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Differential operators in complex geometry

Complex geometry

• In complex geometry, we know well what is the sheaf D of differential
operators on a manifold X : it is a sheaf of O-algebras, generated, locally
where one has coordinates (x1, . . . , xn), by differential operators D≤N of
order ≤ N, which are written as finite sums with coefficients in the
holomorphic functions O of operators ∂m1

x1
◦ . . . ◦ ∂mn

xn ,
∑n

i=1 mi ≤ N. In
particular, D≤0 = O, D≤1 = O ⊕ T , where T is the sheaf of tangent
vectors. The splitting D → O is in fact independent of the choice of the
local coordinates, that is it is global, and defined by P 7→ P(1), where 1 is
the global constant holomorphic function equal to 1 everywhere.

• As we see on the local description, D as an O-algebra is spanned by D≤1.
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D-modules in complex geometry

Complex geometry

• D acts on O. Any sheaf of O-modules E which has the property that
the O-action factors through a D-action is called a sheaf of D-modules.
So O is a D-module, called the trivial D-module.

• Writing ∇(e) =
∑
∂xi (e)dxi defines a connection

∇ : E → Ω1 ⊗O E ,

and the relation ∂xi∂xj (e) = ∂xj∂xi (e) for all i , j translates into the
integrability of ∇.

• If one assumes E is O-coherent, this implies E is locally free, that is a
vector bundle, so ∇ becomes a linear differential equation:

∂xi ej =
r∑

`=1

a`ije`, r = rank(E ).
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D-modules in complex geometry

Complex geometry

• One sets M := (E ,∇).

• More is true: there is a tensor product M ⊗ N, an (internal) dual M∨,
Hom(M,N) is a complex vector space, End(O) = C: the category of such
M is tannakian, and so is the subcategory 〈M〉 of subquotients of tensors
Mn ⊗ (M∨)m of M and its dual.

• If we fix a complex point x , we have the monodromy representation
ρ : πtop1 (X , x)→ GL(r ,C) of M.

• The category 〈M〉 is equivalent to the category of algebraic
representations in finite dimensional complex vector spaces of a complex
group scheme G (M), called its Tannaka group, which is the Zariski closure

ρ(πtop1 (X , x)) ⊂ GL(r ,C) of the monodromy group. (It is a consequence of the

Riemann-Hilbert correspondence.)
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Tannakian category over a field k of characteristic 0

Tannaka group

• The same definition in the Zariski topology yields O-coherent
D-modules, which are vector bundles with an integrable connection.

• The category 〈M〉 is Tannakian.

• Clearly, one can no longer compute its Tannaka group G (M) as before,
as one no longer has a topological fundamental group at disposal.

• One computes it by fixing a rational point x ∈ X (if there are no rational points, one

makes a field extension and computes there). Its k-points consist of all automorphisms of
M|x which respect all Homs of subquotients of Mn ⊗ (M∨)m|x .
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Tannakian category over a field k of characteristic 0

Deligne’s Riemann-Hilbert correspondence

says that if k = C, if ∇ extends to a connection with logarithmic poles
∇̄ : M̄ → Ω1(log(∞))⊗ M̄ along infinity, i.e. if ∇ has regular singular
poles, then the two definitions of G (M) coincide.

Example

In particular, it applies when X is projective.
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Algebraic solutions

Algebraic solutions

To say M has algebraic solutions as in the first lecture is equivalent to
saying that G (M) is a 0-dimensional group-scheme, or, equivalent to
saying that the monodromy group ρ(πtop1 (X (C), x)) is finite. (Here k ⊂ C).

Proof

The monodromy group ρ(πtop1 (X (C), x)) is finite if and only if M
trivializes over a finite étale cover h : Y → X (C). Using that the algebraic
closure of ρ(πtop1 (X (C), x)) is itself, and the Tannaka formalism over k,
one sees that h is in fact defined over k . Then solutions trivialize on Y .
So solutions of the differential system of equations, locally in a
neighborhood on X , consist of some of the regular functions on the
pull-back neighborhood on Y .
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Recall Grothendieck’s p-curvature conjecture

Grothendieck’s p-curvature conjecture

Let X be a smooth projective curve defined over a number field K . Then a
system of linear differential equations M has algebraic solutions if and only
if it has a full set of solutions modulo p for almost all p.

Here (XS ,MS) is a model of (X ,M) over a non-trivial open of the
spectrum of the number ring OK .
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Tannakian wish

Tannakian thought

In view of the Tannakian characterization of M having algebraic solutions,
it is natural to wish to be able to argue as follows.

• One has the model (XS ,MS).

• On XK , one has the group-scheme G (MK ) over K , of which one wants
to show that it is 0-dimensional, i.e. the set (G (MK )(K̄ ) of K̄ -points is
finite, where K̄ is an algebraic closure of K .

• One would like to construct a model GS(MK ) of G (MK ) over S , such
that the fiber at a closed point s ∈ S is equal or at least related to G (Ms)
over k(s).

• Then one would say: GS(MK ) has relative dimension 0 over S if and
only if G (Ms) has relative dimension 0 over s for all closed points s ∈ S .

• This would then reduce the problem to a study in pure characteristic
p > 0, over a finite field.
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From the wish to reality

The bundle with connection Ms does not span a Tannakian category

• Write Ms = (Es ,∇s). If ∇s(ϕ) = 0, ϕ ∈ Es , then ∇s(λpϕ) = 0 for all
λ ∈ OXs , thus the abelian subsheaf E∇s

s ⊂ Es of solutions is an

O
X

(1)
s

-module E
(1)
s , where X

(1)
s is the Frobenius twist.

• So having a full set of solutions (or equivalently having p-curvature 0) is just saying

(Es ,∇s) = (F−1E
(1)
s ⊗F−1O

X
(1)
s

OXs ,∇s = 1⊗ d) = (F ∗E
(1)
s ,∇can),

that is Ms has one time Frobenius descent.

• So any O
X

(1)
s

-submodule V of E
(1)
s yields a subconnection F ∗V ⊂ Ms ,

with quotient F ∗(E (1)/V ) which is not necessarily locally free. So the
subquotients of tensors of Ms and M∨s can not span a Tannakian category.

• End of dream. Awakening.
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D-modules in characteristic p > 0

Grothendieck’s definition of D-modules

• The differential operators are defined as additive endomorphisms
O → O. It is a sheaf of rings, it is filtered, and [Dn,Dm] has degree
≤ n + m − 1 if Dn has degree n.

• In characteristic p > 0, not only ∂m1
x1
◦ . . . ◦ ∂mn

xn span the sheaf of
differential operators over O, but also e.g. ∂px1/p. Unlike in characteristic
0, D is not spanned by D≤1 over O, and in fact not even by D≤N for any
N.

• As a consequence, a OXs -coherent DXS
-module is more than just an

integrable connection.
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Katz’s theorems

Theorem (Riemann-Hilbert correspondence in characteristic p > 0)

An integrable connection Ms = (Es ,∇s) is a DXs -module if

(0) Es is a vector bundle;

(i) Ms has a full set of solutions;

(ii) One has a further infinite Frobenius descent: there are vector bundles

E
(i)
s on the Frobenius twists X

(i)
s such that F ∗E i+1

s
∼= E

(i)
s .

Remark

One should put the data of those isomorphisms in the definitions but as Xs

is projective, this is irrelevant (Katz).

Theorem (Tannaka theory)

OXs -coherent DXs -modules build a Tannakian category over k(s).
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Properties of O-coherent D-modules over a smooth
projective variety over a finite field

We study those properties, which are independent of whether the
O-coherent D-module comes from characteristic 0 or not. So let (Xs ,Ms)
be an O-coherent D-module defined over a smooth projective variety Xs

over a finite field k(s).

Theorem (E-Kisin)

Then G (Ms) is 0-dimensional and étale. Said differently, there is a finite
étale cover hs : Ys → Xs (which is even a torsor under G(Ms )) such that h∗sMs is trivial,
i.e. h∗sMs

∼= ⊕r
1(O, d). In simple terms: (Xs ,Ms) is isotrivial.
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Proof

It is pure algebraic geometry. Sketch:

(i) The system of Frobenius divided bundles {E (i)
s , F ∗E

(i+1)
s

∼= E i
s}i≥0

has the property for some n0 ≥ 0, {E (i)
s , F ∗E

(i+1)
s

∼= E i
s}i≥n0 is an

extension of such objects, with the property that the underlying

vector bundles E
(i)
s are all stable of degree 0.

(ii) Enough to show isotriviality of one such object (extension of trivial
objects by trivial objects are isotrivial).

(iii) Use existence of quasi-projective moduli (Langer) to show there are

repetitions on the moduli points of the E
(i)
s .

(iv) Use that k(s) is a finite field to conclude that there are repetitions

among the E
(i)
s , i.e. F aE

(i)
s
∼= E

(i)
s for some a and i ≥ i0 for some

large i0 (i.e. the Brauer obstruction vanishes).

(v) Then hs is a Lang torsor trivializing those bundles.
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On track for the Tannaka thought

Reinforcing Grothendieck’s requirement from full set of solutions to
D-module.

Given the previous theorem, one can try to develop the Tannakian dream
presented above: compare the group-scheme G (MK ) over the number field
K and the group-schemes G (Ms) over the finite fields k(s), under the
stronger assumption that not only Ms has a full set of solutions for almost
all s, that is one has one time Frobenius descent on Ms , but there is a
D-module structure on Ms , that is one has a further infinite Frobenius
descent.

Dependency

On the other hand, while the bundle of solutions E
(1)
s = E∇s

s , which is the
first Frobenius descent, depends only on the restriction Ms of MS , the
D-module structure on Ms , i.e. the further Frobenius descents, is a choice.
Yet one has the following theorem.
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Independency

Let again (Xs ,Ms) be an O-coherent D-module defined over a smooth
projective variety over a finite field k(s).

Theorem (E-Kisin)

Then the moment Ms carries a D-module structure, G (Ms) is independent
of the choice, thus is prescribed by G (MK ) in case Ms is the reduction at
s of MK = (EK ,∇K ) defined over a number field.

Comment

It is more precise than this: the underlying vector bundle Es is strongly
(semi)-stable, 〈Es〉 defines a Tannaka category, and G (Ms) ∼= G (Es).
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General assumption in the sequel

(X ,M) shall be an O-coherent D-module defined over a smooth projective
variety over a number field K . We shall assume that for almost all s of a
model (XS ,MS), Ms descends to a D-module.
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First theorem

Theorem (E-Kisin)

If there is a dense set of closed points s ∈ S such that the order of Gs is
prime to p, then M is isotrivial, that is has algebraic solutions.

Comment

It would be better not to have to assume this non-divisibility, conjecturally
it should be automatic. Still, the assumption is much much weaker than
assuming that the order of Gs is bounded independently of s. Under this
latter assumption, Matzat-van der Put conjectured that M is isotrivial. So
we give a positive answer to their conjecture if X is smooth projective.
However, we also give a negative answer if X is not proper.
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On proof of the First Theorem

• Theorem of Camille Jordan, together with the theorem that the Gs are
finite étale, together with the fact that X being proper, its geometric étale
fundamental group in characteristic 0 is topologically finitely generated,
enables one to replace X by a finite étale cover of X over a finite extension
of K and to assume that for a dense set of closed points s, Gs is abelian.

• Algebraic geometry enables one to then go up to characteristic 0 to
conclude that M is a successive extension of rank 1 integrable connections
M ′.

• One then concludes using the theorems of
Chudnosky-Chudnovsky-André mentioned in the first lecture.
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Second theorem

Theorem (E-Kisin)

If M is an abstract polarized Z-variation of Hodge structure, then it is
isotrivial.

On proof

One uses stability of the Es and the Simpson correspondence.
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