by replacing i by i'. One obtains natural maps

2%m) — W (o)
"R“(n)i - %“(n)i.

The point is doing that is that one does not lose the torsion in the Kéhler differentials.

One can prove along the same line as in [E2] that this definition is functorial and leads to a
regulator

-~ _ M ~ n
Con =K, = ¥7(n)
lifting ¢ .
We will not use this in the rest of this article.

2. M. Levine [L] defines another Zariski sheaf on X. Roughly speaking, he takes the sheaf
associated to
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H" (0, QF (log(T - U)) - Rk, cone(Z(@) - Q3,))

where k :U — U is a compactification such that (U - U) is supported by a Cartier divisor
and Q%" (log(U - U)) consists of those Kihler forms which have logarithmic growth along

the normal crossing divisor (V- V) where

is a diagram of desingularization. Of course %50 (n) maps to M. Levine's sheaf, whereas
H"(n) does not : "my" Betti part lifts "his", but I lose the torsion in the forms.

2.3. We will now compute a simple example of c,, : X will be a rational curve with a double

point.
Set R:=¢[1-t2,t(1-t2),é]—)A:=¢[1,-:-]
1
= G:[x,y a'I__x]/(xz'yz'x3)
Define Y:=Spec A 5 X :=SpecR

iT Ti
Y-S = X-0
where 0:=(x=0,y=0),S={t=-1,t=1}.

We consider the commutative diagram

KX (0) - KX

' I
K(YS) D KW
Cypd e,

HI(Y,jiC/2(2)) - H\(Y, C/2(2)).
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In KZ(X’ {0}) one has the generalized symbol
z:=<t?, et(l -t2)>{0} , withe=+1or- 1.
One has
nit <t et(l - t2)>{0] =i <2, &t(1 - D>

where <t%, et(1 - t9)>¢ is the generalized symbol in K,(Y, S).
By (1.5), one has

Fetet(l-t)>g =i <@et>g +j < (1-2)>g in K(Y).
One has i" < et>g = (1% et} =0 in Kx(Y).

leto: Yo C

t 5>t2=:1

Let j: C'-{1})>C".

Then <, (1-)>g = o <t,1- L
where <1,1- ()€ Kz((li*, {1D.
By functoriality, one has

cpp <t =(1 - )>g - Cyy G <1,1- ()
= (& (1-D)g=0" (1,1-T)y,

But one has injections :
HY(C",jT/22) > HYCT', C/2(2)
d

HI(C" - (1}, ©/2(2))
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Therefore <z, 1 - 1:>{1} =0 as its image in HI(GI* - {1}, €/Z(2)) vanishes (by Bloch's

construction of the regulator !).
One obtains :

Cyy (<22, (1 - 9)>¢) = {2, et) s

By (1.6), it does not die in
K =Ker (H\(Y, jiC/2(2)) - H\(Y, ©/2(2)))
Finally, " z = {t et} + {%, 1- !} =0 in K, (C)) .

So we have constructed an element z € K,(X), whose image in K,(C(X)) = K, (T (1)
vanishes, and which is non zero. Let M be the maximum ideal of {0} in R, and R'm. be the
localization of R in M. It remains toshow that the image z of z in KZ(Rm) does not

vanish.

Apply c,, ; one has
oy (2) € HIQ2)) = K1GT/Z2(2) ((B2] (1.4)),

where
%!@C/2R) = Im  H'U 4C/2(2)
Oe U_Z-)ariski
= fim Hlxl U, ji@/22)
0 € U Zariski

By (1.9) c,, () #0.

Conclusion. We have used the regulator c,, to detect an explicit element Z in KRy,
whose image in K2(¢(t)) vanishes.

In [G], the case of a semi-normal curve singularity is treated in general, without use of a

regulator.
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2.4 Let us now take M. Levine's definition of Cyy in the example (2.3). One has maps

H! (1€/2(2)) » HY(T/2(2) - B 2(2) - Ox = Q;()-

where the first map in an isomorphism and the second one is injective. Therefore one can also
see that z#0.

2.5 Remark,
Let X, X, = Y,i1,1 etc... beasin (2.1).

Considern=2.
The map %2(2) - 7‘*%?@(2) [E2], (1.7), has more precisely the following shape at the

presheaf level [E2], (1.4), proof of 1).
There is a commutative diagram of exact sequences :

0 - H!(U,11C/2(2)) - H? (U, 2) -» Ker H(V, 9)_, - H2 {1C€/2(2)) > 0
*) ! l l
0 — H (V,0/2(2)) » H?B(v, 2) — Ker (HA(V, Q2 (log (V-V)) » H2(V,C/2(2))) -0

As H! (U, 11C/2(2) = H! U, j1C/2(2)) withj' : Y-E' — Y where E': =n"1 Z', one
sees that the map H? U,2)—> H?B (V, 2) isinjective if and only if E' is connected.

As HY) (v, 2 =HO(V, %2 (V,2), one obtains that the map %%(2) — m. %3 @) is

injective if and only if E' is connected .

In particular, if Z=2' and X is normal (e.g a normal surface singularity), the regulator

Cy, Will never detect elements in Ker (‘K.Zx -K, @X))).

Consider now %2(2) as defined in (2.2) 1). Then in the diagram (*) one has to replace 9
by Q% % and one sees that Ker ("5'{;2(2) - T, ‘}62‘@ (2)) is contained in the torsion of Q?( .

Then '522 will detect elements in Ker (“K‘ZX - K, (([(X))) if one can find x € ¥,y such
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that dlogx is torsion, where dlog : ¥, — Q)2( is the map dlog(f, g} = %.f- A d_gg . Of

course we knew that already without complicated regulator !

3.1 Keeping the notations of (2.1), we will now be interested in

Cl:=1t*‘.}(’.[l:$/‘l(‘.ll:§(.

There is a map

e - 7, R o, (Q/F)
where o.: X, — X . is the continuous map from the classical to the Zariski topology ([E2],

(2.2)), simply defined by
dlog : ‘JCII:;I( - Q3 [n]

df1 dfn
{fl"“’fn}_).?_l—/\'”/\-f;_ .

3.2 We compute a singularity of type A,. Set X :=Spec C[x,y, t, %] K - xy);®n: Y- X
is the blow up of {0} :=(x =0,y =0, t=0), with exceptional line E.

A) Cover Y be three Zariski open sets YO’ Yl’ Y2 of coordinates and equations

YO:(a,b,t),x=at,y=bt;l-ab
Y, (b, T),y=bx t=Tx; T2- b
Y2 :(@@,y, T, x =aly, t=T'y;T’2- a'

We consider in K, (Y, ) the generalized symbol

a0:=<1-t,at>E.

One has
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aOIYon Y) =<1 - Tx, X>p = °‘1IY0n Y) with o= <1-Tx, X>p € K2 (Yl)

_ 2
%y ny,y =<1-Ty. Ty
=<l-Ty, T>; +<1-TYy, Ty>g (1.5)

Consider c: Y,NY, >C"
@y T)—>1t:=1-Ty.

One has <1-TYy, Ty>; = ¢ <t,1- ()

As <T,1- (1) € K, ((IZ*, {1}) is uniquely determined by its restriction to K, ((l:* -{1}), it

is zero.

Therefore OL0|Y0 ny with o, :=<1-T, T> in Ky(Y),).

=q
2lY,NY.

2 2

Similarly, one has °°1|Y1 nY, = a2|Y1 ny, e K, (Y,NY,).

Define o € HO(Y » ¥,) tobe o, onY;

B) Now one easily computes that
Fi=n Qf(/torsion = Q%{ (- E).

As F is generated by global sections and (X, 0) is rational singularity, one has
T Q%(/f}' = (. Itis generated by the image in =, Q.%,/S" of

dogo . dtAda_ dT A dx _ dy A dT
08¢ =-"Mpa ~~ 1-Ix  1-Tvy

3.3 We compute a singularity of type A, ((E2], 2.12), 2))
1

SetX:=Spec(l2[x,y,t,l 2]/(t3-xy);1t:Y—-)X is the blowup of {0}:=(x=0,y
-t

=0, t = 0), with exceptional line E. One has E=E, +E,, E12 =-2,E,NE,=:p.

A) Cover Y be three Zariski open sets Y, Y, Y, of coordinates as in (3.2), and equations :

Y,:t-ab,E, :<a=0>E,:<b=0>
Y, Tx- b
Y2:T‘3y-a'.
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We consider in K,(Y,,) the two generalized symbols

o =<l -ab, b>g , By i =<1- @b)?, b2>E2.

One has

- 2

=<1-Tx, T>E2 + <1 - Tx, Tx>EZ .

Asin 3.2, one has <1 - Tx, Tx >Ez =0, and °‘0IY0 Ny, = a”Yo ny, where a, =<1 -

Tx, T>E2 . Similarly, one has °‘0IY0 ny, = a2|Y0 nY, where o, = - <1 - T, T'>EZ

€ Ky (Y)). One computes in the same way that alIYl nY, = oc2|Y1 Ny, in Ky,(Y, N
Y,).

Define o e HO(Y, X,) tobe a; onY;
Similarly, B € Ky(Y),
B,:= <1-(Tx)? Tog, € Ky(Y)

B,:= <1-(Ty) T'2>E2 e K, (Y,)

define a global section in I-IO(Y, X))

B) One has &, Q%/torsion =M Q%(-E) where I, the maximal ideal of p. As T, Q%./torsion

is generated by global sections and (X, 0) is a rational singularity, one has

Rln* (n* Qg(/torsion) =0.

Leto: Z— Y be the blow up of p with exceptional line F. Then one has

F =¢"n" Qftorsion=6" Q3 (-E)® O, (- F).
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AsR!o, O, (-F) =0, one has
Ty O, (Q3/F) =, (@3/M Q2(- )
= CI:p ec
where @, is Qy(- EY/M Q%(-B)
and © maps isomorphically to HO(O)E(- E)). Itis obvioulsy generated by the image of
dloga = - dla -Aa%b _ dlx _AX%T _ dF _Ay%T'

da A db dx A dT dy A dT'
T2 - T 2= 3T 2
1- (ab) 1 - (xT) 1-(yT")

zlt-dlogﬁ = -ab
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