Special loci of Betti Moduli

Hélène Esnault, with Moritz Kerz whom I thank for the long term joint work

Stony Brook, October 24, 2020

Betti Moduli

X sm q-proj var over \mathbb{C} , $\pi_1^{\text{top}}(X, x)$ top fund gr based at $x \in X(\mathbb{C})$, $1 \leq r \in \mathbb{N} \rightsquigarrow \exists$ moduli space M(X, r) =: M of conj cl of rk r ss lin rep of $\pi_1^{\text{top}}(X, x)$.

æ

Betti Moduli

X sm q-proj var over \mathbb{C} , $\pi_1^{\text{top}}(X, x)$ top fund gr based at $x \in X(\mathbb{C})$, $1 \leq r \in \mathbb{N} \rightsquigarrow \exists$ moduli space M(X, r) =: M of conj cl of rk r ss lin rep of $\pi_1^{\text{top}}(X, x)$.

M is an aff sch/ \mathbb{Z} . $M(\mathbb{C})$ is the set of iso cl of ss \mathbb{C} -loc syst of rk *r*.

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \overline{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\text{top}}(X, x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \overline{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\text{top}}(X, x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Notation

 $M(\mathbb{C})^{qu} \subset M(\mathbb{C})$ is the set of iso cl of \mathbb{C} -loc syst with quasi-unip mon at ∞ .

Quasi-unipotency at infinity

Fix a normal comp $j: X \hookrightarrow \overline{X}$. The conj cl of the gen T_s of local fund gr around a comp D_s at ∞ is well defined in $\pi_1^{\text{top}}(X, x) \rightsquigarrow$ notion of loc mon at ∞ of loc syst $\mathcal{V} \in M(\mathbb{C})$.

Notation

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is the set of iso cl of \mathbb{C} -loc syst with quasi-unip mon at ∞ .

Remark

Same definition fixing the determinant \mathcal{L} of \mathcal{V} which is torsison $\rightsquigarrow M(\mathcal{L})$ and $M(\mathcal{L})(\mathbb{C})^{qu} \subset M(\mathcal{L})(\mathbb{C})$.

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is Zariski dense.

Hélène Esnault, with Moritz Kerz whom I thank for the long ter Special loci

ヘロア 人間 アメヨア 人間 アー

æ

Density

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is Zariski dense.

Remark

Same theorem with $M \rightsquigarrow M(\mathcal{L})$.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

Density

Theorem A (E-Kerz '20)

 $M(\mathbb{C})^{\mathrm{qu}} \subset M(\mathbb{C})$ is Zariski dense.

Remark

Same theorem with $M \rightsquigarrow M(\mathcal{L})$.

Heuristic

• Simpson: in each irr comp of M, exists \mathbb{C} -VHS (viewed as a fixpoint under the \mathbb{C}^{\times} -rescaling on the Higgs field).

- Hope: those coming from geometry are even Zariski dense.
- \bullet Their monodromies at ∞ are quasi-unipotent (Brieskorn, Griffiths, Grothendieck).

 $\exists \text{ framed moduli space } M^{\square}(X, r) =: M^{\square} \text{ defined by the functor } \pi_1^{\text{top}}(X, x) \to GL_r(A) \text{ on aff } \mathbb{Z}\text{-alg } A. M^{\square} \text{ fine, aff sch } /\mathbb{Z}, \\ M^{\square}(\mathbb{C}) \xrightarrow{q} M(\mathbb{C}) \text{ cat quotient by } GL_r \text{ action on frames } \rightsquigarrow \\ M^{\square}(\mathbb{C})^{\text{qu}} = q^{-1}M(\mathbb{C})^{\text{qu}}.$

(本部) (문) (문) (문

 $\exists \text{ framed moduli space } M^{\square}(X, r) =: M^{\square} \text{ defined by the functor } \pi_1^{\text{top}}(X, x) \to GL_r(A) \text{ on aff } \mathbb{Z}\text{-alg } A. M^{\square} \text{ fine, aff sch } /\mathbb{Z}, \\ M^{\square}(\mathbb{C}) \xrightarrow{q} M(\mathbb{C}) \text{ cat quotient by } GL_r \text{ action on frames } \rightsquigarrow \\ M^{\square}(\mathbb{C})^{\text{qu}} = q^{-1}M(\mathbb{C})^{\text{qu}}.$

(本部) (문) (문) (문

 $\exists \text{ framed moduli space } M^{\square}(X, r) =: M^{\square} \text{ defined by the functor} \\ \pi_1^{\text{top}}(X, x) \to GL_r(A) \text{ on aff } \mathbb{Z}\text{-alg } A. M^{\square} \text{ fine, aff sch } /\mathbb{Z}, \\ M^{\square}(\mathbb{C}) \xrightarrow{q} M(\mathbb{C}) \text{ cat quotient by } GL_r \text{ action on frames} \rightsquigarrow \\ M^{\square}(\mathbb{C})^{\text{qu}} = q^{-1}M(\mathbb{C})^{\text{qu}}.$

イロト イヨト イヨト イヨト 二日

$$\ell$$
 prime given $\rightsquigarrow M^{\Box}(\bar{\mathbb{Z}}_{\ell}) \subset M^{\Box}(\bar{\mathbb{Q}}_{\ell}) = \text{set of}$
 $\rho : \pi_1^{\text{top}}(X, x) \to GL_r(\bar{\mathbb{Q}}_{\ell})$ which factor through cont rep
 $\rho^{\text{ét}} : \pi_1^{\text{ét}}(X, x) \to GL_r(\bar{\mathbb{Z}}_{\ell}).$

 $\exists \text{ framed moduli space } M^{\square}(X, r) =: M^{\square} \text{ defined by the functor} \\ \pi_1^{\text{top}}(X, x) \to GL_r(A) \text{ on aff } \mathbb{Z}\text{-alg } A. M^{\square} \text{ fine, aff sch } /\mathbb{Z}, \\ M^{\square}(\mathbb{C}) \xrightarrow{q} M(\mathbb{C}) \text{ cat quotient by } GL_r \text{ action on frames} \rightsquigarrow \\ M^{\square}(\mathbb{C})^{\text{qu}} = q^{-1}M(\mathbb{C})^{\text{qu}}.$

$$\ell$$
 prime given $\rightsquigarrow M^{\Box}(\overline{\mathbb{Z}}_{\ell}) \subset M^{\Box}(\overline{\mathbb{Q}}_{\ell}) = \text{set of}$
 $\rho : \pi_1^{\text{top}}(X, x) \to GL_r(\overline{\mathbb{Q}}_{\ell})$ which factor through cont rep
 $\rho^{\text{ét}} : \pi_1^{\text{ét}}(X, x) \to GL_r(\overline{\mathbb{Z}}_{\ell}).$

ℓ -adic points of M

$$M^{ ext{
m \acute{e}t},\ell} := q(M^{\square}(ar{\mathbb{Z}}_\ell)) \subset M(ar{\mathbb{Q}}_\ell)$$

Image: A math a math

Э

is the set of étale $\overline{\mathbb{Q}}_{\ell}$ -loc syst.

Galois action on ℓ -adic points

$x \in X(F)$ (if \emptyset enlarge F) $\rightsquigarrow G \circlearrowleft \pi_1^{\text{\'et}}(X_{\overline{F}}, x)$ by conj \rightsquigarrow $G \circlearrowright M^{\text{\'et}, \ell}.$

イロト イヨト イヨト イヨト 二日

Galois action on ℓ -adic points

$x \in X(F)$ (if \emptyset enlarge F) $\rightsquigarrow G \circlearrowleft \pi_1^{\text{\'et}}(X_{\overline{F}}, x)$ by conj \rightsquigarrow $G \circlearrowright M^{\text{\'et}, \ell}.$

イロト イヨト イヨト イヨト 二日

Special loci

Definition

A closed subset $S \subset M^{\square}(\bar{\mathbb{Q}}_{\ell})$ is *special* if 1) \forall each irred comp S_i $\emptyset \neq S_i \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$; 2) $U \circlearrowleft S \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$ for some $U \subset G$ open.

A ■

Special loci

Definition

A closed subset $S \subset M^{\square}(\bar{\mathbb{Q}}_{\ell})$ is *special* if 1) \forall each irred comp S_i $\emptyset \neq S_i \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$; 2) $U \circlearrowleft S \cap M^{\square}(\bar{\mathbb{Z}}_{\ell})$ for some $U \subset G$ open.

A (1)

Theorem B (E-Kerz '20)

S special \Rightarrow S \cap M^{\Box}(\mathbb{C})^{qu} \subset S Zariski dense.

Thm $\mathsf{B}\Rightarrow\mathsf{Thm}\;\mathsf{A}$

- $\overline{\mathbb{Q}}_{\ell}$ alg. cl. \Rightarrow may replace \mathbb{C} by $\overline{\mathbb{Q}}_{\ell}$ in Thm A (top loc syst).
- $M^{\Box}(\bar{\mathbb{Z}}_{\ell})$ *G*-invariant;
- so enough to find ℓ so all irr comp of $M^{\Box}(\bar{\mathbb{Q}}_{\ell})$ meet $M^{\Box}(\bar{\mathbb{Z}}_{\ell})$;

• fin many irr comp $M_i/\bar{\mathbb{Q}}$, pick $\rho_i \in M_i(\bar{\mathbb{Q}})$; as $\pi_1^{\text{top}}(X, x)$ fin gen, all ρ_i defined over $\mathcal{O}_{E,\Sigma}$, Σ fin many places of \mathcal{O}_E ; so $\ell \notin \text{char } \Sigma$ does it.

Proof of Thm B

•
$$G \rightsquigarrow \text{open subgr} \Rightarrow \text{may assume } S \text{ irr;}$$

• $N := \prod_s \mathbb{A}^{r-1} \times \mathbb{G}_m;$
• $\psi : M^{\Box}(\bar{\mathbb{Q}}_\ell)(\to M(\bar{\mathbb{Q}}_\ell)) \to N(\bar{\mathbb{Q}}_\ell)$
 $\rho \mapsto \prod_s (\text{coeff of } \det(X - \rho(T_s) \cdot \text{Id}))$
• $\psi \text{ defined } /\mathbb{Z}_\ell$, G -equivariant on $M^{\Box}(\bar{\mathbb{Z}}_\ell) \to N(\bar{\mathbb{Z}}_\ell);$
• define $N(\bar{\mathbb{Q}}_\ell)^{\text{tor}} \subset N(\bar{\mathbb{Q}}_\ell)$ as the pol with torsion zeroes;
• $S \cap M^{\Box}(\bar{\mathbb{Q}}_\ell)^{\text{qu}} = \psi^{-1}(\psi(S) \cap N(\bar{\mathbb{Q}}_\ell)^{\text{tor}});$
• Chevalley thm $\Rightarrow \psi(S)$ constructible;
• Zariski cl Z irr and $Z \cap N(\bar{\mathbb{Z}}_\ell) \neq \emptyset;$
• so enough to prove $Z \cap N(\bar{\mathbb{Q}}_\ell)^{\text{tor}} \subset Z$ Zariski dense;
• $h : T = \prod_s \mathbb{G}_m^r \to N$ separates the roots; h fin surj, so enough to prove $h^{-1}Z \cap T(\bar{\mathbb{Q}}_\ell)^{\text{tor}} \subset h^{-1}Z$ Zariski dense.

);

T torus /F, then torsion points are Zariski dense in special loci.

臣

< ≣ ▶

Image: A mathematical states of the state

T torus /F, then torsion points are Zariski dense in special loci.

Remark

Thm C more is precise: special loci are union of translates by a torsion point of motivic subtori.

臣

T torus /F, then torsion points are Zariski dense in special loci.

Remark

Thm C more is precise: special loci are union of translates by a torsion point of motivic subtori.

Remark

Method of proof of Thm B comes from our proof of density thm of tame arithm $\overline{\mathbb{Q}}_{\ell}$ -loc syst of rk 2 on $\mathbb{P}^1 \setminus \{0, 1, \infty\}/\overline{\mathbb{F}}_p$. Generalization to higher rank would yield the Hard Lefschetz thm in char p > 0.

T torus /F, then torsion points are Zariski dense in special loci.

Remark

Thm C more is precise: special loci are union of translates by a torsion point of motivic subtori.

Remark

Method of proof of Thm B comes from our proof of density thm of tame arithm $\overline{\mathbb{Q}}_{\ell}$ -loc syst of rk 2 on $\mathbb{P}^1 \setminus \{0, 1, \infty\}/\overline{\mathbb{F}}_p$. Generalization to higher rank would yield the Hard Lefschetz thm in char p > 0.

Image: A math a math

Thank you for your attention!