On the Loday Symbol in the Deligne-Beilinson Cohomology

HÉLÈNE ESNAULT*
Max Planck Institut für Mathematik, Gottfried Claren Str. 26, D-5300, Bonn F.R.G.

(Received: 1 June 1988)

Abstract

Let A be an algebraic smooth variety over $\mathbb{C}, X_{0}, \ldots, X_{n}$ be global regular functions on A, ϕ be a global invertible regular function on X of value 1 on the divisor Y defined by X_{0} and Z defined by $X_{1} \ldots X_{n}$. Then the cup product $\left\{\left.\phi\right|_{A-Z}, X_{1}, \ldots, X_{n}\right\}$ in the Deligne-Beilinson cohomology group $H_{\mathscr{G}}^{n+1}(A-Z, Y$; $\mathbb{Z}(n+1))$ extends across Z to a so-called Loday symbol, denoted by $\left\{\phi, X_{1}, \ldots, X_{n}\right\}$, in $H_{g}^{n+:}(A, Y ; \mathbb{Z}(n+1))$. In this article, we give explicit formulae for $\left\{\phi, X_{1}, \ldots, X_{n}\right\}$ as a Cech cocycle. Thereby, one obtains a proof of Beilinson's formula for the evaluation of the Loday symbol along certain homology cycles.

Key words. Deligne-Beilinson cohomology, Loday symbol, cup product.

This article is thought as a complement to the volume Beilinson's Conjectures on Special Values of L-Functions, where [3] and [4] are two of the contributions. It gives an explicit formula for the Loday symbol in the Deligne-Beilinson cohomology. Thereby, one obtains the proof of the 'crucial lemma' 2.4 in [4], II, which is a formula for the evaluation of the Lody symbol on certain cycles. This formula was stated by A. Beilinson in [1], 7.0.2, and - together with some very useful comments and really necessary assumptions - in [4], II, 2.4, both times, however, without proof. Note that the explicit description of the regulator map for $\operatorname{Spec} \mathbb{Q}\left(\mu_{N}\right)$, where μ_{N} is the group of N th roots of unity, given by Beilinson in [1], 7.1, relies on this crucial lemma.

Let \mathbf{A}_{C}^{n+1} be the affine space of dimension $n+1$ of coordinates X_{i} over the complex numbers \mathbb{C}. Let

$$
\phi=1-X_{0} \ldots X_{n}, \quad A=\mathbf{A}_{\mathrm{C}}^{n+1}-(\phi=0), \quad U=A-\bigcup_{i \geqslant 1}\left(X_{i}=0\right) .
$$

Then $\left.\phi\right|_{U} \in H_{\mathscr{Z}}^{1}\left(U,\left(X_{0}=0\right) ; \mathbb{Z}(1)\right)$, the group of invertible regular functions on U which are 1 on $\left(X_{0}=0\right)$ and $X_{i} \in H_{\mathscr{P}}^{1}(U, \mathbb{Z}(1))$, the group of invertible regular functions on U. One considers the cup product $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ in the Deligne-Beilinson cohomo-

[^0]logy group $H_{\mathscr{Z}}^{n+1}\left(U,\left(X_{0}=0\right) ; \mathbb{Z}(n+1)\right)$. As
$$
H_{\mathscr{Q}}^{\cdot}\left(U,\left(X_{0}=0\right) ; \cdot\right) \stackrel{\bullet}{\text { rest }} H_{\mathscr{Q}}^{\bullet}\left(A,\left(X_{0}=0\right) ; \cdot\right)
$$
is an isomorphism, this defines an element rest ${ }^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ in $H_{\mathscr{D}}^{n+1}\left(A,\left(X_{0}=0\right)\right.$; $\mathbb{Z}(n+1))$. This is the Loday symbol in the Deligne-Beilinson cohomology. In this article, we give explicit formulae for the Loday symbol as a Čech cocycle (1.8), (2.3), (2.5i).

Let $h: X \rightarrow A$ be an algebraic morphism, with X smooth. This gives explicit formulae for h^{*} rest $^{-1}\left\{\left.\phi\right|_{V}, X_{1}, \ldots, X_{n}\right\}$ in $H_{\mathscr{Z}}^{n+1}(X, S ; \mathbb{Z}(n+1))$ if $h(S) \subset\left(X_{0}=0\right)$. If complex dimension $X \leqslant n$, then $H_{\mathscr{D}}^{n+1}(X, S ; \mathbb{Z}(n+1))=H^{n}(X, S ; \mathbb{C} / \mathbb{Z}(n+1))$, the Betti cohomology group. Therefore, we may evaluate $h^{*} \operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ along relative homology classes $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. The previous explicit formulae give an expression (3.9) for this evaluation under certain assumptions on a representative γ of $[\gamma]$.

Our method consists of reducing the problem to the analytic Deligne cohomology (1.3), and there to define a substitute for the cup product if the functions $X_{i}, i \geqslant 1$ are not invertible (1.4), (1.5). As this definition makes sense for analytic varieties as well, we define in this way a sort of Loday symbol in the analytic case (1.6), (1.7), which is no longer unique (2.5ii), (2.5iii).

In Section 4 we weaken the condition on the dimension of the algebraic variety X by an assumption on the curvature of a sum of pull-backs of the Loday symbol. This allows us to define it as the class of a global closed holomorphic n-form (4.2). In (4.4) and (4.5), we give the evaluation of this class along relative cycles with some assumptions which are milder than in (3.9).

Finally, in (4.7) we explain the relationship with Bloch's regulator map $K_{2}(X) \rightarrow$ $H_{\mathscr{\vartheta}}^{2}(X, \mathbb{Z}(2))$ in any dimension.

I cordially thank M. Rapoport with whom I discussed the above points several times. In the first version of this article, I considered all the cohomology groups only over \mathbb{Q}, which, as \hat{O}.Gabber pointed out to me, was more careful than necessary. I thank S . Bloch for suggesting several improvements, especially (2.6) is due to him.

1. Construction of a Class \boldsymbol{x} in $H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Z}(n+1))$

1.1. Let A be a smooth algebraic variety over $\mathbb{C}, Y+Z$ be a normal crossing divisor on A where Z is defined by $X_{1} \ldots X_{m}, X_{i}$ being a global regular reduced function on A. We define the natural embeddings

Let ϕ be in

$$
H_{\mathscr{O}}^{1}(A, Y+Z ; \mathbb{Z}(1))=\operatorname{ker} \mathcal{O}(A)^{*} \rightarrow \mathcal{O}(Y+Z)^{*}
$$

Define $U=A-Z, Y_{U}=Y \cap U$. Then $\left.\phi\right|_{U}$ lies in

$$
H_{\mathscr{P}}^{1}\left(U, Y_{U} ; \mathbb{Z}(1)\right)=\operatorname{ker} \mathcal{O}(U)^{*} \rightarrow \mathcal{O}\left(Y_{U}\right)^{*}
$$

and X_{i} lies in $H_{\mathscr{9}}^{1}(U, \mathbb{Z}(1))=\mathcal{O}(U)^{*}$. Choose $1 \leqslant n \leqslant m$. Then the cup product $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ is defined as an element in $H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$. In Section 1, we construct a specific element $x \in H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Z}(n+1))$ from which we show in Section 2 that its restriction to $U,\left.x\right|_{U} \in H_{\mathscr{Z}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$, is precisely $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$. In other words, we define a lifting of the cup product across Z.
1.2. Here we show that the problem is reduced to a problem in the analytic Deligne cohomology. Recall [3], 2.9, that

$$
\begin{aligned}
& H_{\mathscr{O}}^{q+1}(A, Y ; \mathbb{Z}(p+1)) \\
&= H^{q+1}\left(\bar{A}, \operatorname{cone}\left[\left(R k_{*} i_{!} \mathbb{Z}(p+1)+F^{p+1}(\log (H+\bar{Y}))(-\bar{Y})\right) \rightarrow\right.\right. \\
&\left.\left.\quad \rightarrow \Omega_{A}^{\circ}(* H+\log \bar{Y})(-\bar{Y})\right][-1]\right) \\
&= H^{q+1}\left(\bar{A}, \operatorname{cone}\left[F^{p+1}(\log H+\bar{Y})(-\bar{Y}) \rightarrow R k_{*} i_{!} \mathbb{C} / \mathbb{Z}(p+1)\right][-1]\right),
\end{aligned}
$$

where $k: A \rightarrow \bar{A}$ is a good compactification such that $H:=\bar{A}-A, \bar{Y}:=$ closure of Y in \bar{A} and $H+\bar{Y}$ are divisors with normal crossings.

Forgetting the growth condition along H on the F^{p+1} part, one obtains a morphism in the analytic Deligne cohomology [3], 2.13:

$$
\begin{aligned}
& H_{\mathscr{X}, \mathrm{an}}^{q+1} \\
&= H^{q+1}\left(A, \operatorname{Zone}\left[\left(i_{1} \mathbb{Z}(p+1)+\Omega_{A}^{\geqslant+1}(\log Y)(-Y)\right) \rightarrow\right.\right. \\
&\left.\left.\rightarrow \Omega_{A}^{*}(\log Y)(-Y)\right][-1]\right) \\
&= H^{q+1}\left(A, \operatorname{cone}\left[\Omega_{A}^{>p+1}(\log Y)(-Y) \rightarrow i_{1} \mathbb{C} / \mathbb{Z}(p+1)\right][-1]\right) \\
&= H^{q+1}\left(A, i_{1}(p+1) \rightarrow \Omega_{A}^{\lessgtr}(\log Y)(-Y)\right) .
\end{aligned}
$$

One obtains a commutative diagram of exact sequences

$$
\begin{aligned}
& 0 \rightarrow \frac{H^{q}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1))}{F^{p+1} H^{q}(A, Y ; \mathbb{C})} \rightarrow H_{\mathscr{R}}^{q+1}(A, Y ; \mathbb{Z}(p+1)) \stackrel{d}{\rightarrow} F_{\mathbb{Z}}^{p+1, q+1}(A, Y) \rightarrow 0 \\
& \\
& 0 \rightarrow \frac{f_{p+1, q+1}}{H^{q}\left(A, \Omega_{A}^{>p+1}(\log Y)(-Y)\right)} H_{\mathscr{Q}, \text { an }}^{q+1}(A, Y ; \mathbb{Z}(p+1)) \xrightarrow{d_{\text {an }}^{q}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1))} \operatorname{Hol}_{\mathbb{Z}}^{p+1}(A, Y) \rightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
F_{\mathbb{Z}}^{p+1, q+1}(A, Y):= & \left\{\omega \in F^{p+1} H^{q+1}(A, Y ; \mathbb{C})\right. \text { such that the image of } \\
& \left.\omega \text { in } H^{q+1}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1)) \text { vanishes }\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Hol}_{\mathbb{Z}}^{p+1, q+1}(A, Y):= & \left\{\omega \in H^{q+1}\left(A, \Omega_{A}^{\geqslant p+1}(\log Y)(-Y)\right)\right. \text { such that } \\
& \text { the image of } \left.\omega \text { in } H^{q+1}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1)) \text { vanishes }\right\} .
\end{aligned}
$$

LEMMA (see also [3], 2.13 and [1], 1.6.1). (i) $f_{n+1, n+1}$ is injective. One has

$$
\begin{aligned}
H_{\mathscr{O}}^{n+1}(A, Y ; \mathbb{Z}(n+1))= & \left\{x \in H_{\mathscr{O}, \text { an }}^{n+1}(A, Y ; \mathbb{Z}(n+1))\right. \text { such } \\
& \text { that } \left.\mathrm{d} x \in F^{n+1} H^{n+1}(A, Y ; \mathbb{C})\right\}
\end{aligned}
$$

and

$$
H^{n}(A, Y ; \mathbb{C} / \mathbb{Z}(n+1))=\operatorname{Ker} d=\operatorname{Ker} d_{\mathrm{an}}
$$

(ii) $f_{p+1, q+1}$ is an isomorphism for $q<p$. One then has

$$
H_{\mathscr{O}}^{q+1}(A, Y ; \mathbb{Z}(p+1))=H^{q}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1))
$$

(iii) $f_{p+1, q+1}$ is an isomorphism for $\operatorname{dim} A<p+1$. One then has

$$
H_{\mathscr{Z}}^{q+1}(A, Y ; \mathbb{Z}(p+1))=H^{q}(A, Y ; \mathbb{C} / \mathbb{Z}(p+1))
$$

Proof. (i) One has

$$
F^{n+1} H^{n}(A, Y ; \mathbb{C})=0=H^{n}\left(A, \Omega_{A}^{\geqslant n+1}(\log Y)(-Y)\right)
$$

and

$$
F^{n+1} H^{n+1}(A, Y ; \mathbb{C})=H^{0}\left(\bar{A}, \Omega_{A}^{n+1}(\log (H+\bar{Y})(-\bar{Y}))_{d \text { closed }}\right.
$$

is embedded in

$$
H^{n+1}\left(A, \Omega_{A}^{>n+1}(\log Y)(-Y)\right)=H^{0}\left(A, \Omega_{A}^{n+1}(\log Y)(-Y)\right)_{d \text { closed }} .
$$

(ii), (iii) In both cases, the cohomology of F^{p+1} and $\Omega^{\geqslant p+1}$ appearing in the exact sequences vanishes.
1.3. COROLLARY. In order to construct an element $x \in H_{\mathscr{Q}}^{n+1}(A, Y ; \mathbb{Z}(n+1))$, it is enough to construct it as an element of $H_{\mathscr{Q}, \text { an }}^{n+1}(A, Y ; \mathbb{Z}(n+1))$ and to verify that its curvature $\mathrm{d} x$ is algebraic, that is, in $F^{n+1} H^{n+1}(A, Y ; \mathbb{C})$.

Therefore, in (1.4), (1.5), (1.6), and (1.7), we assume only $A, Y+Z$ to be analytic, X_{i} to be global holomorphic on A, and ϕ to be global holomorphic invertible on A such that $\phi_{\mid Y \cup Z}=1$.
1.4. Consider $\phi: A \rightarrow \mathbb{C}^{*}$, with $\phi(Y \cup Z)=1$. Let $\mathscr{A}_{0} \cup \mathscr{A}_{1}$ be an analytic open cover of \mathbb{C}^{*} such that $1 \in \mathscr{A}_{1}-\mathscr{A}_{0},\left.\log \phi\right|_{\phi^{-1}\left(\mathscr{A}_{i}\right)}$ is single-valued and

$$
\left.\log \phi\right|_{\phi^{-1}\left(\Omega \Omega_{1}\right) \cap(Y \cup Z)}=0
$$

One has

$$
\left.\log \phi\right|_{\phi^{-1}\left(\mathscr{A}_{i}\right)} \in H^{0}\left(\phi^{-1}\left(\mathscr{A}_{i}\right), \mathscr{O}_{A}(-Y-Z)\right)
$$

Then for any refinement $\left(A_{i}\right)_{i \in I}$ of $\phi^{-1}\left(\mathscr{A}_{i}\right)$, defined by a map $\sigma: I \rightarrow\{0,1\}$, one has
(a) $\log _{i} \phi:=\left.\log \phi\right|_{A_{i} \in \phi^{-1}\left(\Omega z_{\sigma(i)}\right)}$

$$
\in H^{0}\left(A_{i}, \mathcal{O}_{A_{i}}(-Y-Z)\right) .
$$

(β) $z_{i_{0} i_{0}}^{n-1}:=(\delta \log \phi)_{i_{0} i_{1}}=\log _{i_{1}} \phi-\log _{i_{0}} \phi$
$\in H^{0}\left(A_{i_{0} i_{1}}, \lambda_{1} \mathbb{Z}(1)\right)$,

$$
\begin{array}{ll}
z_{i_{0} i_{1}}^{n-1}=0, & \text { if } A_{i_{0} i_{1}} \cap(Y \cup Z) \neq \phi, \text { even if } A_{i_{0} i_{1}} \text { is } \\
& \text { not connected and }\left(\delta z^{n-1}\right)=0 .
\end{array}
$$

Take such a refinement with
(γ) if $A_{i_{0} \ldots i_{k}} \cap(Y \cup Z)=\phi$,

$$
\log _{i_{0} \ldots i_{k}} X_{k} \in H^{0}\left(A_{i_{0} \ldots i_{k}}, \mathcal{O}_{A}\right) .
$$

For example, we choose $\left(A_{i}\right)$ such that all the $A_{i_{0} \ldots i_{k}}$ with $A_{i_{0} \ldots i_{k}} \cap(Y \cup Z)=\phi$ are simply connected. (It is enough, of course to ensure that all the $A_{i_{0} \ldots i_{k}}$ are simply connected.)

Define

$$
\begin{array}{cl}
g_{i_{0} \ldots i_{k}}:=\log _{i_{0} \ldots i_{k}} X_{k}, & \text { if } A_{i_{0} \ldots i_{k}} \cap(Y \cup Z)=\phi \\
0 & \text { if } A_{i_{0} \ldots i_{k}} \cap(Y \cup Z) \neq \phi
\end{array}
$$

One has

$$
g_{i_{0} \ldots i_{k}} \in H^{0}\left(A_{i_{0} \ldots i_{k}}, \mathcal{O}_{A}(-Y-Z)\right) .
$$

We want to construct

$$
\bar{x} \in H^{n+1}\left(A, \lambda_{1} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{\leq n}(\log (Y+Z))(-Y-Z)\right)
$$

as a cocycle $\bar{x}=\left(x^{-1}, x^{0}, \ldots, x^{n}\right)$ in the Čech complex

$$
\begin{aligned}
\left(\mathscr { C } ^ { \bullet } \left(A_{i}, \lambda_{1} \mathbb{Z}(n+1) \rightarrow\right.\right. & \left.\Omega_{A}^{\leq n}(\log (Y+Z))(-Y-Z),(-1)^{\cdot} \delta+d\right): \\
& x^{-1} \in \mathscr{C}^{n+1}(\lambda, \mathbb{Z}(n+1)) \\
& x^{0} \in \mathscr{C}^{n}\left(\mathcal{O}_{A}(-Y-Z)\right) \\
& \vdots \\
& x^{n} \in \mathscr{C}^{0}\left(\Omega_{A}^{n}(\log Y)(-Y)\right),
\end{aligned}
$$

with $(-1)^{n+1} \delta x^{j}+\mathrm{d} x^{j-1}=0$.
1.5. The condition (1.4α) implies that

$$
x_{i}^{n}:=\log _{i} \phi \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \ldots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \text { is in } H^{0}\left(A_{i}, \Omega_{A}^{n}(\log Z)(-Y-Z)\right)
$$

which is embedded in $H^{0}\left(A_{i}, \Omega_{A}^{n}(\log (Y+Z))(-Y-Z)\right)$. This defines x_{i}^{n}. We have to resolve the equation

$$
\left(\mathrm{d} x^{n-1}\right)_{i_{0} i_{1}}=(-1)^{n}\left(\delta x^{n}\right)_{i o i_{1}}=(-1)^{n} z_{i_{0} i_{1}}^{n-1} \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \ldots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} .
$$

Define

$$
\begin{aligned}
x_{i_{0} i_{2}}^{n-1} & =(-1)^{n} z_{i_{0} i_{1}}^{n-1} g_{i_{0} i_{1}} \frac{\mathrm{~d} X_{2}}{X_{2}} \wedge \ldots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& \in H^{0}\left(A_{i_{0} i_{1}}, \Omega_{A}^{n-1}(\log (Y+Z))(-Y-Z)\right) .
\end{aligned}
$$

Assume by induction that we may define for $1 \leqslant l \leqslant k$

$$
z_{i_{0} \ldots i_{1}}^{n-i} \in H^{0}\left(A_{i_{0} \ldots i_{i}}, \lambda_{l} \mathbb{Z}(l)\right)
$$

with

$$
\begin{aligned}
& \left(\delta z^{n-1}\right)=0 \quad \text { and } \quad z_{i_{0} \ldots i_{l}}^{n-1}=0, \quad \text { if } A_{i_{0} \ldots i_{i}} \cap(Y \cup Z) \neq \phi, \\
& x_{i_{0} \ldots i_{1}}^{n-l}=(-1)^{l n} z_{i_{0} \ldots i_{1}}^{n-l} g_{i_{0} \ldots i_{1}} \frac{\mathrm{~d} X_{l+1}}{X_{l+1}} \wedge \ldots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}, \\
& \mathrm{~d} x^{n-l}=(-)^{n} \delta x^{n-l+1}, \quad l \leqslant k .
\end{aligned}
$$

Define

$$
z_{i_{0} \ldots i_{k+1}^{n}-(k+1)}^{n+=}=\delta\left(z_{i_{0} \ldots i_{k}}^{n-k} g_{i_{0} \ldots i_{k}}\right)
$$

If, for all $l \in\{0, \ldots, k+1\}$,

$$
A_{i_{0} \ldots i_{1} \ldots i_{k+1}} \cap(Y \cup Z) \neq \phi, \quad \text { then } z_{i_{0} \ldots i_{k+1}}^{n-(k+1)}=0
$$

(especially if $A_{i_{0} \ldots i_{k+1}} \cap(Y \cup Z) \neq \phi$).
Otherwise, $A_{i_{1} \ldots i_{k+1}} \cap(Y \cup Z)=\phi$ (say). Then

$$
\begin{aligned}
z_{i_{0} \ldots i_{k}+1}^{n-(k+1)}= & \sum_{i=1}^{k+1}(-1)^{l} z_{i_{0} \ldots \hat{l}_{1} \ldots i_{k+1}}\left(g_{i_{0} \ldots \hat{l}_{1} \ldots i_{k+1}}-g_{i_{1} \ldots i_{k+1}}\right)+ \\
& +\left(\delta z^{n-k}\right)_{i_{0} \ldots i_{k+1}} g_{i_{1} \ldots i_{k+1}} .
\end{aligned}
$$

If

$$
z_{i_{0} \ldots \hat{l}_{l} \ldots i_{k}+1} \neq 0
$$

then

$$
A_{i_{0} \ldots \hat{i}_{1} \ldots i_{k+1}} \cap(Y \cup Z)=\phi,
$$

therefore

$$
g_{i_{0} \ldots \hat{i}_{1} \ldots i_{k+1}}-g_{i_{1} \ldots i_{k+1}} \in \mathbb{Z}(1) .
$$

Therefore, one has

$$
z_{i_{0} \ldots i_{k}+1}^{n-(k+1)} \in H^{0}\left(A_{i_{0} \ldots i_{k+1}}, \lambda, \mathbb{Z}(k+1)\right) .
$$

We may define

$$
\begin{aligned}
& x_{i_{0} \ldots, i_{k+1}}^{n-(k+1)}:=(-1)^{(k+1) \cdot n_{i_{0}}^{n-\ldots .(k+1)} g_{i 0} \ldots . \ldots i_{k+1}} \frac{\mathrm{~d} X_{k+2}}{X_{k+2}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& \in H^{0}\left(A_{i_{0} \ldots i_{k+1}}, \Omega_{A}^{n-(k+1}(\log (Y+Z))(-Y-Z)\right),
\end{aligned}
$$

with

$$
\mathrm{d} x^{n-(k+1)}=(-1)^{n} \delta x^{n-k}, \quad \text { if } k<n .
$$

If $k=n$,

$$
x_{i_{0} \ldots, \ldots i_{n+1}}^{-1}=(-1)^{(n+1) n_{i_{0}}^{-1} \ldots i_{n+1}} .
$$

1.6. PROPOSITION. The Čech cocycle $\bar{x}=\left(x^{-1}, x^{0}, \ldots, x^{n}\right)$ constructed in (1.5) defines a cohomology class

$$
\bar{x} \in H^{n+1}\left(A, \lambda_{1} \mathbb{Z}(n+1)\right) \rightarrow \Omega_{A}^{\leqslant n}(\log (Y+Z)(-Y-Z)) .
$$

1.7. Let Z_{l} be a smooth component of Z. We consider the morphism of restriction
whose kernel contains

$$
\lambda_{1} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{\leq n}(\log (Y+Z))(-Y-Z),
$$

and whose cohomology reads

$$
H_{?, a n}^{n+1}(A, Y ; \mathbb{Z}(n+1)) \xrightarrow[\text { restriction }_{l}]{ } H_{\ell, \text { an }}^{n+1}\left(Z_{l}, Y ; \mathbb{Z}(n)\right) .
$$

THEOREM. There is a class $x \in H_{g, \text { an }}^{n+1}(A, Y ; \mathbb{Z}(n+1))$, such that restriction ${ }_{l} x=0$ and such that

$$
\mathrm{d} x=\frac{\mathrm{d} \phi}{\phi} \wedge \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \in \operatorname{Hol}_{Z}^{n+1, n+1}(A, Y) .
$$

Proof. Define x as the image of \bar{x} via

$$
\begin{aligned}
& H^{n+1}\left(A, \lambda_{1} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{S_{n}^{n}}(\log (Y+Z))(-Y-Z)\right) \\
& \downarrow \\
& H_{\Omega, a n}^{n+1}(A, Y ; \mathbb{Z}(n+1))
\end{aligned}
$$

given by the same cocycle. One has $\mathrm{d} x=\mathrm{d} x_{i}^{n}$.
1.8. Go back to the algebraic situation described in (1.1). Then

$$
\mathrm{d} x=\frac{\mathrm{d} \phi}{\phi} \wedge \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \in F^{n+1} H^{n+1}(A, Y ; \mathbb{C}) .
$$

By (1.2i), we obtain the following theorem.

THEOREM. The class x of (1.7) is in

$$
H_{\mathscr{O}}^{n+1}(A, Y ; \mathbb{Z}(n+1)) \quad \text { and } \quad \mathrm{d} x=\frac{\mathrm{d} \phi}{\phi} \wedge \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}
$$

2. Restriction of \boldsymbol{x} to \boldsymbol{U}

2.1. In this section, we want to show that the restriction to U of the class x constructed in (1.8) is

$$
y:=\left\{\phi_{\mid U}, X_{1}, \ldots, X_{n}\right\} \in H_{\mathscr{Z}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right) .
$$

As

$$
\mathrm{d} y=\frac{\mathrm{d} \phi}{\phi} \wedge \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}[3],(3.7), \text { we have by (1.2) }
$$

LEMMA. $\left(x_{\mid U}-y\right) \in H^{n}\left(U, Y_{U} ; \mathbb{C} / \mathbb{Z}(n+1)\right)$.
Therefore we may assume, as in (1.4), (1.5), (1.6) and (1.7), that A, and therefore U, are only analytic manifolds.
2.2. We take a refinement U_{j} of $X_{j} \cap U$ such that $\log X_{i \mid U_{j}}:=\log _{j} X_{i}$ is single-valued, that is $\log _{j} X_{i} \in H^{0}\left(U_{j}, \mathcal{O}_{U}\right)$ for $i \leqslant n$. Define $\mu=\left.i\right|_{U}: U-Y_{U} \rightarrow U$. Define y as a cocycle $y=\left(y^{-1}, y^{0}, \ldots, y^{n}\right)$ in the Cech complex

$$
\left(\mathscr{C}^{\bullet}\left(U_{j}, \mu_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{U}^{\leqslant n}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right),(-1)^{\cdot} \delta+d\right)
$$

with

$$
\begin{aligned}
& y^{-1} \in \mathscr{C}^{n+1}\left(\mu_{1} \mathbb{Z}(n+1)\right) \\
& y^{0} \in \mathscr{C}^{n}\left(\mathcal{O}_{U}\left(-Y_{U}\right)\right) \\
& \vdots \\
& y^{n} \in \mathscr{C}^{0}\left(\Omega_{U}^{n}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right)
\end{aligned}
$$

with $(-1)^{n+1} \delta y^{j}+\mathrm{d} y^{j-1}=0$.
One has [3] (3.2):

$$
y_{j}^{n}=\log _{j} \phi \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}
$$

$$
y_{j o j_{1}}^{n-1}=(-1)^{n} Z_{j j_{i} i}^{n-1} \log _{j_{1}} X_{1} \frac{\mathrm{~d} X_{2}}{X_{2}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}},
$$

$$
\begin{aligned}
& y_{j_{0}, \ldots j_{k}}^{n-k}=(-1)^{k n} Z_{j_{0}, \ldots, n k}^{n-k} \log _{j_{k}} X_{k} \frac{\mathrm{~d} X_{k+1}}{X_{k+1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}, \\
& y_{j 0_{j+1}^{-}}^{-1}=(-1)^{(n+1) n} Z_{j_{0} \ldots j_{n+1}}^{-1},
\end{aligned}
$$

with

$$
\begin{aligned}
& Z_{j_{0} i_{1}}^{n-1}=z_{j j_{i}}^{n-1}=(\delta \log \phi)_{j_{j j_{1}}} \in H^{0}\left(U_{j_{0} j_{i}}, \mu_{1} \mathbb{Z}(1)\right), \\
& Z_{j_{0} \ldots j_{k}}^{n-k}:=\delta\left(Z_{j_{0}, \ldots . j_{k-1}}^{n-k+1} \log _{j_{k-1}} X_{k-1}\right) \\
& \in H^{0}\left(U_{j_{0} \ldots j_{k}} \mu_{1} \mathbb{Z}(k)\right) \text {. }
\end{aligned}
$$

Therefore, one has $x^{n}-y^{n}=0$ and for $1 \leqslant k \leqslant n$:

$$
\begin{aligned}
& \left(x^{n-k}-y^{n-k}\right)_{i_{0} . \ldots i_{k}} \\
& \quad=(-1)^{n-k}\left(z_{i_{0} \ldots \ldots k}^{n-k} g_{i_{0} \ldots i_{k}}-Z_{i_{0} \ldots \ldots i_{k}}^{n-\log _{i_{k}}} X_{k}\right) \cdot \frac{\mathrm{d} X_{k+1}}{X_{k+1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}
\end{aligned}
$$

and

$$
x^{-1}-y^{-1}=(-1)^{(n+1) n}\left(z^{-1}-Z^{-1}\right) .
$$

2.3. Define

$$
\begin{aligned}
& N_{i_{0} i_{1}}^{n-1}:=z_{i_{0} i_{1}}^{n-1} g_{i_{0} i_{1}}-Z_{i_{0} i_{1}}^{n-1} \log _{i_{1}} X_{1} \\
& =z_{i 0_{1}}^{n-1}\left(g_{i i_{1}}-\log _{i_{1}} X_{1}\right) \in H^{0}\left(U_{i_{0 i} i_{1}}, \mu_{1} \mathbb{Z}(2)\right), \\
& \left(\delta N^{n-1}\right)=z^{n-2}-Z^{n-2} .
\end{aligned}
$$

Define

$$
\begin{aligned}
r_{i_{0} i_{1}^{n}-2} & =(-1)^{n} N_{i_{0} i_{1}}^{n-1} \log _{i_{1}} X_{2} \frac{\mathrm{~d} X_{3}}{X_{3}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& \in H^{0}\left(U_{i_{0 i} i}, \Omega_{U}^{n-2}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right) .
\end{aligned}
$$

One has

$$
x^{n-1}-y^{n-1}-\mathrm{dr}^{n-2}=0 .
$$

Define, by induction, $1 \leqslant l \leqslant k$:

$$
N_{i_{0} \ldots, i_{i}}^{n-1} \in H^{0}\left(U_{i_{0} \ldots i_{i}}, \mu_{t} \mathbb{Z}(l+1)\right),
$$

with $\delta N^{n-l}=z^{n-l-1}-Z^{n-l-1}$,

$$
\begin{aligned}
r_{i_{0} \ldots i_{l}}^{n-l-1} & =(-1)^{l n} N_{i_{0} \ldots, i_{l}}^{n-1} \log _{i_{i}} X_{l+1} \frac{\mathrm{~d} X_{l+2}}{X_{l+2}} \wedge \ldots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& \in H^{0}\left(U_{i_{0} \ldots i_{i}}, \Omega_{U}^{n-(l+1)}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right)
\end{aligned}
$$

such that

$$
x^{n-l}-y^{n-l}-\left((-1)^{n} \delta r^{n-l}+\mathrm{d} r^{n-(l+1)}\right)=0, \quad l<k .
$$

Define

$$
\begin{aligned}
N_{i_{0} \ldots i_{k}}^{n-k}:= & z_{i_{0} \ldots i_{k}}^{n-k} g_{i_{0} \ldots i_{k}}-Z_{i_{0} \ldots i_{k}}^{n-k} \log _{i_{k}} X_{k}- \\
& -\delta\left(N_{i_{0} \ldots i_{k-1}}^{n-k+1} \log _{i_{k-1}} X_{k}\right)_{i_{0} \ldots i_{k}} .
\end{aligned}
$$

One has

$$
\delta N^{n-k}=z^{n-k-1}-Z^{n-k-1}
$$

and

$$
\begin{aligned}
N_{i_{0} \ldots i_{k}}^{n-k}= & z_{i_{0} \ldots i_{k}}^{n-k}\left(g_{i_{0} \ldots i_{k}}-\log _{i_{k}} X_{k}\right)- \\
& -(-1)^{k-1} N_{i_{0} \ldots i_{k}-1}^{n-k}\left(\delta \log X_{k}\right)_{i_{k}-1 i_{k}} \\
\in & H^{0}\left(U_{i_{0} \ldots i_{k}}, \mu_{!} \mathbb{Z}(k+1)\right) .
\end{aligned}
$$

Define

$$
\begin{aligned}
r_{i_{0} \ldots i_{k}}^{n-k-1}: & =(-1)^{k n} N_{i_{0} \ldots i_{k}}^{n-k} \log _{i_{k}} X_{k+1} \frac{\mathrm{~d} X_{k+2}}{X_{k+2}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& \in H^{0}\left(U_{i_{0} \ldots i_{k}}, \Omega_{U}^{n-(k+1)}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right),
\end{aligned}
$$

then

$$
x^{n-k}-y^{n-k}-\left((-1)^{n} \delta r^{n-k}-\mathrm{d} r^{n-k-1}\right)=0 .
$$

Therefore, one has $x-y-\left((-1)^{n} \delta+d\right) r=0$, and $x-y$ is a coboundary.
PROPOSITION (see (2.6) for another proof in the universal situation). One has

$$
\left.x\right|_{U}=y, \quad \text { in } H_{2, \text { an }}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)
$$

and

$$
\left.x\right|_{U}=y, \quad \text { in } H_{\mathscr{O}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right) .
$$

2.4. Consider the morphisms
rest: $H_{\mathscr{O}}^{n+1}(A, Y ; \mathbb{Z}(n+1)) \rightarrow H_{\mathscr{O}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$,
respectively if A is analytic

$$
\text { rest }^{\mathrm{an}}: \dot{H}_{\mathscr{Q}, \mathrm{an}}^{n+1}(A, Y ; \mathbb{Z}(n+1)) \rightarrow H_{\mathscr{Q}, \mathrm{an}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right),
$$

and

$$
\cup: H_{\mathscr{P}}^{1}(A, Y+Z ; \mathbb{Z}(1)) \rightarrow H_{\mathscr{B}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)
$$

respectively if A is analytic

$$
\cup^{\mathrm{an}}: H_{\mathscr{2}, \mathrm{an}}^{1}(A, Y+Z ; \mathbb{Z}(1)) \rightarrow H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right),
$$

defined by

$$
\cup \phi=\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}
$$

Then (1.7), (1.8) and (2.3) prove the following theorem.

THEOREM. image $\cup \subset$ image rest (respectively, image $\cup^{\text {an }} \subset$ image rest ${ }^{\text {an }}$).

2.5. Remarks.

(i) The universal situation:

Consider

$$
B:=\mathrm{A}_{\mathbb{C}}^{n+1}-(\Psi=0), \quad \Psi=1-Y_{0} \ldots Y_{n}, \text { where } Y_{i} \text { are the coordinates. Then }
$$ one has [4], (2.1):

$$
H_{\mathscr{B}}^{n+1}\left(B,\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right) \xrightarrow{\text { rest }} H_{\mathscr{T}}^{n+1}\left(B-\bigcup_{1}^{n}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right)
$$

is an isomorphism. Take A as in (1.1). Then $(1-\phi) / X_{1} \ldots X_{n} \in H^{0}(A, \mathcal{O}(-Y))$. Define $X_{0}:=(1-\phi) / X_{1} \ldots X_{n}$. One defines a morphism

$$
\begin{aligned}
h_{\phi}: & A \rightarrow B \\
& X_{i} \leftrightarrow Y_{i}, \quad 0 \leqslant i \leqslant n
\end{aligned}
$$

with $h_{\phi}^{*} \Psi=\phi$.
Then

$$
h_{\phi}^{*} \operatorname{rest}^{-1}\left\{\left.\Psi\right|_{\mathcal{B}-v_{1}^{n}\left(Y_{i}=0\right)}, Y_{1}, \ldots, Y_{n}\right\}=x^{\prime}
$$

is in $H_{\mathscr{Q}}^{n+1}(A, Y ; \mathbb{Z}(n+1))$, of restriction

$$
\text { rest } \begin{aligned}
x^{\prime} & =h_{\phi}^{*}\left\{\left.\Psi\right|_{B-\cup_{1}^{n}\left(Y_{i}=0\right)}, Y_{1}, \ldots, Y_{n}\right\} \\
& =\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} .
\end{aligned}
$$

In (1.5), we have given explicit formulae for x as a Čech cocycle. This applies for

$$
\operatorname{rest}^{-1}\left\{\left.\Psi\right|_{B-\cup_{1}^{n}\left(Y_{i}=0\right)}, Y_{1}, \ldots, Y_{n}\right\}
$$

and, therefore, by pull-back for x^{\prime}. Of course, we could have worked directly on B, the universal case.
(ii) If A is only analytic, there is no universal situation. One observes the following: [4], (2.1) and (1.2) imply that

$$
\begin{aligned}
& H^{n}\left(B,\left(Y_{0}=0\right) ; \mathbb{C} / \mathbb{Z}(n+1)\right) \\
& \quad=H^{n}\left(B-\bigcup_{1}^{n}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{C} / \mathbb{Z}(n+1)\right)
\end{aligned}
$$

and therefore that

$$
\begin{aligned}
& H_{\mathscr{Q , a n}}^{n+1}\left(B,\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right) \text { injects into } \\
& H_{\mathscr{Q , \mathrm { an }}}^{n+1}\left(B-\bigcup_{1}^{n}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right)
\end{aligned}
$$

The class x of (1.5) is then uniquely defind by (2.3):

$$
\left.x\right|_{\boldsymbol{B}-\cup_{1}^{n}\left(Y_{i}=0\right)}=y
$$

in

$$
H_{\mathscr{2}, \mathrm{an}}^{n+1}\left(B-\bigcup_{1}^{n}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right)
$$

(iii) More generally, whenever $H^{n}(A, Y ; \mathbb{C} / \mathbb{Z}(n+1))$ injects into $H^{n}\left(U, Y_{U} ; \mathbb{C} / \mathbb{Z}(n+1)\right)$, then rest ${ }^{\text {an }}$ is injective via (1.2). Therefore, in this case x constructed in (1.5) is uniquely defined by $\left.x\right|_{U}$ via (2.3).
2.6. In this section, we give another proof of (2.3) in the universal situation case (2.5i), due to S . Bloch. Applying (3.8.1), this proves $x_{\mid U}=y$ is general. We call A the universal situation and keep the notation of Section 1.

Let W be the open set in $\mathbf{A}_{\mathrm{C}}^{n+1}$ defined by $X_{1} \ldots X_{n} \neq 0$, and D be the hypersurface $\phi=0$. Then D lies in W and is isomorphic via the projection $p: D \rightarrow \mathbf{A}_{\mathbb{C}}^{n},\left(X_{0}, \ldots, X_{n}\right) \rightarrow$ $\left(X_{1}, \ldots, X_{n}\right)$ to $\left(\mathbb{C}^{*}\right)^{n}$. The pair $\left(W, Y_{U}\right)$ is isomorphic to $\left(\mathbf{A}^{1}, 0\right) \times\left(\mathbb{C}^{*}\right)^{n}$ via the projection $\left(X_{0}, \ldots, X_{n} ; X_{1}, \ldots, X_{n}\right) \rightarrow\left(X_{0} ; X_{1}, \ldots, X_{n}\right)$. Therefore, $H^{k}(W, Y ; \mathbb{Z})=0$ for all k. From the exact sequence

$$
H^{k}\left(W, Y_{U}\right) \rightarrow H^{k}\left(U, Y_{U}\right) \rightarrow H^{k-1}(D) \rightarrow H^{k+1}\left(W, Y_{U}\right)
$$

and, from (2.1), one obtains

$$
z:=x_{\mid U}-y \in H^{n-1}(D, \mathbb{C} / \mathbb{Z}(n+1))=H^{n-1}(D, \mathbb{C} / \mathbb{Z}(n-1)) \bigotimes_{\mathbb{Z}} \mathbb{C} / \mathbb{Z} .
$$

For r with $1 \leqslant r \leqslant n$, define the morphism $p(r): W \rightarrow W$ sending X_{0} to $X_{0} \mid X_{r}, X_{r}$ to X_{r}^{2} and fixing X_{i} for $i \neq 0$, r. It fixes ϕ and defines a morphism $p(r): D \rightarrow D$ with $p p(r) X_{i}=X_{i}$, if $i \neq r$ and $p p(r) X_{r}=X_{r}^{2}$.

Consider

$$
p(r)^{*} x_{\mid U} \text { and } p(r)^{*} y \text { in } H_{\mathscr{G}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)
$$

given as Čech cocyles in $H_{\mathscr{Q}, \text { an }}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$ by

$$
\left(p(r)^{*} x^{-1}, \ldots, p(r)^{*} x^{n}\right) \text { and }\left(p(r)^{*} y^{-1}, \ldots, p(r)^{*} y^{n}\right)
$$

By (1.4) one has $p(r)^{*} z^{n-1}=z^{n-1}$

$$
\begin{aligned}
p(r)^{*} g_{i_{0} \ldots i_{k}} & =g_{i_{0} \ldots i_{k}}, & & \text { if } k \neq r, \\
& =2 g_{i_{0} \ldots i_{k}}, & & \text { if } k=r
\end{aligned}
$$

and by (2.2),

$$
\begin{array}{rlrl}
p(r)^{*} \log _{i_{k}} X_{k} & =\log _{i_{k}} X_{k}, & & \text { if } k \neq r, \\
& =2 \log _{i_{k}} X_{k}, & \text { if } k=r .
\end{array}
$$

Assume by induction that for l with $1 \leqslant l \leqslant k$

$$
\begin{aligned}
p(r)^{*} z^{n-l} & =2 z^{n-l}, & & \text { if } r<l, \\
& =z^{n-l}, & & \text { if } r \geqslant l, \\
p(r)^{*} Z^{n-l} & =2 Z^{n-l}, & & \text { if } r<l, \\
& =Z^{n-l}, & & \text { if } r \geqslant l .
\end{aligned}
$$

Then $p(r)^{*}$ acts on

$$
z^{n-(k+1)}=\delta\left(z^{n-k} \cdot g_{i_{0} \ldots i_{k}}\right) \quad \text { or } \quad Z^{n-(k+1)}=\delta\left(Z^{n-k} \cdot \log _{i_{k}} X_{k}\right)
$$

via 1 on the z or Z factor and 2 on the g or \log factor if $r=k$, via 2 on the z or Z factor and 1 on the g or \log factor if $r<k$, via 1 if $r>k$. This proves the induction. As $p(r)^{*}$ acts on

$$
\frac{\mathrm{d} X_{k+2}}{X_{k+2}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}
$$

via 1 if $r<k+2,2$ if $r \geqslant k+2$, one finds

$$
p(r)^{*} x=2 x, \quad p(r)^{*} y=2 y \quad \text { and } \quad p(r)^{*} z=2 z
$$

As $\mathrm{d} X_{i} / X_{i}$ is the orientation class of $\left.H^{1}\left(\mathbb{C}^{*}\right)_{i}, \mathbb{Z}(1)\right)$ written as a de Rham class, then z may be uniquely written as

$$
z(\underline{\lambda})=\left(\lambda_{1}, \ldots, \lambda_{n}\right):=\sum_{i=1}^{n} \lambda_{i} \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} \hat{X}_{i}}{X_{i}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}
$$

with $\lambda_{i} \in \mathbb{C}$ modulo $z(\underline{\eta})$, for $\eta_{i} \in \mathbb{Z}$.
Therefore,

$$
p(r)^{*} z(\underline{\lambda})=\left(2 \lambda_{1}, \ldots, 2 \lambda_{r-1}, \lambda_{r}, 2 \lambda_{r+1}, \ldots, 2 \lambda_{n}\right)
$$

and $p(r)^{*} z(\underline{\lambda})=2 z(\underline{\lambda})$ implies that $\lambda_{r} \in \mathbb{Z}$. As this is true for all r with $1 \leqslant r \leqslant n$, one has $z=0$.

3. Pull-Back of \boldsymbol{x} to X and Formula [4], II.2.4

3.1. Let X be a smooth algebraic variety over \mathbb{C} of a dimension $\leqslant n$, equipped with a morphism $h: X \rightarrow A$, where now A is the universal situation described in (2.5i), with coordinates X_{i}, and with $\phi=1-X_{0} \ldots X_{n}$.

Define

$$
\begin{aligned}
& h^{*} X_{i}=a_{i} \in H^{0}\left(X, \mathcal{O}_{X}\right), \quad \text { for } i \geqslant 1, \\
& h^{*} \phi=f \in H_{\mathscr{\mathscr { A }}}^{1}(X, S+T ; \mathbb{Z}(1)),
\end{aligned}
$$

where T is defined by $t:=a_{1} \ldots a_{n}$ and S is a closed subvariety of X contained in $h^{*} Y$, of the ideal sheaf \mathscr{I}_{S}. Denote by $\mathcal{O}_{X}(-T)$ the reduced ideal sheaf of T.

Define

One has

$$
\begin{aligned}
h^{*} \text { rest }^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} & \in H_{\overparen{R}}^{n+1}(X, S ; \mathbb{Z}(n+1)) \\
& =H^{n}(X, S ; \mathbb{C} / \mathbb{Z}(n+1))
\end{aligned}
$$

As S is not necessarily a normal crossing divisor, we will explain this more precisely (3.2), (3.3), (3.4), (3.5), and (3.6). Then we want to evaluate this class along relative homology classes $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$ (3.4).
3.2. We assume in (3.2), (3.3), (3.4) that X is smooth analytic, T is a divisor defined by $a_{1} \ldots a_{n}=t=0, a_{i} \in H^{0}\left(X, \mathcal{O}_{X}\right)$, and S is a closed subvariety of X.

We define the subcomplexes $\Omega_{X, S+T}^{*}$ and $\Omega_{X, S}^{*}$ of the holomorphic de Rham complex Ω_{X}^{*} by: for each open set U

$$
\begin{aligned}
& \Omega_{X, S}^{i}(U)=\left\{\omega \in \Omega_{X}^{i}(U), \omega_{\mid S \cap U}=0\right\} \\
& \Omega_{X, S+T}^{i}(U)=\left\{\omega \in \Omega_{X, S}^{i}(U),\left.\omega\right|_{a_{j}=0}=0 \text { for any } 1 \leqslant j \leqslant n\right\} .
\end{aligned}
$$

The sheaves $\Omega_{X, S}^{i}$ and $\Omega_{X, S+T}^{i}$ are coherent. As $\Omega_{X, S}^{0}=\mathscr{I}_{S}$, one has a natural inclusion

$$
j_{1} \mathbb{C} \xrightarrow{\text { incl }} \Omega_{X, s}
$$

which defines a map in cohomology

$$
H^{*}(X, S ; \mathbb{C}) \xrightarrow{\text { incl }} H^{*}\left(X, \Omega_{X, s}^{*}\right)
$$

If S is a divisor with normal crossings then $\Omega_{X, S}$ is the complex $\Omega_{X}^{*}(\log S)(-S)$, and incl is a quasi isomorphism. In general we construct a 'splitting' of incl.

LEMMA. There is a morphism p in $D^{b}(X), p: \Omega_{X, s} \rightarrow j_{1} \mathbb{C}$ such that $p \circ$ incl is an isomorphism.
Proof. Let $\sigma: \tilde{X} \rightarrow X$ be an embedded resolution of S. This means $\sigma^{-1} S=\tilde{S}$ is a divisor with normal crossings, σ is proper and $\left.\sigma\right|_{X-S}$ is an isomorphism.

Consider

One has $\sigma^{*} \Omega_{\tilde{X}, S}^{i} \subset \Omega_{\tilde{X}}^{i}(\log \tilde{S})(-\widetilde{S})$, and $\sigma^{-1} j_{!} \mathbb{C} \rightarrow \tilde{j}!\mathbb{C}$. Therefore, one has a diagram in $D^{b}(X)$

As σ is proper, and j and \tilde{j} are exact, one has $R \sigma_{*} \tilde{j_{l}}=R \sigma_{!} \tilde{j}_{1}=R(\sigma \circ \tilde{j})=R j_{!}=j_{1}$ in $D^{b}(X)$, and σ^{-1} is an isomorphism in $D^{b}(X)$. As iñcl is a quasi-isomorphism, $R \sigma_{*}$ incl is an isomorphism in $D^{b}(X)$.

Define

$$
\mathrm{p}=\left(\sigma^{-1}\right)^{-1} \circ\left(R \sigma_{*} \mathrm{in} \mathrm{c} \mathrm{c}\right)^{-1} \circ \sigma^{*}
$$

3.3 Define

$$
K^{\cdot}=j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, S} \quad \text { and } \quad K^{\prime *}=v_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, S+T}^{*},
$$

which is a subcomplex of K^{*}. One has

with $p \circ$ incl as an isomorphism (3.2).
COROLLARY. There are morphisms

with $p \circ$ incl as an isomorphism.
3.4. Let \bar{z} be a cohomology class in

$$
\frac{H^{0}\left(X, \Omega_{X, S+T}^{n}\right)}{H^{n}\left(X, v_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, S+T}^{\leqslant n-1}\right)} \subset H^{n+1}\left(X, K^{\prime}\right)
$$

of representative $\omega \in H^{0}\left(X, \Omega_{X, S+T}^{n}\right)$.
Its image z in $H^{n+1}\left(X, K^{*}\right)$ lies in

$$
\frac{H^{0}\left(X, \Omega_{X, S}^{n}\right)}{H^{n}\left(X, j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, S}^{\leq n-1}\right)} \subset H^{n+1}\left(X, K^{\cdot}\right)
$$

and is of representative ω. Then for any n-chain γ with $\partial \gamma \subset S$ representing the homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$, one has $\langle[\gamma], p z\rangle=\int_{\gamma} \omega$ modulo $\mathbb{Z}(n+1)$.
3.5. Remark. If X is affine one has

$$
H^{n+1}\left(X, v_{!} \mathbb{Z}(n+1)\right)=H^{n+1}\left(X, j_{!} \mathbb{Z}(n+1)\right)=0
$$

[2]. Then one is always in the situation of (3.4).
3.6. We go back to the situation (3.1). One has morphisms

$$
\begin{aligned}
& h^{*} \Omega_{A}^{i}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{X, S+T}^{i}, \\
& h^{*} \Omega_{A}^{i}(\log Y)(-Y) \rightarrow \Omega_{X, S}^{i}, \\
& h^{-1} \lambda_{!} \mathbb{Z}(n+1) \rightarrow v_{!} \mathbb{Z}(n+1), \\
& h^{-1} i_{1} \mathbb{Z}(n+1) \rightarrow j_{!} \mathbb{Z}(n+1) .
\end{aligned}
$$

Therefore, one has morphisms in $D^{b}(A)$:

and

$$
\begin{aligned}
& i_{\mathbb{1}} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{\leq n}(\log Y)(-Y) \\
& \quad \downarrow \\
& R h_{*} K^{\cdot} .
\end{aligned}
$$

This proves the following lemma.
LEMMA. One has commutative diagrams

3.7. Consider the open cover $h^{-1} A_{j}$ of $X(1.4)$. Then $h^{*} \bar{x}$ is represented by the cocycle

$$
h^{*} \bar{x}=\left(h^{-1} x^{-1}, h^{*} x^{0}, \ldots, h^{*} x^{n}\right) \quad \text { in } \quad\left(\mathscr{C}^{n+1}\left(h^{-1} A_{i}, K^{\prime *}\right),(-1)^{n+1} \delta+d\right)
$$

with

$$
\begin{aligned}
& h^{-1} x^{-1}=(-1)^{(n+1) n} z^{-1} \\
& h^{*} x^{n-k}=(-1)^{k n_{i_{0} \ldots i_{k}}^{n-k}} h^{*} g_{i_{0} \ldots i_{k}} \frac{\mathrm{~d} q_{k+1}}{a_{k+1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}, \quad 1 \leqslant k \leqslant n \\
& h^{*} x^{n}=\log _{i} f \frac{\mathrm{~d} a_{1}}{a_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}, \text { with } \log _{i} f:=h^{*} \log _{i} \phi
\end{aligned}
$$

Define for simplicity of notations

$$
G_{i_{0} \ldots i_{k}}:=h^{*} g_{i_{0} \ldots i_{k}} \in H^{0}\left(h^{-1} A_{i_{0} \ldots i_{k}}, t \mathscr{I}_{\mathrm{S}}\right) .
$$

3.8. Let X_{j} be a refinement of $h^{-1} A_{j}$ such that another determination $\ln _{j} f$ of $\log _{i} f$ on X_{j} exists with

$$
\ln _{j} f \in H^{0}\left(X_{j}, \mathscr{I}_{S} \mathcal{O}_{X}(-T)\right)
$$

Observe that this implies that if $X_{j} \cap(S \cup T) \neq \phi$, then $\ln _{j} f=\log _{j} f$ and, therefore,

$$
\left(\ln _{i_{1}} f-\ln _{i_{0}} f\right) \in H^{0}\left(X_{i_{0} i_{1}}, v_{!} \mathbb{Z}(1)\right)
$$

and vanishes if $X_{i_{0} i_{1}} \cap(S \cup T) \neq \phi$.
Define the element

$$
\begin{aligned}
& u=\left(u^{-1}, u^{0}, \ldots, u^{n}\right) \text { in }\left(\mathscr{C}^{n+1}\left(X_{j}, K^{\prime}\right),(-1)^{n+1} \delta+d\right) \text { by } \\
& u^{-1}:=(-1)^{(n+1) n} Z^{-1} \\
& u^{n-k}:=(-1)^{k n} Z_{i_{0} \ldots i_{k}}^{n-k} G_{i_{0} \ldots i_{k}} \frac{\mathrm{~d} a_{k+1}}{a_{k+1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}, \quad 1 \leqslant k \leqslant n,
\end{aligned}
$$

$$
u^{n}:=\ln _{i} f \frac{\mathrm{~d} a_{1}}{a_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}
$$

with

$$
\begin{aligned}
& Z_{i_{0} i_{1}}^{n-1}:=(\delta \ln f)_{i_{0} i_{1}} \\
& Z_{i_{0} \ldots i_{k}}^{n-k}:=\delta\left(Z_{i_{0} \ldots i_{k}-1}^{n-k+1} G_{i_{0} \ldots i_{k-1}}\right)_{i_{0} \ldots i_{k}} .
\end{aligned}
$$

As in (1.5), the condition $\left(\ln _{i_{1}} f-\ln _{i_{0}} f\right)=0$ if $\left(X_{i_{0} i_{1}} \cap(S \cup T) \neq \phi\right.$ implies that

$$
Z_{i_{0} \ldots i_{k}}^{n-k} \in H^{0}\left(X_{i_{0} \ldots i_{k}}, v_{!} \mathbb{Z}(k)\right)
$$

and that u is a Cech cocycle defining a cohomology class u in $H^{n+1}\left(X, K^{\prime \prime}\right)$.
PROPOSITION. One has

$$
h^{*} \bar{x}=u \quad \text { in } \quad H^{n+1}\left(X, K^{\prime \prime}\right)
$$

Proof. Choose a refinement X_{j}^{\prime} of X_{j} such that if $X_{i_{0} \ldots i_{k}}^{\prime} \cap(S \cap T)=\phi$, then $\log _{i_{0} \ldots i_{k}} a_{k+1}$ is single-valued on $X_{i_{0} \ldots i_{k}}^{\prime}$, that is, in $H^{0}\left(X_{i_{0} \ldots i_{k}}^{\prime}, \mathcal{O}_{X}\right)$.

Define

$$
\begin{array}{cl}
h_{i_{0} \ldots i_{k}}:==\log _{i_{0} \ldots i_{k}} a_{k+1}, & \text { if } X_{i_{0} \ldots i_{k}}^{\prime} \cap(S \cup T)=\phi, \\
0, & \text { if } X_{i_{0} \ldots i_{k}}^{\prime} \cap(S \cup T) \neq \phi
\end{array}
$$

In this refinement X_{j}^{\prime}, one has

$$
h^{*} x^{n}-u^{n}=\left(\log _{i} f-\ln _{i} f\right) \frac{\mathrm{d} a_{1}}{a_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}
$$

Define

$$
N_{i}^{n}=\left(\log _{i} f-\ln _{i} f\right) \in H^{0}\left(X_{i}^{\prime}, v_{!} \mathbb{Z}(1)\right)
$$

One then has

$$
\left(\delta N^{n}\right)_{i_{0} i_{1}}=z_{i_{0} i_{1}}^{n-1}-Z_{i_{0} i_{1}}^{n-1} .
$$

Define

$$
r_{i}^{n-1}=N_{i}^{n} h_{i} \frac{\mathrm{~d} a_{2}}{a_{2}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}} \in H^{0}\left(X_{i}^{\prime}, \Omega_{X, S+T}^{n-1}\right) .
$$

One has $h^{*} x^{n}-u^{n}=\mathrm{d} r_{i}^{n-1}$.
Define, by induction for $1 \leqslant l \leqslant k$,

$$
\begin{aligned}
N_{i_{0} \ldots i_{1}}^{n-l} & =\left(z_{i_{0} \ldots i_{l}}^{n-i}-Z_{i_{0} \ldots i_{1}}^{n-l}\right) G_{i_{0} \ldots i_{1}}-\delta\left(N_{i_{0} \ldots i_{l}-1}^{n-l+1} h_{i_{0} \ldots i_{1}-1}\right)_{i_{0} \ldots i_{l}} \\
& \in H^{0}\left(X_{i_{0} \ldots i_{1}}^{\prime}, v_{!} \mathbb{Z}(l+1)\right),
\end{aligned}
$$

with $\left(\delta N^{n-l}\right)=z^{n-l-1}-Z^{n-l-1}$
and

$$
\begin{aligned}
r_{i_{0} \ldots i_{l}}^{n-i-1} & =(-1)^{l n} N_{i_{0} \ldots i_{l}}^{n-l} h_{i_{0} \ldots i_{l}} \frac{\mathrm{~d} a_{l+2}}{a_{l+2}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}} \\
& \in H^{0}\left(X_{i_{0} \ldots i_{i}}^{\prime}, \Omega_{X, S+T}^{n-(l+1)}\right)
\end{aligned}
$$

with

$$
\left(h^{*} x^{n-l}-u^{n-l}\right)-\left[(-1)^{n} \delta r^{n-1}+\mathrm{d} r^{n-(l+1)}\right]=0 .
$$

Define

$$
N_{i_{0} \ldots i_{k}}^{n-k}=\left(z_{i_{0} \ldots i_{k}}^{n-k}-Z_{i_{0} \ldots i_{k}}^{n-k}\right) G_{i_{0} \ldots i_{k}}-\delta\left(N_{i_{0} \ldots i_{k}-1}^{n-k+1} h_{i_{0} \ldots i_{k-1}}\right)_{i_{0} \ldots i_{k}} .
$$

One has $\delta N^{n-k}=z^{n-k-1}-Z^{n-k-1}$.
If $X_{i_{0} \ldots i_{l} \ldots i_{k}}^{\prime} \cap(S \cup T) \neq \phi$ for all $l \in\{0, \ldots, k\}$, then $N_{i_{0} \ldots i_{k}}^{n-k}=0$, especially if $X_{i_{0} \ldots i_{k}}^{\prime} \cap(S \cup T) \neq \phi$. Otherwise $X_{i_{1} \ldots i_{k}}^{\prime} \cap(S \cup T)=\phi$ (say). Then

$$
\begin{aligned}
N_{i_{0} \ldots i_{k}}^{n-k}= & \left(z_{i_{0} \ldots i_{k}}^{n-k}-Z_{i_{0} \ldots i_{k}}^{n-k}\right)\left(G_{i_{0} \ldots i_{k}}-h_{i_{1} \ldots i_{k}}\right)- \\
& -\sum_{i=1}^{k}(-1)^{l} N_{i_{0} \ldots i_{1} \ldots i_{k}}^{n-k+1}\left(h_{i_{0} \ldots \hat{i}_{l} \ldots i_{k}}-h_{i_{1} \ldots i_{k}}\right) .
\end{aligned}
$$

If $\left(z^{n-k}-Z^{n-k}\right)_{i_{0} \ldots i_{k}} \neq 0$, then

$$
X_{i_{0} \ldots i_{k}}^{\prime} \cap(S \cup T)=\phi, \quad \text { and } \quad\left(G_{i_{0} \ldots i_{k}}-h_{i_{1} \ldots i_{k}}\right) \in \mathbb{Z}(1) .
$$

If $N_{i_{0} \ldots \hat{l}_{L} \ldots i_{k}}^{n-k+1} \neq 0$, then

$$
\left.X_{i_{0} \ldots \hat{i}_{l} \ldots i_{k}}^{\prime} \cap(S \cup T)=\phi, \quad \text { and } \quad\left(h_{i_{0} \ldots \hat{l}_{1} \ldots i_{k}}-h_{i_{1} \ldots i_{k}}\right) \in \mathbb{Z}(1)\right) .
$$

Therefore

$$
N_{i_{0} \ldots i_{k}}^{n-k} \in H^{0}\left(X_{i_{0} \ldots i_{k}}^{\prime}, v_{!} \mathbb{Z}(k+1)\right) .
$$

Define

$$
r_{i_{0} \ldots i_{k}}^{n-k-1}=(-1)^{k n} N_{i_{0} \ldots i_{k}}^{n-k} h_{i_{0} \ldots i_{k}} \frac{\mathrm{~d} a_{k+2}}{a_{k+2}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}} .
$$

One has

$$
\left(h^{*} x^{n-k}-u^{n-k}\right)-\left[(-1)^{n} \delta r^{n-k}+\mathrm{d} r^{n-k-1}\right]=0
$$

Therefore,

$$
\left(h^{*} \bar{x}-u\right)-\left[(-1)^{n} \delta+d\right] r=0
$$

and $\left(h^{*} \bar{x}-u\right)$ is a coboundary in $\mathscr{C}^{*}\left(K^{\prime}\right)$.
3.8.1. If we do not assume that dimension $X \leqslant n$ and we define $u \in H^{n+1}\left(X, v_{1} \mathbb{Z}\right.$ $(n+1) \rightarrow \Omega_{X, S+T}$) by formulae (3.8) for a determination $\ln _{j} f$, the proof of Proposition (3.8) just shows $h^{*} \bar{x}=u$.

In other words, one has the following theorem.
THEOREM The analytic element

$$
\bar{x} \in H^{n+1}\left(A, \lambda_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{\leq n}(\log (Y+Z))(-Y-Z)\right)
$$

defined in (1.6) does not depend on the choice of log's made in (1.4) α, β, γ.
In particular, if $h_{\phi}: A \rightarrow B$ is the analytic (or algebraic) morphism defined in (2.5i), then one has $\bar{x}=h_{\phi}^{*} \bar{x}_{B}$, where \bar{x}_{B} is the element defined in (1.6) in the universal situation B.
3.9. Let γ be an n-chain with support $\gamma \subset \mathscr{U}, \mathscr{U}$ open analytic, $\partial \gamma \subset S$, of homology class $[\gamma] H_{n}(X, S ; \mathbb{Z})$ such that there is a determination $\ln f$ of $\log f$ on \mathscr{U} with $\ln f \in H^{0}\left(\mathscr{U}, \mathscr{I}_{S} \mathcal{O}_{X}(-T)\right)$.

By 3.8, one has

$$
h^{*} \bar{x}=\text { class of } \omega=\ln f \frac{\mathrm{~d} a_{1}}{a_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} a_{n}}{a_{n}}
$$

in $H^{n+1}\left(\mathscr{U}, K^{\prime}\right)$.
By (3.4), one obtains the following theorem.
THEOREM (see [1], 7.0.2, and [4], II, (2.4)). Let X be a smooth algebraic complex variety of dimension $\leqslant n$, equipped with a morphism $h: X \rightarrow A$, where A is the universal situation described in (2.5i). Let $t:=h^{*}\left(X_{1} \ldots X_{n}\right), \mathcal{O}_{X}(-T)$ be the reduced ideal sheaf associated to $t, f:=h^{*} \phi$. Let S be a closed subvariety of X contained in $h^{*}\left(X_{0}=0\right)$ of ideal sheaf \mathscr{I}_{s}. Let \mathscr{U} be an analytic open subset of X on which there is a single-valued determination $\ln f$ of f with $\ln f \in H^{0}\left(\mathscr{U}, \mathscr{I}_{S} \mathcal{O}_{X}(-T)\right)$. Let γ be a n-chain supported in \mathscr{U} with $\hat{o} \gamma \subset S$, of homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. Then one has

$$
\begin{aligned}
& \left\langle[\gamma], h^{*} \text { rest }^{-1}\left\{\phi_{\mid U}, X_{1}, \ldots, X_{n}\right\}\right\rangle \\
& \quad=\int_{\gamma} \ln f h^{*}\left(\frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}}\right) \text { modulo } \mathbb{Z}(n+1) .
\end{aligned}
$$

3.10. Remark. The condition X affine of [4], II, (2.4) does not appear in (3.9). This is just because the assumption on the existence of $\ln f$ is sufficient to ensure that $p h^{*} x$ is represented by a global n-form on \mathscr{U} (via (3.8)).
3.11. Comment. Formula (3.9) depends on the existence of a representative γ of the homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$ along which there is a single-valued determination of $\log f$ which vanishes on support $\gamma \cap S$ and support $\gamma \cap\left(a_{i}=0\right)$ for $1 \leqslant i \leqslant n$. So it is not valid in general. In Section 4, we weaken the assumptions on dimension X and on γ in order to write a slightly more general formula in the case $n=1$.

4. Other Formulae on X and Relationship with Bloch's Regulator Map

4.1. Let X be a smooth affine variety over \mathbb{C} equipped with morphisms $h^{\alpha}: X \rightarrow A$, $\alpha=1, \ldots, N$, where A is the universal situation as in (3.1). We define

$$
h^{\alpha *} \phi=f^{\alpha} \in H_{\mathscr{D}}^{1}\left(X, S+T^{\alpha} ; \mathbb{Z}(1)\right), \quad h^{\alpha *} X_{i}=a_{i}^{\alpha} \in H^{0}\left(X, \mathcal{O}_{X}\right)
$$

where $t^{\alpha}:=a_{1}^{\alpha} \cdots a_{n}^{\alpha}$ defines T^{α} and S is a closed subvariety of X contained in $\bigcap_{1}^{N} h^{\alpha-1} Y$ of ideal sheaf \mathscr{I}_{s}. This defines

$$
u:=\sum_{1}^{N} h^{\alpha *} \operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} \in H_{\mathscr{D}}^{n+1}(X, S ; \mathbb{Z}(n+1)) .
$$

Define $j: \mathrm{X}-\mathrm{S} \rightarrow \mathrm{X}$.
Recall (3.6) that we have defined

$$
h^{\alpha *}:\left(i_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{\leq n}(\log Y)(-Y)\right) \rightarrow R h_{*}^{\alpha}\left(j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{\widehat{X}, S}^{\leqslant n}\right)
$$

in $D^{b}(A)$.
This defines

$$
\bar{u}:=\sum_{1}^{N} h^{\alpha *} \operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}
$$

as a class in

$$
H^{n+1}\left(X, j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X}^{\leqslant}, S\right) .
$$

LEMMA. The natural morphism

$$
H^{n+1}\left(X, K^{*}\right) \rightarrow H^{n+1}\left(X, j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, S}^{\leqslant n}\right)
$$

is injective. The class \bar{u} lies in $H^{n+1}\left(X, K^{*}\right)$ if and only if

$$
\mathrm{d} \bar{u}=\sum_{1}^{N} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}} \wedge \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \wedge \cdots \wedge \frac{\mathrm{d} a_{n}^{\alpha}}{a_{n}^{\alpha}}=0 .
$$

Proof. The kernel of

$$
H^{n+1}\left(X, K^{\cdot}\right) \rightarrow H^{n+1}\left(X, j_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{X, s}^{\leq}, s\right)
$$

comes from

$$
H^{n+1}\left(X, \Omega_{\bar{X}, s}^{\geqslant n+1}[-1]\right)=0 \quad \text { and } \quad \bar{u} \in H^{n+1}\left(X, K^{*}\right)
$$

if and only if it maps to 0 under

$$
\begin{aligned}
& d: H^{n+1}\left(X, j_{!} \not Z(n+1) \rightarrow \Omega_{X, S}^{\leq n}\right) \rightarrow \\
& \quad H^{n+1}\left(X, \Omega_{X, S}^{\gtrless n+1}\right)=H^{0}\left(X, \Omega_{X, S}^{n+1}\right)_{d \text { closed }}
\end{aligned}
$$

One has

$$
\begin{aligned}
\mathrm{d} \bar{u} & =\sum_{1}^{N} h^{\alpha *} \frac{\mathrm{~d} \phi}{\phi} \wedge \frac{\mathrm{~d} X_{1}}{X_{1}} \wedge \cdots \wedge \frac{\mathrm{~d} X_{n}}{X_{n}} \\
& =\sum_{1}^{N} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}} \wedge \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \wedge \cdots \wedge \frac{\mathrm{d} a_{n}^{\alpha}}{a_{n}^{\alpha}} .
\end{aligned}
$$

4.2. COROLLARY. There is $\omega \in H^{0}\left(X, \Omega_{X, S}^{n}\right)_{d \text { closed }}$ representing u modulo torsion via the composed morphism

if

$$
\mathrm{d} u=\mathrm{d} \bar{u}=\sum_{1}^{N} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}} \wedge \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \wedge \cdots \wedge \frac{\mathrm{d} a_{n}^{\alpha}}{a_{n}^{\alpha}}=0 .
$$

Proof. One has an exact sequence

$$
\begin{aligned}
& \begin{array}{ll}
0 \rightarrow \frac{H^{n}\left(X, \Omega_{X, S}\right)}{H^{n}(X, S ; \mathbb{Q}(n+1))} \rightarrow H^{n+1}\left(X, K_{\mathbb{Q}}\right) \\
& \| X \text { affine } \\
\text { quotient of } \\
H^{0}\left(X, \Omega_{X, S}^{n}\right)_{d \text { closed }} & H^{n+1}(X, S ; \mathbb{Q}(n+1)) \\
e^{\prime} \\
& \\
& H^{n+1}\left(X, \Omega_{X, S}\right)
\end{array} \\
& \| x \text { affine } \\
& \frac{H^{0}\left(X, \Omega_{X, S}^{n+1}\right)_{a c l o s e d}}{\mathrm{~d} H^{0}\left(X, \Omega_{X, S}^{n}\right)}
\end{aligned}
$$

As $d=e \circ e^{\prime}$ and $H^{n+1}(X, S ; \mathbb{Q}(n+1))$ is torsion free, (3.2) implies that e is injective.
4.3. Let γ be an n-chain on X with $\partial \gamma \subset S$, of homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. One has

$$
\langle[\gamma], u\rangle=\int_{\eta} \omega \quad \text { modulo } \mathbb{Q}(n+1) .
$$

4.4. We assume now $n=1$ in (4.4) and (4.5). Given $[\gamma]$ as in 4.3, then there is a representative γ of $[\gamma]$ as a chain as in [4], II, 2.4:

$$
\gamma=\gamma_{0}+\sum_{i \geqslant 1} \gamma_{i} \text { with } \partial \gamma_{0}=\phi, \partial \gamma_{i} \neq \phi \subset S \text { for } i \geqslant 1
$$

We first compute $\left\langle\left[\gamma_{0}\right], u\right\rangle$.
PROPOSITION. Let $p_{0} \in$ support γ_{0} be a point such that $\log f^{\alpha}$ is single-valued along $\gamma_{0}-p_{0}$, and vanishes along $t^{\alpha}=0$ and S, for $\alpha=1, \ldots, N$.
(1) Assume $p_{0} \notin \bigcup_{1}^{N} T^{\alpha}$. Then if $p_{0} \notin S$ or if p_{0} is an isolated point of $S \cap$ support γ_{0}, one has

$$
\left\langle\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}}-\sum_{\alpha} \log a_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma_{0}} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}} \operatorname{modulo} \mathbb{Q}(2) .
$$

(2) If $p_{0} \in S$ is not isolated in $S \cap$ support γ_{0}, or if $p_{0} \in \bigcap_{1}^{N} T^{a}$ is not isolated in $\cap_{1}^{N} T^{\alpha} \cap$ support γ_{0}, one has

$$
\left\langle\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \quad \text { modulo } \mathbb{Q}(2) .
$$

(3) If $\log f^{\alpha}$ is single-valued along γ_{0} and vanishes along $t^{\alpha}=0$ and S for $\alpha=1, \ldots, N$, one has

$$
\left\langle\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \quad \text { modulo } \mathbb{Z}(2) .
$$

Proof. In (1) and (2), there is an open set \mathscr{U} containing γ_{0}, I a segment in \mathscr{U} with $p_{0}=I \cap$ support γ_{0}, and a determination $\ln _{1} f^{\alpha}$ on $\mathscr{U}_{1}=\mathscr{U}-\mathrm{I}$ with $\ln _{1} f^{\alpha} \in$ $H^{0}\left(\mathscr{U}_{1}, t^{\alpha} \mathscr{I}_{S}\right)$. For any $\varepsilon>0$, define an open set $\mathscr{U}_{0_{\varepsilon}}$ containing p_{0} such that
${ }^{*}$) is fulfilled in case (1),
$\left(^{* *}\right)$ is fulfilled in case (2),
with
(*) $\log a_{1}^{\alpha}$ is single valued along $\mathscr{U}_{0 \varepsilon} \cap$ support γ_{0} and verifies

$$
\sup _{x, y \in \mathscr{U}_{\varepsilon \varepsilon} \cap \text { support } \gamma_{0}}\left|\log a_{1}^{\alpha}(x)-\log a_{1}^{\alpha}(y)\right|<\varepsilon,
$$

(**) $\mathscr{U}_{0 \varepsilon} \cap$ support $\gamma_{0} \subset S$ or $\bigcap_{1}^{N} T^{\alpha}$.
(As support $\gamma_{0} \cap S$ (or support $\gamma_{0} \cap \bigcap_{1}^{N} T^{\alpha}$) is compact, condition (2) says that a subsegment of γ_{0} centered at p_{0} is contained in S (or in $\bigcap_{1}^{N} T^{\alpha}$). Therefore, one may realize (${ }^{* *}$).)

Let $\mathscr{V}_{\varepsilon}=\mathscr{U}_{1} \cup \mathscr{U}_{0_{\varepsilon}}$. Take a common refinement of the covers $\mathscr{U}_{1} \cup \mathscr{U}_{0_{\varepsilon}}$ and $\mathscr{V}_{\varepsilon} \cap h^{\alpha-1} A_{i}$ of $\mathscr{V}_{\varepsilon}$. By (3.8), $\left.\bar{u}\right|_{V_{\varepsilon}}$ is represented by the Čech cocycle in this cover

$$
\left(u^{-1}, u^{0}, u^{1}\right) \in \mathscr{C}^{2}\left(\mathscr{V}_{\varepsilon, J!} \mathbb{Q}(2)\right) \times \mathscr{C}^{1}\left(\mathscr{V}_{\varepsilon}, \mathscr{I}_{S}\right) \times \mathscr{C}^{0}\left(\mathscr{V}_{\varepsilon}, \Omega_{X, S, d \text { closed }}^{1}\right),
$$

with

$$
u^{-1}=\sum_{\alpha} Z_{i i_{1} i_{2}}^{\alpha}, \quad u^{0}=-\sum_{\alpha} Z_{i_{0} i_{1}}^{\alpha} G_{i i_{1} i_{1}}^{\alpha}, \quad u^{1}=\sum_{\alpha} \ln _{i} f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}}
$$

with

$$
\begin{aligned}
& G_{i_{0} i_{1}}^{\alpha}=h^{\alpha *} g_{i_{0} i_{1}}, \quad Z_{i_{0} i_{1}}^{\alpha}=\left(\delta \ln f^{\alpha}\right)_{i_{0} i_{1}}, \\
& Z_{i_{0} i_{1} i_{2}}^{\alpha}=\delta\left(z_{i_{0} i_{1}}^{\alpha} G_{i_{0} i_{1}}^{\alpha}\right)_{i_{0} i_{1} i_{2}} .
\end{aligned}
$$

By (4.2), there is a refinement $\left(\mathscr{V}_{i}\right) i=0, \ldots, l$ of the open cover, there are

$$
\omega \in H^{0}\left(X, \Omega_{X, s}^{1}\right)_{d \text { closed }}, \quad s \in \mathscr{C}^{1}\left(\mathscr{V}_{i}, j_{1} \mathbb{Q}(2)\right)
$$

and $r \in \mathscr{C}^{0}\left(\mathscr{V}_{i}, \mathscr{I}_{s}\right)$ with

$$
u^{-1}=-\delta s, \quad u^{0}=-\delta r+s, \quad u^{1}=\omega+\mathrm{d} r .
$$

Following the orientation of γ_{0}, take an order \mathscr{V}_{i} with

$$
\begin{aligned}
& p_{0} \in \mathscr{V}_{0}-\bigcup_{i \geqslant 1} \mathscr{V}_{i}, \\
& p_{1} \in \mathscr{V}_{0} \cap \mathscr{V}_{1} \cap \gamma_{0}, \\
& p_{l} \in \mathscr{V}_{l-1} \cap \mathscr{V}_{l} \cap \gamma_{0}, \\
& p_{l+1} \in \mathscr{V}_{l} \cap \mathscr{V}_{0} \cap \gamma_{0}
\end{aligned}
$$

One has $\int_{\gamma_{0}} \omega=F-R_{\varepsilon}$ with

$$
\begin{aligned}
F= & \int_{p_{l+1}}^{p_{1}} \sum_{\alpha} \ln _{0} f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}}+\int_{p_{1}}^{p_{l+1}} \sum_{\alpha} \ln _{1} f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}}, \\
R_{\varepsilon}= & \int_{p_{l+1}}^{p_{1}} \mathrm{~d} r_{0}+\int_{p_{1}}^{p_{2}} \mathrm{~d} r_{1}+\cdots+\int_{p_{l}}^{p_{l+1}} \mathrm{~d} r_{l} \\
= & \left.r_{0}\right|_{p_{l+1}} ^{p_{1}}+\left.r_{1}\right|_{p_{1}} ^{p_{2}}+\cdots+\left.r_{l}\right|_{p_{l}} ^{p_{1+1}}(\text { Stokes }) \\
= & \sum_{\alpha}\left[Z_{10}^{\alpha} G_{10}^{\alpha}\left(p_{1}\right)+Z_{21}^{\alpha} G_{21}^{\alpha}\left(p_{2}\right)+\cdots+Z_{l, l-1}^{\alpha} G_{l, l-1}^{\alpha}\left(p_{l}\right)+\right. \\
& \left.+Z_{0 l}^{\alpha} G_{0 l}^{\alpha}\left(p_{l+1}\right)\right] \text { modulo } \mathbb{Q}(2) .
\end{aligned}
$$

One has

$$
Z_{21}^{\alpha}=\cdots=Z_{l, l-1}^{\alpha}=0 .
$$

In (1), $G_{10}^{\alpha}\left(p_{1}\right)$ and $G_{0 l}^{\alpha}\left(p_{l+1}\right)$ are two determinations of $\log a_{1}^{\alpha}$ by (1.4), γ. Therefore, one has

$$
R_{\varepsilon}=\sum_{\alpha} Z_{10}^{\alpha} \log a_{1}^{\alpha}\left(p_{1}\right)+Z_{0 l}^{\alpha} \log a_{1}^{\alpha}\left(p_{l+1}\right) \quad \text { modulo } \mathbb{Q}(2) .
$$

As Z_{10}^{α} and $Z_{0 l}^{\alpha}$ do not depend on ε, one has

$$
\begin{aligned}
& \mid \sum_{\alpha} Z_{10}^{\alpha}\left(\log a_{1}^{\alpha}\left(p_{1}\right)-\log a_{1}^{\alpha}\left(p_{0}\right)\right)+Z_{0 l}^{\alpha}\left(\log a_{1}^{\alpha}\left(p_{l+1}\right)-\log a_{1}^{\alpha}\left(p_{0}\right)\right) \\
& \quad \leqslant \text { constant. } \in \text { by }\left(^{*}\right)
\end{aligned}
$$

Therefore, R_{ε} tends to

$$
R=\sum_{\alpha}\left(Z_{10}^{\alpha}+Z_{0 l}^{\alpha}\right) \log a_{1}^{\alpha}\left(p_{0}\right)=\sum_{\alpha} \log a_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma_{0}} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}}
$$

as ε tends to zero.
In (2), R_{ε} does not depend on ε, and $G_{10}^{\alpha}\left(p_{1}\right)=G_{0 l}^{\alpha}\left(p_{l+1}\right)=0$ by $\left({ }^{* *}\right)$ and 1.4) γ. This proves cases (1) and (2).

In case (3), consider an open set \mathscr{U} containing γ_{0} such that a determination $\ln f^{\alpha}$ of $\log f^{\alpha}$ exists and is single-valued on \mathscr{U} with

$$
\ln f^{\alpha} \in H^{0}\left(\mathscr{U}, t^{\alpha} \mathscr{I}_{S}\right)
$$

Then $u_{\mid \mathscr{U}} \in H_{\mathscr{O}, \mathrm{an}}^{2}\left(\mathscr{U}, K^{*}\right)$ is the class of

$$
\begin{equation*}
\omega:=\sum_{\alpha} \ln f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \in H^{0}\left(\mathscr{U}, \Omega_{X, S}^{1}\right)_{d \text { closed }} \tag{3.8.1}
\end{equation*}
$$

4.5. Take γ_{1} with $\partial \gamma_{1} \neq \phi \subset S$. Let $p_{0} \in \operatorname{support} \gamma_{1} \cap S$. If for all $\alpha=1 \ldots, N$ there is a single-valued determination of $\log f^{\alpha}$ along $\gamma_{1}-p_{0}$ which vanishes along $t^{\alpha}=0$ and S, then $\log f^{\alpha}$ is single-valued along γ_{1} as well.

PROPOSITION. Let $p_{0} \in$ support $\gamma_{1}-S$ be a point such that $\log f^{\alpha}$ is single-valued along $\gamma_{1}-p_{0}$, and vanishes along $t^{\alpha}=0$ and S for $\alpha=1, \ldots, N$.
(1) Assume $p_{0} \notin \bigcup_{1}^{N} T^{\alpha}$. Then one has

$$
\left\langle\left[\gamma_{1}\right], \mathbf{u}\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}}-\sum_{\alpha} \log a_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma_{1}} \frac{\mathrm{~d} f^{\alpha}}{f^{\alpha}} \text { modulo } \mathbb{Z}(2) .
$$

(2) If $p_{0} \in \bigcap_{1}^{N} T^{\alpha}$ and is not isolated in $\bigcap_{1}^{N} T^{\alpha} \cap$ support γ_{1}, then one has

$$
\left\langle\left[\gamma_{1}\right], u\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \text { modulo } \mathbb{Z}(2)
$$

(3) If $\log f^{\alpha}$ is single-valued along γ_{1} and vanishes along $t^{\alpha}=0$ and S for $\alpha=1, \ldots, N$ then one has

$$
\left\langle\left[\gamma_{1}\right], u\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{d} a_{1}^{\alpha}}{a_{1}^{\alpha}} \text { modulo } \mathbb{Q}(2)
$$

Proof. For (1), (2), (3) define $\left(\mathscr{V}_{i}\right)_{i=0, \ldots, l}$ as in the proof of $(4.4,1)$ and (4.4,2). Write $\partial_{\gamma_{1}}=\left\{s_{0}, \ldots, s_{k}\right\} \subset S$.

One has to take

$$
\begin{aligned}
& p_{0} \in \mathscr{V}_{0}-\bigcup_{i \geqslant 1} \mathscr{V}_{i}, \\
& p_{1} \in \mathscr{V}_{0} \cap \mathscr{V}_{1} \cap \gamma_{1}, \\
& p_{l_{1}} \in \mathscr{V}_{l_{1}-1} \cap \mathscr{V}_{l_{1}} \cap \gamma_{1}, \\
& s_{1} \in \mathscr{V}_{l_{1}}, \\
& s_{2} \in \mathscr{V}_{l_{1}+1}, \\
& p_{l_{1}+2} \in \mathscr{V}_{l_{1}+1} \cap \mathscr{V}_{l_{1}+2} \cap \gamma_{1}, \\
& p_{l_{1}+3} \in \mathscr{V}_{l_{1}+2} \cap \mathscr{V}_{l_{1}+3} \cap \gamma_{1}, \\
& \vdots \\
& p_{l_{1}+l_{2} \in \mathscr{V}_{l_{1}+l_{2}-1} \cap \mathscr{V}_{l_{2}} \cap \gamma_{1},}, \\
& s_{3} \in \mathscr{V}_{l_{2}} \\
& \vdots \\
& p_{l} \in \mathscr{V}_{l-1} \cap \mathscr{V}_{l} \cap \gamma_{1} \\
& p_{l+1} \in \mathscr{V}_{l} \cap \mathscr{V}_{0} \cap \gamma_{1} .
\end{aligned}
$$

Note that the corresponding R is defined by

$$
\begin{aligned}
R= & \int_{p_{l+1}}^{p_{1}} \mathrm{~d} r_{0}+\int_{p_{1}}^{p_{2}} \mathrm{~d} r_{1}+\cdots+\int_{p_{l_{1}}}^{s_{1}} \mathrm{~d} r_{l_{1}}+ \\
& +\int_{s_{2}}^{p_{l_{1}+2}} \mathrm{~d} r_{l_{1}+1}+\int_{p_{l_{1}+2}}^{p_{l_{1}+3}} \mathrm{~d} r_{l_{1}+2}+\cdots+\int_{p_{1}}^{p_{l+1}} \mathrm{~d} r_{l}
\end{aligned}
$$

As $r \in \mathscr{C}^{1}\left(\mathscr{I}_{S}\right)$, one has

$$
\begin{aligned}
R= & \left(r_{0}-r_{1}\right)\left(p_{1}\right)+\left(r_{1}-r_{2}\right)\left(p_{2}\right)+\cdots+\left(r_{l_{1}-1}-r_{l_{1}}\right)\left(p_{l_{1}}\right)+ \\
& +\left(r_{l_{1}+1}-r_{l_{1}+2}\right)\left(p_{l_{1}+2}\right)+\cdots+\left(r_{l}-r_{0}\right)\left(p_{l+1}\right) .
\end{aligned}
$$

One concludes as in (4.4).
4.6. Let now X be a smooth affine variety over \mathbb{C}. Let $f_{0}^{\alpha}, \ldots, f_{n}^{\alpha}$ be a global invertible algebraic function on X, for $\alpha=1, \ldots, N$. We consider the cup product

$$
u=\sum_{1}^{N}\left\{f_{0}^{\alpha}, \ldots, f_{n}^{\alpha}\right\} \in H_{\mathscr{T}}^{n+1}(X, \mathbb{Q}(n+1)) .
$$

Assuming

$$
\mathrm{d} u=\sum_{1}^{N} \frac{\mathrm{~d} f_{0}^{\alpha}}{f_{0}^{\alpha}} \wedge \cdots \wedge \frac{\mathrm{d} f_{n}^{\alpha}}{f_{n}^{\alpha}}=0
$$

we have ((1.2i), with $Y=\phi$)

$$
u \in H^{n}(X, \mathbb{C} / \mathbb{Q}(n+1))
$$

Now, X being affine, we have as in (4.2)

$$
H^{n}(X, \mathbb{C} / \mathbb{Q}(n+1))=\frac{H^{0}\left(X, \Omega_{X}^{n}\right)_{d \text { closed }}}{H^{n}(X, \mathbb{Q}(n+1))+\mathrm{d} H^{0}\left(X, \Omega_{X}^{n-1}\right)}
$$

and if $\omega \in H^{0}\left(X, \Omega_{X}^{n}\right)_{d \text { closed }}$ represents u, one has for any $[\gamma] \in H_{n}(X, \mathbb{Z})$ of representative γ :

$$
\langle[\gamma], u\rangle=\int_{\gamma} \omega \quad \text { modulo } \mathbb{Q}(n+1) .
$$

4.7. Take $n=1$, and X as no longer affine. As explained by R. Hain in his talk at the Max-Planck-Institut, fall 1987, one has Bloch's regular map

$$
r: K_{2}(X) \rightarrow H_{\mathscr{P}}^{2}(X, \mathbb{Z}(2))
$$

This is defined as follows. Let $x=\Pi_{1}^{N}\left\{f_{0}^{\alpha}, f_{1}^{\alpha}\right\}$ be in $K_{2}(\mathbb{C}(X))$. Let U be an affine subset of X such that $f_{i}^{\alpha} \in \mathcal{O}(U)^{*}$. Then the cup product

$$
\sum_{1}^{N} f_{0}^{\alpha} \cup f_{1}^{\alpha} \text { lies in } H_{\mathscr{\mathscr { C }}}^{2}(U, \mathbb{Z}(2)) \subset \underset{\substack{V \text { Zariski } \\ \text { open in } X}}{\lim } H_{\mathscr{O}}^{2}(V, \mathbb{Z}(2)) .
$$

The existence of the dilogarithm function tells us that

$$
\sum_{1}^{N} f_{0}^{\alpha} \cup f_{1}^{\alpha} \in \underset{\substack{V \text { Zariski } \\ \text { open in } X}}{\lim } H_{\mathscr{O}}^{2}(V, \mathbb{Z}(2))
$$

does not depend on the decomposition chosen of x as symbols $\left\{f_{0}^{\alpha}, f_{1}^{\alpha}\right\}$. The existence of a Gersten-Quillen resolution for $H_{\mathscr{\mathscr { O }}}^{2}(2)$ tells us that if $x \in H^{0}\left(X, \mathscr{K}_{2}\right) \subset K_{2}(\mathbb{C}(X))$, where \mathscr{K}_{2} is the Zariski sheaf associated to K_{2}, then $r(x):=\Sigma_{1}^{N} f_{0}^{\alpha} \cup f_{1}^{\alpha}$ lies in

$$
H_{\mathscr{\mathscr { C }}}^{2}(X, \mathbb{Z}(2)) \subset \underset{V}{\lim } H_{\mathscr{g}}^{2}(V, \mathbb{Z}(2))
$$

Assume $\mathrm{d} r(x)=0$.
PROPOSITION. Let $[\gamma] \in H_{1}(U, \mathbb{Z})$, of representative γ. Let $p_{0} \in$ support γ such that $\log f_{0}^{\alpha}$ is single-valued along $\gamma-p_{0}$. Then

$$
\begin{aligned}
\langle[\gamma], r(x)\rangle= & \int_{\gamma} \sum_{\alpha} \log f_{0}^{\alpha} \frac{\mathrm{d} f_{1}^{\alpha}}{f_{1}^{\alpha}}- \\
& -\sum_{\alpha} \log f_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma} \frac{\mathrm{d} f_{0}^{\alpha}}{f_{0}^{\alpha}} \text { modulo } \mathbb{Q}(2) .
\end{aligned}
$$

If X is a curve, this is true modulo $\mathbb{Z}(2)$.
The proof is word-by-word the same as in $(4.4,1)$, where one replaces $G_{i_{0} i_{1}}^{\alpha}$ by $\log _{i_{1}} f_{1}^{\alpha}$. If X is a curve, apply (3.5).

References

1. Beilinson, A.: Higher regulators and values of L functions, Sovrem. Probl. Math. 24, Viniti Moscow, (1984), Translation in J. Soviet Math. 30, (1985) 2036-2060.
2. Hamm, H.: Zum Homotopietyp Steinscher Räume, J. Reine Angew Math. 338 (1983), 121-135.

The two following articles appeared in M. Rapoport, N. Schappacher, P. Schneider (eds.) Beilinson's Conjectures on Special Values of L-Functions, Perspectives in Mathematics 4, Academic Press, New York, (1988).
3. Esnault, H. and Viehweg, E.: Deligne-Beilinson cohomology, pp. 43-91.
4. Neukirch, J.: The Beilinson conjecture for algebraic number fields pp. 193-247.

[^0]: *Supported by Heisenberg Programm, Max Planck Institut für Mathematik.

