Journal für die reine und angewandte Mathematik © Walter de Gruyter Berlin · New York 1987

A remark on a non-vanishing theorem of P. Deligne and G. D. Mostow

By Hélène Esnault*) at Bonn and Eckart Viehweg at Essen

In [1], Proposition 2.14, P. Deligne and G. D. Mostow consider meromorphic one-forms ω with values in a rank one local constant system L on the complement U of N points in $\mathbb{P}^1(\mathbb{C})$ ($N \ge 3$). If L has non trivial monodromies in the N points and if ω has no pole on U and if the sum of the multiplicities of the zeros of ω in U is smaller than N-2 they prove that ω defines a non vanishing cohomology class in $H^1(U,L)$. As a straightforward application of results and methods considered in [2], we prove in this note a higher dimensional analogue of this criterion.

We thank F. Loeser, who motivated this note by asking for possible generalizations of Deligne's and Mostow's result.

Theorem. Let X be an n-dimensional compact complex manifold and $D = \sum D_i$ a normal crossing divisor on X. Let L be a local constant system of rank one on U = X - D, none of whose monodromies around the D_i 's is one. Assume that

$$\omega \in H^0(U, \Omega^n_U \otimes_{\mathbb{C}} L)$$

has a meromorphic extension to X.

If Z is the closure in X of the zero divisor of ω on U and if $\Omega_X^n(\log D) \otimes \mathcal{O}_X(-Z)$ is numerically effective and $\kappa(\Omega_X^n(\log D) \otimes \mathcal{O}_X(-Z)) = n$, then ω defines a non vanishing cohomology class in $H^n(U, L)$.

Remarks. 1) In fact we will prove a slightly more general statement:

Since ω is supposed to have a meromorphic extension to X we can extend $\mathcal{O}_U \otimes_{\mathbb{C}} L$ to an invertible sheaf \mathscr{L} on X such that

$$\omega \in H^0(X, \Omega_X^n(\log D) \otimes \mathcal{L}) \subset H^0(U, \Omega_U^n \otimes_{\mathcal{C}} L).$$

Then, if we choose \mathscr{L} as small as possible, the natural map

$$H^0(X, \Omega_X^n(\log D) \otimes \mathcal{L}) \to H^n(U, L)$$

is injective.

^{*)} supported by "Deutsche Forschungsgemeinschaft, Heisenberg Programm"

- 2) Since X carries an invertible sheaf of maximal litaka-dimension, X is a Moišezon manifold.
 - 3) Since $\Omega_X^n(\log D)$ (-Z) is numerically effective, the assumption

"
$$\kappa(\Omega_X^n(\log D)(-Z)) = n$$
"

is equivalent to

"
$$c_1(\Omega_X^n(\log D)(-Z))^n > 0$$
"

when X is projective.

4) The condition on the monodromies implies $j_!L = Rj_*L$ where $j:U \to X$ denotes the embedding ([2], 1.6). If U is affine, one obtains $H^j(U,L) = 0$ for $j \neq n$ (see [2], 1.5). Therefore, in this case all cohomology classes defined by holomorphic j-forms are zero for j < n.

Proof of the theorem. Set $\mathcal{M} = \Omega_X^n(\log D)$ (-Z). For some $a \ge 1$ the sheaf $\mathcal{M}^a(-D)$ has a non trivial global section and for $b \ge 1$ $\mathcal{N} = \mathcal{M}^{a+b}(-D)$ contains \mathcal{M}^b and therefore $\kappa(\mathcal{N}) = n$.

As in the proof of (2.11) in [2] one finds a birational morphism $\sigma: X' \to X$, with X' smooth and projective, an effective divisor B and some N > 0, such that $\mathcal{H} = \sigma^* \mathcal{N}^N \otimes \mathcal{O}_{X'}(-B)$ is ample and $B + \sigma^* D$ is a normal crossing divisor. Since $\sigma^* \mathcal{M}$ is numerically effective, $\mathcal{H} \otimes \sigma^* \mathcal{M}^N$ is ample as well, and (as in [2], 2.12) we may change b to make sure that $M = (a+b) \cdot N$ is larger than the multiplicites of the components of $B + \sigma^* D$.

Replacing N by a multiple, we may assume in addition that \mathcal{H} is very ample (loc. cit.). If H is the zero divisor of a general section of \mathcal{H} , X'-H is affine and for $D'=B+H+\sigma^*D$ we have: $(\sigma^*\mathcal{M})^M=\mathcal{O}_{X'}(D')$, D' is a normal crossing divisor with multiplicities smaller than M and $X'-D'_{\text{red}}$ is affine. Hence we may apply [2], 2. 8, 2) to obtain

(*)
$$H^{q}(X', \Omega_{Y'}^{p}(\log D') \otimes \sigma^{*} \mathcal{M}^{-1}) = 0 \quad \text{for} \quad p+q \neq n.$$

As in remark 1) we choose the smallest invertible extension $\mathscr L$ of $\mathscr O_U \otimes_{\mathscr C} L$ to X such that

$$\omega \in H^0(X, \Omega_X^n(\log D) \otimes \mathcal{L}) \subset H^0(U, \Omega_U^n \otimes_{\mathcal{C}} L).$$

The form ω considered as a section of $\Omega_X^n(\log D) \otimes \mathcal{L}$ has no zeros along the components of D. By the assumption made ω comes from a section of $\Omega_X^n(\log D) \otimes \mathcal{L} \otimes \mathcal{O}_X(-Z)$ without zeros and ω defines isomorphisms

$$\mathscr{L} \simeq (\Omega_X^n(\log D) \otimes \mathscr{O}_X(-Z))^{-1} = \mathscr{M}^{-1}.$$

The condition on the monodromies of L implies ([2], 1. 2, d)) that

$$H^n(U, L) = \mathbb{H}^n(X, \Omega_X^{\bullet}(\log D) \otimes \mathscr{L}),$$

where $(\Omega_X^{\bullet}(\log D) \otimes \mathcal{L}, V)$ is the logarithmic de Rham complex corresponding to L (see [2], 1.3). Therefore the theorem follows from the injectivity of

$$H^0(X, \Omega_X^n(\log D) \otimes \mathscr{L}) \to \mathbb{H}^n(X, \Omega_X^{\bullet}(\log D) \otimes \mathscr{L}).$$

On the blown up manifold X' considered above, we can extend V to a connection V' on $\sigma^* \mathcal{L}$ with logarithmic poles along $\sigma^* D$ or—extending it trivially along B and H—with logarithmic poles along D'. The map of complexes

$$\sigma^{-1}(\Omega_Y^{\bullet}(\log D) \otimes \mathscr{L}) \to \Omega_{Y'}^{\bullet}(\log D') \otimes \sigma^*\mathscr{L}$$

gives a commutative diagram

$$H^{0}(X, \Omega_{X}^{n}(\log D) \otimes \mathcal{L}) \xrightarrow{\alpha} H^{n}(X, \Omega_{X}^{\bullet}(\log D) \otimes \mathcal{L})$$

$$\downarrow^{\sigma^{*}} \qquad \qquad \downarrow$$

$$H^{0}(X', \Omega_{Y'}^{n}(\log D') \otimes \sigma^{*}\mathcal{L}) \xrightarrow{\alpha'} H^{n}(X', \Omega_{Y'}^{\bullet}(\log D') \otimes \sigma^{*}\mathcal{L})$$

The kernel of α' is the image of $\mathbb{H}^{n-1}(X', \Omega_{X'}^{\bullet}(\log D')^{\leq n-1} \otimes \sigma^* \mathcal{L})$ under $\mathbb{H}^{n-1}(V')$. Since $E_1^{pq} = H^q(X', \Omega_{X'}^p(\log D') \otimes \sigma^* \mathcal{L})$ is zero for p+q=n-1 by (*), the spectral sequence of hypercohomology implies $\mathbb{H}^{n-1}(X', \Omega_{X'}'(\log D')^{\leq n-1} \otimes \sigma^* \mathcal{L}) = 0$. Therefore both, α' and α are injective.

Remark. As explained in [2], 1.4, the monodromy conditions for V' imply that $\mathbb{H}^n(X', \Omega_{X'}^{\bullet}(\log D') \otimes \sigma^* \mathscr{L})$ is nothing but $H^n(X' - D', L|_{X' - D'})$. Therefore we obtained in fact that the composition $H^0(X, \Omega_X^n(\log D) \otimes \mathscr{L}) \to H^n(U, L) \to H^n(X' - D', L|_{X' - D'})$ is injective.

References

- [1] P. Deligne, G. D. Mostow, Monodromy of hypergeometric functions and non lattice integral monodromy, Publ. Math. I.H.E.S 63 (1986), 5—89.
- [2] H. Esnault, E. Viehweg, Logarithmic De Rham complexes and vanishing theorems, Invent. math. 86 (1986), 161—194.

Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-5300 Bonn 3

Universität, GH, Essen, FB6, Mathematik, Universitätsstraße 3, D-4300 Essen 1

Eingegangen 26. Mai 1987, in revidierter Fassung 3. Juli 1987