Connections and Symmetric Differential Forms

Hélène Esnault, work in progress with Michael Groechenig

London, December 08, 2020

over \mathbb{C}

$X \in x$ sm proj var over $\mathbb{C}, \pi_{1}^{\text {top }}(X, x)$ top fund $\mathrm{gr}, r \in \mathbb{N}_{>0}$

over \mathbb{C}

$X \in x$ sm proj var over $\mathbb{C}, \pi_{1}^{\text {top }}(X, x)$ top fund $g r, r \in \mathbb{N}_{>0}$

- Simpson: $M_{B}(X, r) m^{\text {top }} M_{d R}(X, r) \longleftrightarrow^{\text {top }} M_{\text {Dol }}(X, r)$
- $M_{B}(X, r)$ affine
- $M_{\text {Dol }}(X, r) \xrightarrow{\text { Hitchin }} \mathbb{A}^{N}, N=\oplus_{i=1}^{r} h^{0}\left(X, \operatorname{Sym}^{i} \Omega^{1}\right)$ proper
- Van: $h^{0}\left(X, \operatorname{Sym}^{i} \Omega^{1}\right)=0 \forall i \in \mathbb{N}_{>0}$
- \Longrightarrow Arapura: Van \Rightarrow Fin with Fin: $\left[M_{B}(X, r) 0\right.$-dim'l]
- $\operatorname{Fin} \Rightarrow$ all complex local systems are rigid.

Theorem
 Van \Rightarrow monodromy of all complex local systems is finite.

Theorem (BKT '13)

Theorem

Van \Rightarrow monodromy of all complex local systems is finite.
Proof relies on >0 ty in \mathbb{C}-geom

- Simpson: loc. syst. is a \mathbb{C}-VHS
- Katzarkov-Zuo: Van \Rightarrow is in fact a $\overline{\mathbb{Z}}$-factor of a \mathbb{Z}-VHS
- Zuo: Ω^{1} of image of period map big.

Theorem (BKT '13)

Theorem

Van \Rightarrow monodromy of all complex local systems is finite.

Proof relies on >0 ty in \mathbb{C}-geom

- Simpson: loc. syst. is a $\mathbb{C}-\mathrm{VHS}$
- Katzarkov-Zuo: Van \Rightarrow is in fact a $\overline{\mathbb{Z}}$-factor of a \mathbb{Z}-VHS
- Zuo: Ω^{1} of image of period map big.

Fin \nRightarrow Van, Fin \nRightarrow Thm

Margulis superrigidity: Shimura var of $r k \geq 2$: has Fin but by far not Van and has inftly many loc syst with infinite monodromy.

Integrality and F-isocrystals

Theorem (EG'18) in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla) w \otimes w K$ are isoc with a Frobenius structure

Integrality and F-isocrystals

Theorem (EG'18) in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla)_{w} \otimes{ }_{w} K$ are isoc with a Frobenius structure

So Fin (in a given rank r) $\Rightarrow($ rank r) $\overline{\mathbb{Z}}$-factor of a \mathbb{Z} - VHS.

Integrality and F-isocrystals

Theorem (EG'18) in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla) w \otimes w K$ are isoc with a Frobenius structure

So Fin (in a given rank r) $\Rightarrow($ rank r) $\overline{\mathbb{Z}}$-factor of a \mathbb{Z} - VHS.

Proof purely algebraic, relies on the existence of companions.

Integrality and F-isocrystals

Theorem (EG'18) in (partial) answer to Simpson's integrality conjecture

Fin (in a given rank r) \Rightarrow

- (rank r) complex loc syst are integral.
- $(E, \nabla) w \otimes w K$ are isoc with a Frobenius structure

So Fin (in a given rank r) $\Rightarrow($ rank r) $\overline{\mathbb{Z}}$-factor of a \mathbb{Z} - VHS.

Proof purely algebraic, relies on the existence of companions.

So: BKT \Leftrightarrow unitary mon \Leftrightarrow Higgs field $=0$, seen in char. $p>0$.

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?
toy $r=1$: analytically
Fin $\Rightarrow M_{d R}(X, 1)=\operatorname{Pic}^{\nabla}(X)=($ Hodge Theory $)$
$\operatorname{Pic}^{\tau}(X)=N S(X)[$ torsion $]$.

Problems addressed

- Van is a purely algebraic condition
- having finite monodromy is a purely algebraic property
- algebraically? : isocrystals and mod p connections?
toy $r=1$: analytically
Fin $\Rightarrow M_{d R}(X, 1)=\operatorname{Pic}^{\nabla}(X)=($ Hodge Theory $)$
$\operatorname{Pic}^{\tau}(X)=N S(X)[$ torsion $]$.

toy $r=1$: algebraically

\mathcal{L} connection of rank 1 ; Fin $\Rightarrow\left\{\mathcal{L}^{n}\right\}_{n \in \mathbb{Z}}$ finite $\Rightarrow \mathcal{L}^{m} \cong \mathcal{L}^{n}$ for some $m \neq n \in \mathbb{N}$ (preperiodicity) $\Rightarrow \mathcal{L}^{n-m}=1(m-n) \neq 0$ so \mathcal{L} torsion.

Isocrystals

Proposition (EG'20)

$X=X_{W} \otimes{ }_{w} k, k=\bar{k}$ sm proj, Van $/ K \Rightarrow$

1) all ℓ-adic loc. syst have fin mon
2) if $k=\overline{\mathbb{F}}_{p} \exists h: Y \rightarrow X$ fin ét trivializing conv isoc

Isocrystals

Proposition (EG'20)

$X=X_{W} \otimes_{W} k, k=\bar{k}$ sm proj, Van $/ K \Rightarrow$

1) all ℓ-adic loc. syst have fin mon
2) if $k=\overline{\mathbb{F}}_{p} \exists h: Y \rightarrow X$ fin ét trivializing conv isoc

Proof

- 1$): \pi_{1}^{\text {et }}\left(X_{\mathbb{C}}\right) \rightarrow \pi_{1}^{\text {ét }}\left(X_{k}\right)+\mathrm{BKT}$
- $\left(E_{K}, \nabla_{K}\right)=\left(E_{W}, \nabla_{W}\right) \otimes_{W} K,\left(E_{W}, \nabla_{W}\right) \otimes_{W} k$, nilp p-curv
- F acts on isoc, $\mathbf{F i n} \Rightarrow$ preperiodicity F-orbit of any isoc
- \Rightarrow given $\left(E_{K}, \nabla_{K}\right)$ (not nec conv), $\exists N,\left(F^{N}\right)^{*}\left(E_{K}, \nabla_{K}\right) F$-str
- $\Rightarrow($ Abe-E $+K) \exists \ell$-adic companion so 1$) \Rightarrow \exists h: Y \rightarrow X$ st $h^{*}\left(F^{N}\right)^{*}\left(E_{K}, \nabla_{K}\right)$ trivial
- conv $\Rightarrow 2): h^{*}\left(E_{K}, \nabla_{K}\right)$ trivial as well.

Problem on isocrystals

Problems

- X $/ k, k=\bar{k}$ sm proj, Van $/ k \Rightarrow$? all $\overline{\mathbb{Q}} \ell$ loc syst have fin mon - $k=\overline{\mathbb{F}}_{p}$ Van $/ k \Rightarrow$? all conv isoc are étale trivializable

Problem on isocrystals

Problems

- X $/ k, k=\bar{k}$ sm proj, Van $/ k \Rightarrow$? all $\overline{\mathbb{Q}} \ell$ loc syst have fin mon
- $k=\overline{\mathbb{F}}_{p}$ Van $/ k \Rightarrow$? all conv isoc are étale trivializable

Remark

X / k lifts to X_{W} : Proposition \Rightarrow both problems have a >0 answer

Theorem (EG'20)
 $X=X_{W_{2}\left(\mathbb{F}_{q}\right)} \otimes \mathbb{F}_{q}$ sm proj, Van $/ \mathbb{F}_{q} \Rightarrow$ rk 2 loc free ss deg 0 (E, ∇) are étally trivializable.

Theorem (EG'20)

$X=X_{W_{2}\left(\mathbb{F}_{q}\right)} \otimes \mathbb{F}_{q}$ sm proj, Van $/ \mathbb{F}_{q} \Rightarrow$ rk 2 loc free ss deg 0 (E, ∇) are étally trivializable.

Proof

- Van \Rightarrow Hitchin base $=\{0\} \Rightarrow$-curv nilpotent
- preperiodic Higgs-dR flow (OV corr, Lan-Sheng-Zuo)
- assume periodic period 1 (for talk): then
- either $(E, \nabla)=\left(F^{*} E, \nabla_{\text {can }}\right) \Rightarrow$ (Lang torsor) ét triv, or
- $0 \rightarrow\left(F^{*} L^{<0}\right.$, can $) \rightarrow(E, \nabla) \rightarrow\left(F^{*} L^{>0}\right.$, can $) \rightarrow 0$ (p-curv nil)
- $0 \rightarrow L^{>0} \rightarrow E \rightarrow L^{<0} \rightarrow 0$ (F-Filt)
- $\rightsquigarrow K S: L^{>0} \otimes\left(L^{<0}\right)^{-1} \hookrightarrow \Omega^{1},\left(L^{<0}\right)^{p-1} \hookrightarrow \mathcal{O} \hookrightarrow\left(L^{>0}\right)^{p-1}$
- $\rightsquigarrow \mathcal{O}_{X} \hookrightarrow \operatorname{Sym}^{p-1} \Omega^{1} \perp$ to Van.

