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At the C.I.R.M. conference in Luminy the first author gave a re-
port on "Logarithmic DeRham complexes" and sketched the vanishing
theorems as well as the applications included in [4] and [5). The
Kodaira-Nakano vanishing theorem can often be improved by regarding
the "logarithmiec wversion" of the wvanishing theorem for invertible
sheaves directly. Following this theme we discuss in this note some
applications already indicated but not worked out in [4] and [5].

In particular, using remark 2.3.6 in [4], we prove A. Sommese's
vanishing theorem for k-ample invertible sheaves ¥ , with an improve-
ment on the bounds if k is larger than the Iitaka dimension «(¥)
(§2).

51 contains some remarks concerning cchomology of local constant
systems. We recall methods from [4]) as far as they are needed in §2
and §3.

In §3 we just extend [5]) to local constant systems of rank one
without imposing conditions on the monodromy. This part was motivated
by a talk by A.N. Varchenko at the International Conference on Topo-
logy at Baku (October 1987) on "Combinatoric and Teopology of Configu-
rations of Hyperplanes" where he used an explicit description by dif-

N
ferential forms of a base of H“[E", 121 Liit] for N hyperplanes

hi in general position [10]. We reformulate the content of [5] in
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such a way that the main result, the non-vanishing of cohomology clas-
ses given by certain differential forms, can be applied to constant
coefficients as well.

Recently several authors studied vanishing theorems for logarith-
mic differential forms (for example D, Arapura [1] and K. Maehara
[7]). Some of the results described here may overlap with some con-
tained explicitly or implicitly in their papers.

Throughout this note we use the notations introduced in [4].

¥ will always denote a connected complex compact manifold of di-

mensien n, bimeromorphically dominated by a ¥ihler manifold and
s

D nz D; a normal crossing divisor on X. We write U =X - D and
i=1

j + U=— X for the inclusion.
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§1 al consta logar laxes

Definition 1.1. Let g : ¥ — Z be a morphism of analytic varieties.
We define r(g) = Max{dim I' - dim g(I') - codim I'; I' closed subvariety
of Y¥}).

Of course we can write as well r(g) = Max{dim (generic fibre of
g]r} - codim I'; T closed subvariety of Y)}. If b denotes the maximal
fibre dimension of g and x = dim 2 one has r(g) ¢ Max{dim Y - x;
Bk =1}.

Let ¥ be a local constant system on U.

Lemma 1.2, (see [4]), 2.3.6). Assume that there exists a proper surjec-
tive morphism g from U to an affine variety W.

Then kaﬂ,ij =0 for k >n + rig).

Proof. By [92], 2.3.1 the sheaves ng*T are analytically construc-
tible and Eq = Support {ngtij must be a Stein space. Since
2 + (dim g-l{ﬂq} -dins) 2 g one has WP w,R%,7) = o for

P+qg>n+ r(g) 2 2 dim g'lfsq] - dim Sq 2 g+ dim sqf By the Leray
spectral seguence

E5Y = BP(w,r%,7) » 9w, 7)
one obtains 1.2.

Corollary 1.3, If in addition none of the monodromies of ¥ around

I:-_i has one as an eigenvalue then Hk{u,ij =0 for k<n-r{g) as
well.

Proof. The condition on the monodromy is equivalent to Rj,Y = j!f
(see [4], 1.6). By Poincaré duality one has

w5, 7) = w5(x,Rj5,7) = wx, 3,1 = 85w, -

= 1" % (v, Homg (1,€))
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and by 1.2 all the cohomology groups are zero for 2n - k > n + r(g).

l:4., From now on we fix a locally free ﬁx-unduln 4 and a legarith-
nic holomorphic integrable connection

V:d—s0_(log D) & A

with 7 = Ker(v|,).
By the Riemann-Hilbert correspondence of P. Deligne, [2], such a pair
{d,v) exists. ¥V gives rise to a legarithmic DeRham complex

nitln-g D) ® ¥, guasi isomorphic te 7 on U. Let Ti € End{ﬂni & Jd)
be the residue of V along Dy i.e. the endomorphism

4L nllog D) @ 4 — 0, @ A

i

If none of the eigenvalues of Pi lies in Im, for i =1,...,8, the
complexes nifloq D) # 4 and Rj,7 are quasi isomorphic (see [2]).

By duality ([4}, Appendix A, for example) ﬂitlog D) & d is guasi
isomorphic to Jj,7 if none of the eigenvalues of the T, lies in

150'

*
More ganerallrl, let us assume that we can write D=D + l:nl

such that none of the eigenvalues of ri lies in I}ﬂ, if Di £ n*,
and none in Z .y, if Dy ¢ b'. Writing

*
U=X=-D —ar " X-D

| : ¥

- ——
=D = X

we have

Lemma 1.5, The three complexes ﬂi{loq D) ® A, Ro,uv\7 and u!m;f

i
are gquasi isomorphic. :
100
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Proof. By [4], A.2 and 1.2,e, the Verdier duality exchanges the role

of D' and D! Therefore it is sufficient to prove that the first

two complexes are gquasi isomorphic. Ro v, 7 iz guasi isomorphic to

. !
na*{ﬂx_ni{lng D°) & d). To show that the map

£ 3 L] -!
y(log D) @ & — Ro, (A ;. (log D') & &)

is a quasi isomorphism as well we may reduce the statement to poly-
disks and then to rank cne sheaves 4 (following the proof of I1I,3.13
in [2], as we did in [4], A.8). In this case one may assume (d,V) to
be the product of rank one sheaves with connections cbtained by pull=-
back from those living on disks. Since Ro, is compatible with this
construction we are reduced to the one-dimensional case, where the
statement is a consequence of the quotations made above.

l.6 The main lewma ([41, 2.2 and 2.3)

Assume that g is a proper surjective morphism from U to an affine
variety W. Let 4 be a locally free 0, -module and V a holomorphic
integrable connection of A with legarithmic poles along D. Assume
that none of the eigenvalues of the residues I'y is an integer. If
the spectral sequence

EYd) = 89(x,08 (109 D) ® &) = WP*U(x,0; (10g D) @ )

degenerates at E then

1!‘
Hq{x,ng{lnq D) @ &) = 0 for

P+4qd>n+r(g) and for p+g<n - r(g).

Propf. The assumptions just imply Hk{u,Knr ?lu] = Equj}. Then

prg=k
1.2 and 1.3 finish the proof.

Remark 1.7. Under the monodromy assumptions of 1.6 it is sometimes
useful to introduce additional divisors sy and E such that
€+ E + D has still normal crossings and to study the complex
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n3(log(D + C + E}) @ 4 @ 0,(-E).

If one denotes the inclusions by

U=-{C+E) _utg u=c _1;—. x=C

| o o |n

T-E -5 U—i'——']f

the above complex is quasi isomorphic to each of:

R{j o ﬂ]*uii*, {j o u}tﬂn'*f' or
Rn,(j' © u'),7' where ¥' = ’IU-(E+E}

(use 1.5).

Assume that the spectral seguence

H(x,08 (1og (D+B+C) )8 X ® 0 (-E)) » WP*9(x,0; (Log(D+E+C)) ® 4 @ 0, (-E)})

degenerates at E,. Then again, geometric properties of (¥,D,E,C)
imply the vanishing of some of the cohomolegy groups occuring as
E,-terms in the spectral sequence (seea 2.1).

The following lemma is, for E = ¢, one example which will be
needed in 2.6.

Lemma 1.8, Assume in addition that g : U — W is smooth and that

l:Iu has relative normal crossings. Then Hq{x,ﬂi{an[D+cj}¢J} =0
for p+ q < dim W.

Proof. ‘The pair (u,c) is locally topoleogical trivial over W.
Therefore - keeping the notations from (1.7) - the cohomolegy of
R(g ° o),7" is locally constant. Then

Hk{u,nu*i*} = Hz{u,nu*f’} = HE{H,R[Q ° o) ¥') =0 for k < dim w.
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§2_ Vanishing theorems for k-ample invertible sheaves

2.1. The main example. Even if the statements obtained in [4] or i1
are more general, many applications follow from the example [4], 2.7:

let ¥ be an invertible sheaf such that ¢V = ﬂx{ 12 vyDy) with
1

H > vy ¢ 0. Then 2'1 has a holomorphic integrable connection ¥
with logarithmic poles along D, whose residues ri are the multipli-

cation with v;/N and the spectral sequence qutﬂ-l} degenerates at

1

E,. In fact the complex @,{log D) 8 - is a direct summand of a

1.
complex r*ﬂi{laq r*n} where » : ¥ — X is the desingularization of
the cyclic cover obtained by taking the N-th root of the section with

zero divisor 15 vyD, . The El[!-lj-dlgtntration iz implied by P.
=1

Deligne's theorem, that the logarithmic Hodge-DeRham spectral sequence
degenerates at E,. If X is algebraic, P. Deligne and L. Illusie
gave recently a beautiful purely algebraic proof by reduction modulo
p of this thecrem ([3]). There one also finds a proof of the degene-

ration of the spectral sequence given by ﬂ%{lag(r*u}] ] ﬂ?f-B] for
any reduced subdivisor B of D. Interpreted in the same way we ob-
tain the degeneration of

1

Hi(x, 08 (log(D + E + ©)) © ¢™1 8 0 (-E)) =

» WP'9(x, 02 (1og(D + E + ©)) @ ¢ 8 0,(-E))

for all reduced divisors € and E such that D + C + E has normal

crossings. If 0 <w; <N, for all i, and if ¥' = Ker{?lx'[n*c+z}]
we obtain (notations as in 1.7):
k i k oy
HE(X,R(3 ° o) ui?') = B (X, (Jov) Roj¥') =
Hk{x,nn*{j' o wr)¥') = @ Hq(x,ngtlng{n +E+0C)) ® ¢ 1lg O (~E)).
pta=k

Several vanishing theorems for differential forms (as well as for mor-
phisms between coheomology groups, as in [4] §3) can be so obtained.
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Some are stated and discussed in [1] and [7]. We return to the
gimple case where C = E = #:

Corgollary 2.2, Assume there exists a proper surjective morphism g
from U=X-D to an affine variety W. Let ¢ be an invertible

sheaf on X and assume that ﬁt" = ﬂx( E uibi} for O <« vy < H.
i=1
then Hqi,'x.ﬂﬁ{lug D) @ 2'1} =0 for p+4g>n+ rig) and for

P+qg<mn-=rg).

Hotations 2.3. An invertible sheaf is semiample if some of its powers
are generated by global sections. A. Sommese (see [8]) defined ¥ to

be b-ample if for some H > 0 oM g generated by itz global sections
and if the corresponding morphism + NG X — I’{Hu{x,!“}} has at most
b-dimensional fibres. We write fﬂr!& semiample invertible sheaf ¥
E(f) = r"H_.H} where N is any positive number such that 5!“ is

generated by its glcbal sections. It is easy to see that r(¥) is
well defined.

Using those notations we obtain an improvement of A. Sommese’'s wvani-
shing theorem (see [8], Chapter III):

Theorem 2.4. Let ¥ be a semiample invertible sheaf on x. Then

Wix,aP e ™) =0 for p+q<n-r@). Especially, if ¢ is

b-=ample of Iitaka dimension k(¥), this holds for
P+ q< Min{k{(£),n = b + 1}.

Progf, If «x(¥) = 0, there is nothing to show. For «x(¥) >0 we

choose W > 1 such that EH is generated by its sections and write

$ =% .t X—Z=9¢  (X). Let D be the zerc divisor of a general
4 4

saction of ¢". b is nen singular and Z - ¢(D) affine. By 2.2

Hq{x,ugilnq D) ®4°) =0 for p+g<n - r(é¢). For those p and gq
the exact sequence

P P P-1
u—hﬂx—rﬂxllngu}—rﬂn — 0
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gives rise to a surjection

#1"1(p,08"" o ﬂxg'ly — m3x,08 8 , 7,

X
Since :t!ln} = k{#) -1 and since HID is again semiample with

r{rlnj { r(2) + 1 the lefthand side is zero by induction on k(%) (In
fact, since D is in general position we even have r[IID} L r(¥f)).

Bemarks 2.5. a) If '2" is equidimensional the bound for p + g

given in 2.4 is the same cne as in A. Sommese's original theorem. If
2 is b-ample and «k(¥) : n-b+1 then n~-r(¥) =n-b+ 1 Iif
and only if the unien of all b-dimensicnal fibres of ¢ y has codi-
E4
mension one. In this case the bound is just improved by cne. On the
other hand, C.P. Ramanujam gave an example (see [8], 3.23) of a three-

fold X and a 2-ample sheaf ¥ of Iitaka dimension 3, such that

Hltx,ni L] !'1} # 0. Therefore, as long as the "bad locus" consists of
divisors one can not expect further improvements.

b} It should be possible to replace the assumption "b-ample of Iitaka
dimension «x(¥)}" in 2.4 by some numerical condition. But anything we
could imagine loocked guite unnatural. However for applications it is
often sufficient to use 2.2 for a suitable divisor D as illustrated
in part ii) of the following lemma:

Lemma 2,6, Let ¥ be an invertible sheaf on X and CC X be a

normal crossing divisor. Assume that one of the following assumptions
holds:

i) ¥ is semi-ample

ii) X is Moifezon and ¥ is numerically good. Then there exists a

bimeromorphic morphism 7t : X' — X of compact complex manifolds and
a normal crossing divisor D' on X' containing [T*C}rad such that

Hq{x',ﬂgrilug D') @ 1*2-1} =0 for p+ g < x(£).

Before sketching the proof (similar to [4], 2.11 and 2.12), let
us recall the definition and some properties of numerically good in-
vertible sheaves, both due to Y. Kawamata, (6].
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Definition 2.7, An invertible sheaf ¥ is called numerically good if
it is numerically effective (i.e. if deg itlr ¢ 0 for all curves

k+1

I'c X) and if k(%) = Hin{k,ulﬁl] numerically trivial}.

Lenma 2.8, (see [6]) Let X be the Moifezon and ¢ be numerically
good. Then there are projective manifolds X' and 2, a birational
morphism 7 : X' — X, a surjective morphism g : X' — Z and an in-

vertible numerically effective sheaf # on Z, such that g ' & = ¢ %
for some a > 0 and dim 2 = x(¥) = x(4).

It is easy to see that all numerically effective sheaves ¥ with
k(#) 2 dim X = 1 are numerically good.

The proof of 2.6, Under either one of the assumptions made we can
find X',Z,¥,7T,9 and a« as in 2.8. (For i) we take X' =X and
k

%
g4 Lot = (2T0) - 321 Cj. We can find - blowing up X',

if necessary - a divisor T' on Z such that B = g'l‘ as well as
€' + B are normal crossing divisors, such that gl‘x'-B is smooth and
Cly,_g @ relative normal crossing divisor. «x(¥) is maximal and for

va>0 & @ 6,(-I'} will contain an ample invertible sheaf. Replacing
I' by a larger divisor and blowing up X' a little bit more we may as

well assume X~ @ 0,(-T) to be ample. ¥ is numerically effective,
which allows to enlarge v wuntil N =a *« v > Multiplicities of the
components of B. This inequality remains true if we replace v and

I' by the same multiple and we may assume that &X' & 0,(-T) is very
ample. Pulling back a general section we get a nonsingular diviser H
on X' such that D=H+B and D' = H+ B + C' are both normal

crossing divisors. For ¥' = riﬂ we have 2‘“ = ﬂx,{m and the as-

sumptions of 2.2 are satisfied. 1.8 allows to add the divisor €' teo

the boundary and we obtain the vanishing of Hq(x',ug,{lng D') @ r"lj
for p+g<n = r{glx,_n} = dim 2 = x(¥).
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classas logarithmic j forms

3,1. Let 4 be an invertible ¢ ~module with a heolomorphic integra-
ble connection ¥V with logarithmic poles aleng D and ¥ = Ker ?lu.
The residues ry of Vv along Dy are given by multiplication with

constants ¥ and - as in 1.4 - we write D = D+ + D!. where for
*
Di £ D ¥g € I}D and for

Di 4 p' ¥y L 3 Iﬂ. As in 1.5 we fix one of those decompositions and

write U0 -2 x - p* —Z— X. By 1.5 we have

Hh{x,ﬂi{log D} & &) = HX(X,Ro w}7)

which is (by definition)

i - 0%, o' n (x - p%) ).

Iheorem 3.2, For (4,V) as above we assume that either X is

Moisefon and 471 is numerically good or that a1 e semianple.

Then for k = k(A" 1) the morphism

B (X, (05 (1og D) ® 4) ) £ ¥¥(x, R0 017

is injective.

Remark 3,3, a) For the sheaf [ﬂg{lug D) ® 4) _, of closed JA-valued
p-forms we have

(X, (@ (log D) ® &) ) = WP(x,FP(ay(log D) @ 4))
where FP denotes the Hodge filtration. f is given by the inclusion

Fp{ﬂ:‘;{{lnq D) & 4) — 0, (log D) @ A.
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b} By F. Bogomolov's wvanishing theorem one knows that for p <k

H“:x,ngunq D) @ ) = 0, In fact, this can be obtained from 2.2 by
using the arguments given in [4], 2.11.

Eroof of 3.2, (see also [5])
By 2.6 there is a bimeromorphic morphism t : X' — X and a normal
crossing divisor D' containing {t*D]m such that

HI(x' rngr (log D') ® ="4) = 0 for p + q < k. Then

n"'l{x*,nif""'{lnq D'} @ T A) = O

and the morphism pB' in the fellowing diagram i=s injective:

¥ (X, 7 (25 (log D) @ 4)) L W*(X,0;(10g D) © 4)

| = l

W (X' ,F* (0, (log D') @ 7'4)) B, W (X' ,0;, (log D') @ t'4)

As remarked inm 3.3 a) the groups on the left hand side are those of
global closed forms and 1:’|r is injective as well.

3.4, Let J (¥ @& 0. :=XA® 0,(*D) be the regular meromorphic
P :

extension of ¥ 8.0, to X which is unigue up to isomorphism ([2]).

We call o € H“[U,RE ﬂﬂf} merogorphic along P if w lies in

Li]
H (X ¥ 8,.0.) @ 0P(log D)}.

The canonical extension 1":“ is an invertible subsheaf of

jm (7 8 0.} which is determined by the property that ¥ induces a
*

connection on L with logarithmic peles along d such that the

real part of the residues l‘_,L lies in [0,1[ for all i. We say that

w_ﬂﬂ]ﬂg_nj, if the monodromy of ¥ around Dj is one and if
for some uy [ J

w e n(x,08(log D) ® ¥, ® 0, .'I.Zjuini - D5)). .
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Corollary 3.5. Let o € Hu[U;EE #,7) Dbe meromorphic along D. Let

!

D be the union of all components of D which are swallowed by w

and I:-"'I =D - Dl. Let Z be the closure of the zere divisor of w

on U. If ¢ = n:[lnq D) ® 0,(-Z) is numerically effective and
x(#) = n, then ¢ defines a non vanishing cohomology class in

!

K x - p*,p' n (x - p*y;7)

Proof. Let 4 be the smallest extension of ¥ & 0 in 4_7v 8 0
oo m, cu

such that o € HO(X,08(log D) ® 4 @ 0, (-2)). Then

w: O, — 0p(log D) ® 4 ® 0,(~2) is an isomorphism and A Yag,

Moreover A C ¥ @ ﬂx{-Dj} -] ﬂx{*{D-Dj]} if and only if ¢ swal-

1
lows D,. Therefore the choice of D' and D" satisfies the assump-
tions made in 3.1 and by 3.2 we have an injection

' (x,00(1og D) ® &) — W' (X,Ro v}7).

I
3.6, We write again D= ﬂ* + D°. The relative cohomology

* * ,
H“{x - D ,Dl N {X-D );C) is given by the n-th hypercochomology of the

I
complex ﬂi{lcq D) @ ax[-n'} ® ﬂx[*D*]. If X - D! is affine (other-
wise we should replace the holomorphic forms by iﬂ-furns] we can as

well take the n-th cohomology of the complex of vector spaces

#(x - p*,0;_, (log D') ® o, (-0")).

3.2 says that in this complex no non zero form out of

n“{x,ng{lnq D) 8 0,(-p! + v » DY)} =

|
X
- H°:x,u; 8 0 ((v+1) + p*))

is exact, provided ﬂxtnl - u'D*] is numerically effective and of
maximal Iitaka dimension.

We heard the following example (over R) form A.N. Varchenko
(faelq).
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Corollary 3.7. Let A,,...,Ay be hyperplanes in €" in general
position, n < N, and let r1'*"*1n be the coordinate functions.

Then a base of H'(C",A; U ... U A i€) is given by the differential

1 M

n
m
forms Yl -...*fn . lea...ad?n for m, 2 0 and izlli £ H=n-=1.

Proof. on P" we write p' =X U ... UK, and D" for the hyper-

plane at @, The differential forms given form a base of
He™,0" e o(v - p°)) = KO(P", 0" _(log D)) @ A) for
" R

£ =0 n('DI + (N - 1) = D*} = 8 n[-l}. Obviously, if we take for ¥
F P

o
the usual differential on ﬂrn(-n + (H - 1) - D) the assumptions of

3.2 are all satisfied and we have an injection

HO(P™, 0™ (log D) ® 4) — H“fc“,nl U...U A_C) =
p" =

= Hn[rn,ﬂ;nflnq D) @ 4A).

The cokernel is contained in H“{r“,u'ﬁf'ltloq D) ® 4) and 3.7 fol-
F
lows from the presumably well known

Lemma 3.8. Let Dj,...,D, be hyperplanes in P" in general posi-
tion, n ¢ N. Then HI(P",0P (log D) @ ﬂrn{-l}] =0 for gq > 0.
|

Proof. D4,...,D. form a complete coordinate system. If N =n then
1 n

N _ (log D) =& &
I\l'l

'1

n
and the cohomology group considered is ] Hq{r“,a nt-:l}.
F

1
For H>n we write D' = Hz Dl and consider the long exact seguence
i=o
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P ' s 2] e
0o — ﬂrn[lﬂg D') @ ﬂrn[ 1) — ﬂrn{lﬂg D) @& ﬂrn[ 1) —

p-1 . 4
=y ﬂDH (log(Dy N D')) @ ﬂnhl 1y} —s B

By induction on N the left hand side has no higher cohomology and by
induction en n neither does the right hand side.

Bemark: Of course, Lemma 3.8. implies as well thet the kernel of
H"{r“,ﬂ“n(mg D) ® 0 _(-1}) 1lies in the image of
F [

HO(P™,0" ! (109 D) ® ¢ a(-1)). Therefore in this special example 3.2.
P P

can as well be replaced by Bogomolov’s wvanishing theorem stated in
3.3, b).
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