DELIGNE-BEILINSON COHOMOLOGY

Héléne Esnault* , Eckart Viehweg

In these notes we describe the Deligne cohomology of a complex
manifold as well as Beilinson's algebraic cohomology theory of a quasi-
projective complex manifold and some of its properties. In fact, most
of the content of our manuscript can be found (in a more compressed
form) in the first paragraph of Beilinson's article [3]. We tried to
include all details needed, and we hope that our presentation is

sufficiently "down to earth" to serve as an introduction to this theory

We like to emphasize that credit for the ideas presented here
should be given te A. Beilinson, S. Bloch, P. Deligne and some other
mathematicians, whereas any possible inaccuracies and errors are due
to us (and to our efforts to be as explicit as possible).

In §1 we recall the definition of the (analytic) Deligne cohomo-
logy and - following [4] - we give S. Bloch's definition of the regulator
map for curves, hoping that the concrete description in this case may help
to understand the more formal calculations of the following chapters.
In §2 we describe the Deligne-Beilinson (D - b) complex on a
good compactification of a guasiprojective (real or complex) manifold
and the corresponding cohomology theory. The properties of the
D - b - cohomology arising from abstract nonsense are discussed and some
of the cohomology groups are determined. At the end of §2 we explain
to some extent the description of the D-% - complex IR(p)D by using

I~
real ¢ forms.
The formal definition of the D - b - cohomology using relative cohomo-
logy is explained in §4. This might be a more conceptional approach.
However, we have tried to avoid using the relative cohomology as far
as possible, although it forces us to use a rather artificial way of
defining the product on the D-Db- complex (3.3).
In §3 the definition and properties of the product are explained. We
could not resist to include the calculations of all the compatibilities
and homotopies needed.

Without giving all details, we sketch in §5 the usual extensions of
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the definitions of the cohomology theory to simplicial schemes of

finite type over €. At the end of this section one constructs a complex
of sheaves in the Zarisky topology, which on open subvarieties describes
the D-Db- cohomology.

In §6 we recall the definition and some properties of the cycle class

in the De Rham cohomology (following [2],[9]1 and [1]). Especially we
explain the behaviour of those classes with respect to the Hodge
filtration. These constructions are needed in §7. There we first ex-
plain the relations between the Deligne cohomology of a projective
manifold and the intermediate Jacobian of Griffiths. We reproduce
Deligne's definition of the cycle class in the D-b- cohomolegy ([10])
and we compare it to the Abel-Jacobi map. Our presentation is slightly
different from the one given in [10]. Finally, in §8 we sketch the de-

finition of Chern classes of vector bundles in the D - B - cohomology.
We do not consider in this note Beilinson's description of the D-Db

cohomology as an extension of Hodge structures.

Notations and conventions:

Throughout these notes X 1is a complex analytic variety. Even if
X happens to be algebraic, it is considered as an analytic variety,
except if the index "Zar" is added. Correspondingly Qi denotes the
De Rham complex of holomorphic differential forms.
We use the notations of the derived category, whenever it is necessary
of bounded complexes (even if it is sometimes not explicitly mentioned).
A nice introduction can be found in [6] or [14]. In particular we
constantly use the notation of a cone of amap £ : A° —> B* of
complexes. If the map just exists in the derived category we always
replace B° by an injective resolution.
= is the hypercohomology functor from the derived category of Z-
sheaves to the derived category of abelian groups whereas mi(A") is
the g-th cohomology of the complex M (A"). If A 1is a subring of
R we write

A(p) = (2imP . Ace

Of course, for the purpose of this volume, one needs the cohomology
theory for real algebraic varieties. However, as explained in (2.1,II),
this theory is obtained from the one for complex varieties by a quite
simple procedure, "compatible with all the statements made in these
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§1 The Deligne cohomology

The dilogarithm function and the requlator map on a Riemann

surface (after S. Bloch)

1.1. Following [5] we define the Deligne complex Z(p)v an oD
’
a complex analytic manifold X as

o—>z(p)—>ox—->g)1(—>...——>s)§'1—>o

(where Z(p) 1is in degree zero) and the Deligne cohomology as

4

q
& :=H (X,Z(p) )
5,an XE @) Dan

For simplicity, in this paragraph, we drop the sub-script "an" and
write Z(p)v and Hg

1.2. We define a multiplication
. U | L}
[V 5(p)D ® Z(p )D —> Z(p+p )D
[x.y if deg x = 0
by XUy = 1XAdy if deg x >0 and deg y = p'

0 otherwise

U is a morphism of complexes. In fact, if we denote the differential
in z(p)v by d (where, of course, d : Z(p) -—> OX is the

inclusion) and 4 = deg x and p' = deg y, we have:
x-dy p=0, p'<p’'
. = = t = '
dxuy) = {¥ dy =dxady p=0, p p = dxUy+ (=1)Px udy
dxady p>0, p'=p!
0 otherwise

It is quite easy to show that U 1is associative.

1.3. Using thevusual arguments from homological algebra, or by
calculating the Cech-cohomology on a suitable cover we obtain a ring
structure on p@qH%(X,Z(p)). In fact: the product is anticonutative,
i.e. for o€HI(X,E(p)) and BEHF(X,Z(p")) wUB= (-1 gua.

This will be shown in (1.6) for p=p'=g=g'=1 and in a more general
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set up in §3. For the reader who wants to check the anticommutativity

directly we just reveal that the homotopy between xUy and

e !
(-1 P yix is given by:

(-1) M2 A y otherwise

1.4. Examples for low values of p and (:

i) (p = 0) Obviously %(0)D=Z and H%(X,Z(O)) is nothing but the .

singular cohomology 54(x,%).

ii) (p =1, g =1) If 0)’2 denotes the sheaf of invertible holomorphic
functions, Z(1)D is quasi-isomorphic to 03*([—1] via x — exp(x).
For a suitable opsn cover {Uu} of X an element of H;(X,ZH)) is
represented by a Cech-cocycle

. 1 0
(2imm o /F ) € Clz(1)) xC7(0)
where the cocycle condition says
6(Foc) 1= FB-Fa=211TmOLB. -

Hence fa i = exp(Fa) is the restriction of fEHO(X,O)’E) and the

isomorphism
H1(X Z(1)) — HO(X 0%)
Do 'YX
maps the cohomology class of the cocycle to f£.

iii) (p = 2, g=2) The exponential x l—> exp (2—}.; and multiplication
with -(2117)_1 on QX defines a quasi~isomorphism:

z(2), — (0f -39 ol)[-1].
2 ¥
Hence p € HD(X,Z(Z)) can be described by a Cech-cocycle

((2im) 2. a,) € c@(2) x ¢ (0) x 2 -

Rogy Hag

with
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L2 _ _ -
(2im) naBY_éHOLB , dHuB 69& .

An element of IIH‘I (X,O;‘( — Q;() is represented by
1 0 .51
(Eas’wa) € C (0*) x C(Q)
with agaB =1, d log Eu8=5wa .

The image of p under the isomorphism of the two cohomology

groups is given by
- 1 =
EaB = exp(2i1T HaB) and » — Q

iv) The multiplication

U s L2 (1)) X B (X,E (1) —> HS(X,E(2))

. X L 22 :
(24im maB,Fa) , (21w nocS'GOC) F— ((2im) maany,Zur msocG’B’FudGa)
can be written via the isomorphisms 'ii) and iii) as
v s 10 x,0%) «50(x,0%) —s m'(x, 0% —> o)
: X "X RS'¢ X
Mapg -1 d b4
with fug = (g » 31 By -——g) . Hence, for a Cech cover {Ua} such

that log f|U is defined (and denoted by 1°goc f} one can describe
. o .
fUg by the Cocylce (F’ocﬁ ,wa) with
1
=—(1lo f - log, £}
_ PR o B = dg
Eap = 9 and w, = 53 log f

1.5. P. Deligne (see [3], 1.3) interprets ]H1 (X,O}*(——> Q;() as the
group of rank one bundles £ with holomorphic connection V¥
v
identifying (&,V) with the class of the Cech-cocycle (Eag,wa) ,
where Ean = OUOL- e, + e =€oc6.ea and V e, =W, e .
By definition SEOLB = 1 and the Leibniz rule

v eg = g EOLS e, =ga6 Wy ea+d£u8 ey

implies 5wa =d log EOLS. The group structure corresponds to the
e-product of bundles with connection and OX equipped with the usual
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. . . . v
differential d is the unit. On the other hand each Cech-cocycle comes

from a pair (&,V). We have (&,V) = (Ox,d) if and only if ¢ has a
non-trivial flat section, locally described by ua'ea with

kg F’ch=u°‘. and 0 =Vuu-ea= gawaga+dua~ea. Hence (§,V) = (Ox,d) if
and only if Eus=ua/1ig and ma= dlogua, that is, if (Eus,wa) is

(5,48) “‘a) for }\a = 1/ua-
If one looks at the exact sequence
H(x,0% — o) —> B (x,0%) —> u' (x,2))
X X X X

one finds thewell known fact that a rank one bundle with trivial first

De Rham Chern class has a holomorphic connection.

From now on we will identify the cohomology classes in ]1—11()(,05'2 —>Q;()

with the isomorphic-classes of bundles with connection. The
product fUg in (1.4, iv) defines ror two functions f,gEHO(X,O;‘() a
rank one bundle with connection, which we call «r(f,q).

Lemma 1.6. (see [4])
a)  r(f,9) e r(g,f) = (0y,d) for £,9 ¢ H(x,03) .
b)  r(1-g,q) = (0,,d) if  g,1-gen’(x,04.

v
Proof. We choose a Cech-cover such that loga g, loga f (or loga(‘l -q)

in part b)) are defined.

a) Then r(f,g) = rlg,f) is represented by

1 1
317 (109, f - log,f) 717 (log 9 - loggg)
EOLB) g « f [

=2 dg daf
wy 2i1r(l°gcxf p + log g

A flat section is given by

= 1 .
Aa = exp( 21T logaf logag).

b) To obtain a flat section one has to find Aou satisfying

4
57—(log_(1~g) - log,{1-g))
AB/)‘u - g23_.1r o B
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d>‘a =1
and = >=— log (1-g) 49 .
o g

)\a 2imw
The second differential equation leads to the solution

A, = exp(- 2—1; f log, (1 —g)ig)

(8. Bloch's dilogarithm function).

Since loga(1 -g) -log B(1 -g) is constant on the components of

UaB one has

AB/Au = exp(217r f(loga(1 -g) - lOgB(1 —g))ig)

(]

exp(ﬁ (logaﬁ -g) - log6(1 -g)lloggqg) .

1.8. From now on, we consider a compact Riemann surface Y, a finite
set of points S and j : X = Y - S —» Y. We define O*(*S) to be
the sheaf of meromorphic functions, holomorphic and invertible on X
and Q (log S) to be the sheaf of meromorphic differential forms,

holomorphlc on X and of logarithmic growth at S. If f,g¢€ HO(Y,OS’(‘. (+S))

the cocycle of r(f,g) is by (1.4, iv) in fact a cocycle in

03 (+s) —> al(log s).

For x€S 1let ord, : 0;(*5) —> %, denote the order of a zero
or pole and let res, : Q;(log s) —> (I:x denote the Cauchy-Poincaré
residue. We have resxd log = ordx,

1
and kernel ( res ) = Q

kernel {( ord ) = 0{2 v

xS xX€S

Altogether we obtain a distinguished triangle (see [6] or (2.2)
for this notation)

(1.9) oy Ledes (0y 109, ) — (0% (xs) 4109, 24 (log s))

[1]\ / (ord,res)

]z, = Ll ——‘1——>exp(2m) LeSLn:;[—ﬂ

X€S X€S

The components of the induced map

1 1 T« Tx[-11) = o
H (Y,O;(*S) —_— QY(log S)) — MW ( ’i_é_ls' g ;l{?é_ X
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v
are denoted by ax. If on a Cech cover {Ua} of Y (Eus’wa) represents

an element p of the left hand side, then Bx(p) = exp(2iﬂ-resxwa) for
any o with x € U . =
Lemma 1.10.

a) The natural map

1

© : (03(x8) —> 0l (log §)) —> Ri, (0% —> 23) )

is a guasi-isomorphism.
b) b8 _*r =T where T, is the "tame-symbol"

ordxf-ordxg ordxf.f—ordxg

T (£,9) =[(-1) e 1(x)

Proof.

a) ¢ induces a morphism of the triangle (1.9) into the triangle

% . omk 9.1 . * 1
CCY ——> Rj *TX Ledey RJ*(OX —> QX)
(1]

1] xi-1]

XES

being an isomorphism at two corners.

b) 3x° r and T, are multiplicative in both arguments. As for

Bx°r one has Tx(f,g)'TX(g,f) = 1. If both, f and g are units one
has Bx-r(f,g) =1 and Tx(f,g) = 1, From the definition of TX one
obtains TX(1-g,g) = 1. If t 1is a local parameter at x we can write

f=ut’ and g = v.t% for local units u and v. By multiplicativity
and (1.6,a) the proof of b) is reduced to

a) f a unit and g = t
B) f=g=t:

where we may assume that all poles and zeroes of t are in S. Since

1 t =11
r(t,t) o r(ﬁ,t) = r(tT.],t) = I(TIE) = (Oxld)
(by (1.6,b)) and since the same holds for Tx we have .
axr(t,t) = axr(t-T,t) and Tx(t,t) = Tx(t— 1,t). Hence case B)

follows from a). The explicit description of x(f,g) in 1.4, iv)
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tells us that for a suitable cover of Y - § w, = 5%? logaf Q%
-1 =1/ =
and res w, = 217 logaf(x). Therefore axr(f,t) 1/£(x) = Tx (f,t).
1.11. By Matsumoto's description of K, of a field one has
Ry(@(y)) = ¢(y)* GZE(Y)*/<9 ® (1-g),gex(y) -{0,1}> .

On the other hand, r induces a map
s 0 O ; 1o 1
E*(Y)%E(Y)*—éix; H (v S,O;(*S))szh (Y- S,O§(*S)) — éér; B (Y s,0§(*5) — QY(log S))

whose kernel contains all g e (1- g) (1.6,b). Therefore r factors
over

K2(E(Y)).

From (1.10,a) we have a commutative diagram

Ty

a

KZ(Y) _— K2((E(Y))

b
m
>

r
0 =T (Y,0% —> ql) —» lim1H1(lY 0% () — ol (log §)) L—ai
P Uy ¥ &y Uy y o9

& —

*
€x X

L

where the first line is the exact sequence obtained from the Gersten-
Quillen resolution (we just need that this is a complex, which is easier
to prove ) and the second line is the exact sequence of the triangle
(1.9). Therefore we obtain

Theorem 1.12 (Bloch, [4]) r induces a map
r: K, (¥Y) — H' (Y,C*) = o' (Y, 0§ — Q;)

(called the regulator map) .
Remarks 1.13.

The description due to S. Bloch of the regulator map may serve as an
introduction to the constructions of §2. There we will define complexes
F*(p) such that on an open Riemann surface
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Xx=y-s (X F(1) = B(Y,0%xs)) (2.12)

and such that
B2 (x,F (20 = (x,0% —> o)) =m'(¥v,0565) —> al(log §))
’ 4 X Yy Y = °

It will be even possible to realize F'(p) as a complex of sheaves in
the Zariski-topology, whereas for any algebraic manifold and q21
d =ud 1 (x,q P
mZar(X,E(p)D) mZar( Q X ) .

The reason why this construction is not necessary in the case of a
curve is just that the target group of the regulator map is

m?(X,F'(2)) and that 2>dim ¥ . (2.13)

§2 The Deligne-Beilinson complex

In this section we want to generalize the definition of the Deligne
cohomology in several respects. In particular we want to explain
A. Beilinson's "theory with logarithmic growth along the boundary" which
- using GAGA - can be viewed as an algebraic version of the Deligne
cohomology (see [3]).

For the applications to higher regulators described in this volume,
A. Beilinson uses cohomology theories for real algebraic manifolds. The
difference between the complex algebraic and the real algebraic theory
only comes in when one calculates examples or when one tries to deter-
mine the image of the D - Db - cohomology in the Hodge filtration of the
De Rham cohomology. Hence, as long as it is not stated otherwise,
the definitions and results hold in either of the following situations:

2.1. I. X ia an algebraic variety over { considered with the classical
topology and (, denotes the sheaf of holomorphic functions .

H° is the hyp;rcohomology viewed as a functor from the derived cate-
gory (of complexes) of Z-sheaves on X to the derived category of abelian
groups and - for a complex F' of sheaves -qu(x,F') is the g-th
cohomology of the complex M'(X,F°), as usual calculated by éech-cohomo-
logy or using injective resolutions.
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II) X 1is an algebraic variety over R . Then a sheaf (or a complex
of sheaves) F on X is defined to be a pair (F,oq) consisting of

a sheaf (or a complex) F on X(C) and an involution o compatible
with the complex conjugation F_ on X(C), i.e.: o:F Z» F_4F.

Of course, all morphisms and quasi-isomorphisms of complexes are
supposed to be compatible with the involution chosen, <o> = Z/2
operates on mq(x(m),F’) and on the complex H" (X(C),F') (in the
. derived category). If H'o>, ) denotes the group cohomology functor
on the derived category of abelian groups with o-action, we define

B (X,F) = H'(<o>H (X(C),F')) and HYUX,F') as the g-th cohomology
of this complex. In down to earth terms mqu(x,F') is the abutment of a
spectral sequence Hp(<o>ﬂHq(X(¢),F')) and, if F® 1is a complex of
sheaves over (@, IHq(X,F') are the invariants mq(x(m),F')o.

Examples:

On the constant sheaf T on X(C), there are two possible invoclutions:
F:L—F ,L =C acting on € as identity and o¢:C —> F &+

[-~ 0 -~

acting as complex conjugation. We always assume that the sheaf

on_X is the pair (&,0). Correspondingly, if Si(m)

complex of R-valued C° forms the involution chosen on

denotes the

AR (@) = Sx(0)°RE
is the one induced by o on the second factor. Restricting this

to the subcomplex Qi(m) of holomorphic forms we cobtain the involution
operating on the coefficients of a differential form by conjugation.

On the algebraic differential forms this corresponds to the action of
Cal(C/R) induced by base change from 1R to € on the algebraic K&hler
differentials. Denoting all those involutions by ¢ we remark that o

respects the Hodge decompostion of Hk(x(m),m) i.e.: O(Hk-p,p) =Hk—p,p-

2.2. Let u:A — B be & morphism of complexes of sheaves on X.
The cone of u is the complex

Cone(A” —2> B*) =C° := A°[1] & B"

u
with the differentials

AT g T 8, 492 g AT

(a,b) K> (-d(a),ula) +d(b)).
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a
The natural inclusion 8% —» C& and the projection

complete the triangle

N/
Ca

An arbitrary triangle in the derived category is distinguished, if it is

{where B 'c—> C& —>> A°[1] 1is exact)

the image of one of those just constructed. If one applies a derived
functor to a distinguished triangle one obtains a distinguished triangle,

For example if

A" ———> B’
[1]\ /
¢

is distinguished, then

H" (A") ———> T (B")

NI

H°(C*) (where H° denotes the hypercohomology
functor in the derived category)

is distinguished and - regarding the cohomology of the complexes
H*(A"), H (B') and I (C°) - one obtains the long exact sequence

cer —HIA) —> w43 — ) — BT ) — ...
(see [6] or [14] for a nice introduction).

Lemma 2.3. Let u, : A% —> B° and UYp : Aé —> B be two morphisms
of complexes and C° =Cone (A; [} Aé 217¥2, B*)[-1]. Then

uy -u, )
C* = Cone(A; ——> Cone (A} —=——> B*))[-1]
. Y2 LW .
= Cone(A2 —=£> Cone (A1 —> B"))[-1] . .
Proof. All three complexes are equal to A{ ] Aé ® B°[-1] with the -
differential §l-11 = -5 , i.e.:

(a, 18,.b) I——>'(—d(a1 ) ,—d(az) sy (a1) -u,(ay) + d(b)).
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Corollary 2.4. Using the notations from 2.3. we have three long exact

seqguences:

a) —ulc) —ud) emi) —wieE) — 8 () —>

b) —md(c) ——>]Hq(A1.) —> w3 (Cone (A; ~2— 8*)) —> mI* T (¢*)>
c) —mnl) —ml;) —-->IHq(Cone(A1' 158y —s w3 oy,

2.5 Let X be a n-dimensional algebraic manifold (over € over R) .
A "good compactification" of X is a proper algebraic manifold X with

an embedding j : X —> X such that D = X - X is a normal crossing
divisor (i.e.: locally in the analytic topology D has smooth components
intersecting transversally).

Let Qi (log D) be the De Rham compiex of meromorphic forms on X,
holomorphic on X and with at most logarithmic poles along D. We have
a filtration of Q§ (log D) Ly subcomplexes

P = (0 — Qg(log D} —> Q%”(log D) — ... —> sz%(log D)).

The properties of logarithmic forms needed are (see [7]):
a) Since j is affine Rj*Qi =j*9i. There are quasi-isomorphisms:
R3j, T —> Rj*Qi = j*“k -« Qﬁ(log D)
and hence
#dx,0) = w4 (X, 05 (100 D).
b) The natural maps
T :lHq(i,Fp+1) ——>2Hq(§,FP) and
P D D
T :qu(i,Fg) ——9-mq(§,9§(log D)) are injective.

Hq(X,m) carries a mixed Hodge structure, and the Hodge filtration
Fqu(X,m) is given by 1Im(t1). Moreover the cokernel Hq(X,E)/Fqu(X,E)
of T 1is the same as mq(i,ﬂ%p (log D)) where Q%P(log D) denotes
the complex
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0 —> 0z —> sz% (log D) —> ... —> 95_1(109 D) — 0.

The cokernel of o is HYP(X,0P(log D).
X

c) By GAGA, mq(i,Fg) can be calculated using the corresponding
complex of algebraic differential forms in the Zariski topology.

d) mq(Y,Fg) is independent of the good compactification chosen.

Definition 2.6. Let A be a subring of TR and A(p) = (2iﬂ)p‘A c €.

The Deligne-Beilinson complex (D - B - complex) of (X,X) is

A(p)v = A(p)D,i = Cone (Rj,A(p) © Fg £l Rj*Qk)[-1] where €
and 1 are the natural maps and where Rj*Qk
a way that both maps exist (for example by the direct image of an

is represented in such

injective resolution of Qi).

If f : Y —> X is a morphism of algebraic manifolds we can choose
good compactifications Y and X such that f extends to f:Y¥ — X.
Thereby we obtain a morphism E*:A(p), 3 —> L,A(P), 3 .
D,X 0,Y

2.7. Other descriptions: By (2.3) we may write as well:

A(p), = Cone (Ff —> R, (Cone (A(p) —> 23)))[-1] or

A(p), = Cone (Rj4A(p) —> Cone (Fg —> Rj*ﬂk))[—1]
Using the second description one sees immediately that %(p)v X is

quasi-isomorphic to the complex Z(p) defined in (1.1). A

D,an

quasi-isomorphism o : Z(p) —> Z (p) is given by

D,an DX

Z(p) —> Oy —> ... —> Q§—2 — @l 50

sol e 9p-1¢ ’

o

by

p-2 PeoP~1 P+1gop
Z(p) > Oy fqi cee > 0y _E;:T> 0399y :3;_> Al

for up(m) = (dw,w)-(—1)p and ai(m) = (—1)i~m . The proof follows
easily since Gp_1(n) = (o,dn) and ép(w,n) = (-dy,-yp+dn) .

Lemma 2.8. qu(i,A(p)D) is independent of the good compactification -
chosen.

Proof. IY(X,A(p)D) is one edge of a distinguished triangle whose other
two edges,
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B (X,Rj,A(p)) ®H' (X,F5) and H'(X,Rj,0;),

remain quasi-isomorphic under <t* for a morphism 1 : X' — X

between good compactifications of X.

Since each manifold over € allows a good compactification we
can define:

Definition 2.9. Let X be an algebraic manifoléd (over € or ) .
Then the Deligne-Beilinson cohomology (or D - b cohomology) is

defined as
HE (X,a(p)) = EI(X,a(p)))

) Keeping in mind that Cone(Fg —> Rjufly) is quasi-isomorphic to
Qép (log D) and that Cone (Rj,A(p) — R30y) = Rj, C/A(p) we can
rewrite (2.4) as:

Corollary 2.10. There are long exact sequences
a) — Hlx,ae) — 12xamE) e FPRYx,0) — Blxo —

— H%+1(X,A(p)) — ...
p) — 8lx,ap) — 84x,a0p) — 1,0/ — 11 x,80) —
o) — #lx,a(p)) — FPEIx,0 — B4x,0/a0p)) — 5 x,a(0)) —

Proposition 2.12,

i) HI(X,A(p))

0 for g=£0 and pz1

s 1
ii) HD(X,A(1))

0= . 0= .1
{feHn (X,j*OX/A(1)); af € H' (X,0x(log D))}

iii) Let O(X);lg denote the group of algebraic invertible functions
on X. Then there is a natural map

ot 0K, > Hy(LA(N)).

For A =% the map ¢ 1is an isomorphism.
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Proof. Since HY(X,T/A(p)) =0 for q<0 and FPHO(X,T) = 0O
for pz1 i} follows from (2.10,c).

ii1) We have a morphism of complexes

~ 1 .
A(1) := Cone(FD —> j,Cone(A(1) — QX))[—1]
(1) = Cone(F] —> Rj,Cone (A(1) —>05))[~1]

By (2.4,c) we obtain

0,c . 1,27 1.1 1o .
0 —> H (X,j,L/A(1)) — H (X,A(1)) —> F H (X,0) —> H (X,3,C/Aa(1))

| I | f

0 —> Ho(x,m/AH)) — H;(X,A(‘I)) — r'd’ (x,c) —> u' (X,C/A(1))

and - using the five - Lemma we find n to be an isomorphism.

A(1) is quasi isomorphic to

0 —> 0%(log D) @ 3,0,/A(1) 2> 02(log D) @ 3,0% —> ...

(w,f) F—— (+dw,+w-df)

and H;(X,A(1)) is given by Ho(ker A) .

iii) The inclusion Z (1) — A(1) induces H;(X,Z(1)) — Hé(X,A(1))

and we just have to consider % = A.

Since
OX/E(1) 4. Q; commutes,
exp d log
*
OX

and since ¢E€ HO(Y,j*0§) is meromorphic along D if and only if
d log wé’HO(?,Q%(log D)), we obtain from ii) that

H;(X,Z(1)) = {mE:HO(i,j*O§); ¢ meromorphic along D}.

By GAGA, the meromorphic functions lim HO(Y,OX(v~D)) are the same

as the algebraic functions. v

2.13. Remark. As in (1.1) one defines
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Bl L Ae) = BUX,Ap) — 0y — ... —>Q§'1)

which - by (2.7) - is the same as ]Hq(X,A(p)DIX). One has the

natural map

HJ(X,A(p)) —> HJ _ (X,A(p)).

This map is - of course - an isomorphism if X is compact, but also

if p>dim X, since in this case
A(p)v = Cone (Rj,A(p)— Rj*ﬂ;()[-ﬂ = Rj*(A(p)Dlx)
However, for example for g=p=1 and A = Z, we have just seen that

00X %y, = Hy(XLE(1) Sp> By (X,8(1) = B (X,08).

2.14. The "real" D-b-cohomology

Let S)'( be the complex of TR -valued ¢® forms over X(C) and
A>'( be the complex of C-valued ¢® forms. Since T = R (p) ® R(p-1)

for all p, one has maps

1Tp_,] QX — AX = SX a]R( R(p) @ R(p-1)) —> Sx(p—1) s = SX ®3RIR(p—1) .
In the derived category those are the same as the projections

C —> IR (p-1). Therefore we have quasi-isomorphisms
Cone (R (p) —> Q)'() —_> S)'((p— 1) .

We denote the induced maps Fg — j*Q)'( — j*S)'((p -1) also by
LSNP Since Rj*S;((p—U = j*S)'((p—H, (2.7) implies:

p
~ - _

Lemma 2.15. Let ]R(p)D := Cone (FB—L1> j*S)'((p—1))[—1], and let
Pp ]R(p)v —> R(p), be the morphism given by pp|Fg = id,

= L g = . Then is a quasi=isomorphism,
pimrip) T 0 @ Ppirjas T Tp-1 °p 4 P
Gorollary 2.16.
a) For gsp H%(X,]R(p)) is the g-th cohomology of the complex

Va4

1% (x, R(p) ) -
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b)

1 S| P N 0 1 "o, 0= . 1
Hy(XR(1}) = {n€H (X,348g); dn lies in Im(H (X,0%(log D)} —> H (X,348,)) }
0= . &0 0= A1
= (N€H (X,3,8,); 4neH (X,9z(log D))},
More precisely, if dn =1To(w) then dzn = —lgo .

c) If dim X = 1 then -
2 1
HY (X, R(2)) = H' (X, R(1)) .
—~ .
Proof. :IR(p)D is the complex
0= 5,501 = ... > 3,5 2-1) >0B(log D) @ 3455 o-1) " (1og D)3, (1)

where j*Sg(p- 1) is in degree one. Since all the j*S;;(p- 1) are
acyclic one obtains a).
For p=g=1 a) implies that H;(X,IR(H) is the kernel of

w0 (i,ﬂ%(locy D)) o & (i,j*so) — &° (?,Q%(log D)) & HO (i,j*s;{)
(0,m) — (do,+m1@ ~dn).

If dn-= Ty then dzn = % and d¢ = 0, and we obtain the two
descriptions of HJ(X,R(1)) given in b) .

~"
c) is obvious since on a curve F§=o and R(2),= 3,5;(1[-1] is

quasi-isomorphic to Rj, R(1) [-1].

2.17. Remarks.

i} The isomorphism between the two explicit descriptions of
H;(X,]RH)) obtained in (2.12,ii) and (2.16,b) is given by
f b— ‘lTo(f) =N and af = 2dz(’lT0(f)).

ii) Using the language of currents ([11], Chap. 3.1), one can rewrite

(2.16,b) in a slightly different way. For example, if X is a curve and

S = X-X, we write a, = Resx(Zdzn) = Res (dp) for x€S. Since

dzn e n° (f,ﬂ%uog D)), n has logarithmic poles and both, 1n and dzn, -

are integrable., If Td n denotes the current associated to dzn the
z
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generalized Cauchy formula implies (loc. cit.)

G;Tq , = 2im ] Res (d,n)é, = im ] a 6,

z X€S(T)

where GX is the Dirac distribution. On the other hand, this equality
implies that dzn has at most logarithmic poles. Hence

H;(X,]R(H) ={nEHO(X,S§);n integrable and d ir ) a)s.} .

—T = X
z dzh xes (o)™ ¥

§3 Products

The aim of this section is to extend the definition of the product
given in (1.2) on Z(p), an to the full D - b complex of a pair
r

(X,X), where, as in § 2, X is a good compactification of X (See [3]).

3.1. Example: We define

UO:A(p)D|X ® A(q)D|X —> A(p+q)D]X

Xy if x€A(p), vy€A(q)
Xy if x € A(p), yEﬂ)'(
by x Uy y=4xay if xe€fF® , yerd
XAY if XEQ)'(, yqu

0 otherwise
where x (and y) are supposed to be a local section of A(p), FP

or QX For A = % this product is compatible under the quasi-isomorphism
o described in (2.7) with the product defined in (1.1), i.e.

¢]
z(p)D,an ® Z(q)D,an - %(p+q)v,an
(o ®a) l o
- UO
Zpix @ 2@y gy —— Z(p+q)v|x

is commutative.
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Definition 3.2. Let &€ IR. Then we define a product

U, : A(p)D ® A(q)D — A(p+q)v by the following table:

a £ w

d q g
. 0 1- a *w
p % " %q (- adag ey
£ 0 £ Af deg £
- p . s f AW
P P q (-1) o p ¥
mp a-wp-aq (1-d)prfq 0

representing elements of

q .

A(q) F3 2%

A(p) A(p +q) 0 QX

p p+q .

F 0 F) oy
2y 25 o . 0

concentrated in one degree.

3.3. To make sense out of this definition ofa product one should inter-
prete this table in the following way:
On X we have the products

A(p) @ Alg) — A(p +q)
A(p) ®Q)'( —_— QX
QX ®A(g) —> QX
j*Fgan)'( — 25
° sxpd .
9y ®J*Fl — o

as described above. They fit together to define a product

U, :Cone (A (p) ej*Fg —> @5) [=1] @ Cone (a(q) ej*Fg — 2 [-1] —

—> Cone(A(p+q) —> Q}'() [-11.

62




One has to verify for elements vy and y' of degree u and p!

R 1 1\ ¥ ]
that Slyu, v'y =y u v+ Dy U ey

Here again 6§ 1is as in (2.2) and -6 = §[-1] is the differential in
the cone, shifted by =1 . The left hand side is

. 0 1= d
a a { oc)ap wq

(-1)F-0 af_rw_+
(—1)2”oc £ pAdw
P q

T-a)d £+
(cx)wp/\q

o « a dw p=1
- - af 0
g p [{(1-a) (-1) vy q

whereas the right hand side is

o ‘ap . aq (1—0¢)ap . fq 0
- . - . (= - a
+(1 ()t)ap aOJ +(1 OL)ap ( fq) +(1 a)ap wq
oc(-fp) . aq (—1)“;10L(—dfp)/\mq
2 _ [
+(=1)“Hq - £, * ag +ENFaf L adwy,
o aq- dwp (1—0L)du)pqu .
-1yHF - -af
+ 0 +(-1)" (1 oc)wp/\( q)

Here the entries live in
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capdy B pt=1
a(q) (3*Fp) 2y
u!
A(p) 0y 0 s .
I T ptp!
(3*Fp) 0 Sy “
k™’ ak Q)F;*“' 0

Taking injective resolutions of , Al ),Q)'( we obtain a product

Fp
A(p)v ® A(q)D —> RjxCone (A(p) ® j*Fg — Qi)[—1]@ Rj*Cone(A(q)ej*Fg —_
—_— Q)'()[-1] —> Rj,Cone(A(p +g) —> Q)?[-H

We complete this product to a product

A(p)D ® A(q)v — A(p+q)v = Cone(Fg+q —> Rj,Cone(A(p+q) —> Q}'())[—H
by taking the usual wedge product Fg ® Fg — Fg+q . This is possible
since - by the following computations - the wedge product commutes with
the differentials in A( )D.One has

s £) = [-df f--1p‘-/f df _,-f Af
(Fpr fg) = [=dfpafy = =1) p A AEg A Ey]

: p+q © e - T _ P .
in Fp '~ @ Rj,Q, whereas Sfp [ dfp, fp] € Fr, & RJj,0

D
6fp U fq = [—dfp A fq,-—(1 —oc)fp A fq] and similarly

X !
[+

(-1)”fp UNKE [—(-1)”fp/\ dfq,-(—nz”afp/\fq].
3.4 Remark. The quite complicated description of the product is

necessary, since at this stage, we tried to avoid the more formal

language of sheaves on pairs of topological spaces. Nevertheless, the

reader should compare the defintion with the definition of the tensor- -
product of those pairs, given in (4.5 - 4.8). From now on, we just work

with the multiplication table (3.2) to verify the properties of the -
product, and we leave it to the reader to distinguish whether a given




expression lives on X or on X .

Proposition 3.5.

a) U1/2 is anti-commutative. More generally, if y and Yy' are
concentrated in degree p and p' then

Yyu ¢ o=t DER Loy

o (1—u)Y :
b) U0 and U1 are assocliative.
c) The element (a0 =1, f0 = 1) in A(O)D is a left-identify for

U0 and a right~identity for u1.

d) For a,B ¢ IR the products Uy and UB are homotopic.

Proof:

We choose elements Yy and vy' 1living in A(p)D and A(q)v in degree
b and p'.

a) is obvious from the definition.'F?r example if
- s (4xpPy MK (- B
Y fp € (j FD) and .y wq € Qx , then
Vo (=M ooy BFE (R PPN TR T
YUuY (-1) afp Amq (-1) awq Afp (-1) Y U(1-u)Y

b) Let Y" be an element of A(r)D . Using a) it is enough to con-
sider UO' If y,y' and v" represent all the three elements of A( )

or all the three elements of Fé ) the associativity is obvious. If

two of the elements belong to Qk , then (Y‘bYI)UOY" = YUO(Y'UOY")=0.

The same holds if two of the elements are belonging to A( ) and one
to Fé ) or one to A( ) and two to Fé ). Since 0o =0 both
UO'Q'@A( } and UOIF( )pq- are zero. Hence the only cases left, where

one “of the two sides can “be nonzero, are (ap,aq,wr), (a 'fr) and

w

P’ q
1 " 1] n

(mp,fq,fr) and both, (y on )UCY and \(U0 (y UOY ) are

ap.aq-mr, ap'wq Afr and wp qu Afr respectively.

c) Again it is enough to consider UO and (1,1) on' is given by
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f w
3y a q
1€a(0) 1-a, 0 1m0y .
.0,0 _
1 €(FD) 0 (RESEES 0

d) The homotopy between U, and US is given by

h (ARl @ Alq)pf—> (alp + q) ) ¥
_iyM (g = v p=1 ' pr=1
hyey') - a[( N%a-B)yay if YEQX and vy EQX

Lo otherwise

where - as usual - vy and Y'

each in A( ), Fé ) or QX - We have to show that

are elements of degree pu and ',

YUY - Y Ugy' = (h8 +8h) (v ') =h(Syey') + = *nlye sy +s(hlyey")).

The left hand side is given by

0 0 - .
(B 0L)a1p wq
0 0 (-1)“(a—s)fp/\wq
(ot—B)wp-aq (B—oc)wp/\ fq 0 in the notation of (3.2).

For the right hand side we remark first that h(Syevy')

=0 if
Y'#mq,h(y@éy')=0 if Y*“’p and S(h(yevy'))=0 |if
(vy,vy") # (Lup,wq). We have
hs PPN S B _y 2 SRRY -
(hs + Sh) (wpwq) -1 (o B)dprwq+ (=1)"" (o B)wp/\dcuq+ S((-1) (Och)prwq)—O,

(hé + Sh) (aptqu) h(éap@wq)=(—1)(a—e)ap/\wq B

(hs + 6h) (£ @ u,) = 1PN - p) (=£5) Aw B

(B8 + 8h) (b, 02) = (~1)Hh(w @ 8a) = (-1)%* (o - Bluya and
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., . = (=1y2M g o -
(h&48h) (wy® £0) = (=1) o= B, (=£).

3.6. Let eA:A(p)p —> RjyxA(p) and
€p A(p)v —> FB be the projections

€ €
gq t AlD)y S N Rij*A(p) —> RJ,N; and
€

. F P 1 s o
eé : A(p)v —_—— FD —_— RJ*QX .

By definition of A(p)D (2.6) €q ES'Z is the composition of two maps
in a distinguished triangle and hence €q = ss'z is homotopic to the zero

map. We define products

€. ® id
Uy ¢ Alp)y ® Ri,Alq) —2——> Rj,A(p) @Rj,A(q) —=> Rj,A(p+q)
a M o g p+q
UF : A(p)D@FD ————>FD0FD———>FD
and
€,® id

Ug ¢ A(p)v @ R]*QX ——> Rj,fy © Rj, 2y —— Ri,0; .

X

Since U can - up to homotopy - also be defined as

Q
el ®id N
A(p)D ® Rj*ﬂ)'( —_— Rj*Q}'(s Rj*Q)'( ———> Rj,0

X

the morphism
Ri,Alq) & 73 £l 5 R3Oy

is compatible with U and, up to homotopy, with U

a'Vr Q
1 - ' Ll - ' ]
Moreover EA(Y on ) =¥y UA EAY and EF(Y U0 Y')y =y UF eFY as one

easily verifies using the multiplication table (3.2).

For the natural map n : Rj*Q;( —> A(q)v one has as well
Y by n(wq) = n{y Uy wq). Altogether we obtain:

Proposition 3.7. In the triangle
Rj,AlqQ) @ F) > Ry 9

.. D\———/m

A(q)p
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the operations of A(p)D cefined by UA'UE’UQ and U0 are compatible

with the morphisms.

3.8. Since A(p)v has a flat resolution (of finite length) over
Z ([6] V,6) one has a map A(p)v ol A(q)D —> A(P)D ® A(q)D . Therefore
one has for all o € IR a product

u, : A(p)v o A(q)D —> A(p+q)0

and - by the usual constructions from homolcgical algebra a prcduct on
the hypercohomology. By (3.5,d) this product is independent of o
(3.5) and (3.7) give immediately:

Theorem 3.9. U, induces a product U , making peq H%(X,A(p)) into a
=BedL el 9.7, p
bigraded ring with unit. For 7y€ H%(X,A(p)) and y'E€ H%'(X,A(p')) we
1
have yUuUy'= (_1)qq Y' Uy. Moreover one has an operation of

e H(x,a o e , FPpd q i
0% ! (p)) on p%q (X,A(p)) p?q H*(X,C) and OH*(X,T) coming

via and € from the standard products. The éxact sequence

€artR Q

— Hjar) — B xae) o i, — 1xo — 13 (x,a0))
is compatible with the operations.

3.10. The product on the "real" D - b cohomology
We return to the notations introduced in (2.14). On
Iﬁ(p)o = Cone(Fg “Tp-1, j*S%(p—1))[—1] one defines a product

~ o~ T~ o~
U : R(p) @ R(q); —> R(p+q),

given by
fq °q
deg £
-1 Prm fas
£5 £,0 g (-1 PP 5q
£ 0
sp 8p A Tefqg

Lemma 3.11.

a) U 4is a morphism of complexes.

i i ) ® (where
b) pp+q° U, 1E\Eomotop1c to U o (pp Dq)
Pp + Riply —> R(p)p is the quasi-isomorphism given in (2.15)).
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Proof: a) For vy and y' of degree p and p'

' '
s(yay') e FEF DI g g b B pig-1)

is (again the differentials are written as &[-1] = =5 )
2

~Gf_Af - (-1)ME_Adf 0,(-1)Pr_af +(=1)%Fr £ Ad
[pAq()pAq' [,()ﬂpp/\sq()npp/\sq]

- £f Af

prq-1Fpfq ]

[0,ds.am £ +(~1)* s an af 1 0

P g949q P 9 q
whereas
Syuy' 1is
-af_Af_, -1__.E £ =) M ar
[-dfpn g ~Tpoqfp A Tgty] (0,= (=17 "mpdE, Asy]
{0,ds_am_£f 1] 0

p 9 49q

and (—1)”y Udy' is

(- (-1)*2 rat -(—1)2”npf NET R [0, (-1)**n_£ ads

q’ p g-1"q PP q]

_1yH -
[o,(-1) Sp A ( ﬂqdfq)] 0

Since

£ Af)= £ em £ £ 4m _£)) =m_.f £ om £ £
Tprg-1Ep" B = Mg (Tpmafp* Tpfp) A 1P * Mg Bg)) = Mpoqfp A TPt Tpfph Tgnfy

we obtain a).
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b) The homotopy is

-— [
(—1)”17 'YATT_.IY' if ycsz“1 and Y'EQ; 1 “
hiyey') = { P d X
0 otherwise .

We have to verify that

i [ ( "y = ' R 1 '
opY Upgy PpsglY g Y') =h(dy@y') + (1) h(ye éy') + s(hivey')).

The left hand side is (see (3.2))

0 0 - :
a, " M9
~1y M
0 0 (-1) npfp ATt
£ -
o | T-1"p " Ta'q 0
—Trp+q_1 (wp A fq) -

As in the proof of (3.5d) all the terms occuring on the right hand side -
are evidently zero except

(a6+8h) (wou) = -1k (m G ATy w) + 1) 2 B Tm1dg) + CDH @0 @ g _qug) <0,
(hé+d8h) (ap@ wq) = h(éap ® wq) = (—1)ap-¢rq_1uuq

(h$ + 8h) (fpo mq) = (-1)u+1'np(—fp) A Tam1Yg

(88 + 6h) (uy @ ag) = (-1)¥h(a) o Sa) - (—1)2u1rpwp'7rq_1aq =0

(h8+sh) (mp@fq) = (1) WA (—fq) T M1 (wp/\fq) + np_1wp/\ﬂqfq .

Example 3.12.

—
Let [¢,n] and [¢',n'] represent two elements of :IH1 (X,]R(1)D). Then
[cp,n]?[w',n']=[wAw',nAﬂ1®'-Tr1w/\n']. -

As we have seen in (2.16)
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Hy (X, TR(1) ) = {n €80 (R,3,50); a,n €% (%,9%(log D))}

where ¢ corresponds to 2dzn. Hence the product of two elements
n and n' is given by
't o, .

(4-d nadn',2-(n-w

44 n' = ntemd on)l

. 2 = _ 2
in H (XJR(Z)D) = HD(XJR(Z))-

In particular, if dim X = 1 and therefore Fg =0, ntn' 1is represented
by 2wnemdn' - 2entemdn in HO(x,sp(1))/ar’ (x,89(1) = B (x,R(1) .

§ 4 Relative cohomology

In [3] the D - b - cohomology is defined using relative cohomology.

This approach, giving m'(i,A(p)D) as a derived functor on the category

of sheaves on pairs of topological spaces, applied to (Fg,Rj*Cone(A(p)—>Qé)),
will be needed in § 5 to define a D - b - complex on X in the
Zariski-topology. One also defines a tensor product on this derived

category, to obtain the product for the D ~ b - complexes in the
Zariski-topology. In fact, using this tensor product one can simplify

the definition (3.2) and clarify the constructions described in (3.3).

4.1. Let j : T —> T be a continuous morphism of topological spaces.
A sheaf on (T,T) is a triple FT := (F, F@®) where F 1is a sheaf on

’
F

T
T, F is a sheaf on T and ¢ —> j,F a morphism of sheaves.

Correspondingly a morphism a : F — F% T is a pair of morphisms
7

_ _ T,T ',
a:F —> F', &t F—> F' such that oap=0¢'c.

4.2. Let Sh(T,T) denote the category of sheaves on (T,T). It is easy

to see that Sh(T,T) has enough injectives. For example: if T and

I are injective sheaves on T and T respectively, the triple

J= =T =T® 3,1,3J=1, pr,) is injective in Sh(T,T). If Fg

T,T ) - T,T

is any sheaf we can find 7,7 such that 1 : T<» 7 and p :F &—s I.

Then (1t ® pep,p) defines an inclusion FT T s JT oo Therefore each
r ’

sheaf has a resolution by those "special injective sheaves".

4.3. Consider the functor

0

r Sh(T,T) —> Ab defined as

FO(F,-I.-,T) = er (10 (T,F) 2> w0(T,F)1).
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Obviously FO is left exact. If D+(T,T) is the derived category
of complexes of sheaves in Sh(T,T), bounded below, we define

+ +
RT" : D (T,T) —> D (Ab)

to be the derived functor of FO .

Proposition 4.4.

a) If F%,T = (F,F+¢’) is a complex of sheaves on (T,T) then
— Rog
RF'(%,T ) = Cone®" (T,F’) —— W (T,F))[-1].
b) If X 1is a good compactification of the algebraic manifold X and
if A(p)D X,X denotes the complex (Fg,Cone(A(p) 55 Qi),—l) on

(X,X) then H%(X,A(p)) is the g-th cohomology of

RI(A(R)y g, )

Proof. It is enough to verify a) for the special injective sheaf

JT T defined in (3.2). On the right hand side of the eguality we have
r

the cone of

B (T,7 = 8°FT) e &° N - 8° ’
I =@ e 8%r, ) —Zmor, = 80,0, .

which is quasi-isomorphic to HO(T,T). On the other hand RI"(Jg ) =RI‘0(JT =
Pr— r ’
HO(T,Z) as well.

b) By (2.7) H%(X,A(p)) is the g-th cohomology of
H" (X,Cone (Fg = Rj,Cone(A(p) —> 2V [-11) = Cone " (X,FR) —> " (X,Cone (a(p)—> Q) =11,
4.5. TFor two complexes of sheaves

F' = - . . R = e - R
0 (F°,F,0°) and GT,T (G",G",¢")

we define the tensor product F% o ® Gé o to be the complex (E°,E',n")
1 1
with

E"=F ®C and (for 0" = p* o id - id & y°)

Cone((3*T* & G*) ® (F' ® 3*T') —2> F'eG")[-1].

m
U}

The connecting morphism n is - on the level of sheaves - defined by
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nt= ni i o Yhewls i) 01: B — 3, (5*F e Y 0 3, (Fe 3l @ (5, F ey, .

- Since pl - 1t is the zero map n' commutes with the differentials

and n° is a morphism of complexes.

4.6. If C(T,T) denotes the category of complexes of sheaves on (T,T)
and K(T,T) the corresponding homotopy category we have thereby
constructed a bifunctor e . C{T,T) xC(F,T) —> C(T,T). Since the o
product respects homotopies it also defines the bifunctor

® : K(T,T) x XK(T,T) —> K(T,T). For a fixed complex ﬁf,T ’

Ef,T ® respects triangles and if both F and F are flat FT,TG maps

exact complexes to exact ones. Hence FT,T ® respects quasi-isomorphisms
in this case. Sh(T,T) has enough flat sheaves (for example, if P on

T and P on T are flat and P > F and P £»F both surjective,

(P, 3*P ® P, id ® 0) maps surjectively to (F,F,9) via (9,0 o D0 + p)).

The standard machinery of derived categories and derived functors
shows the existence of a left derived functor

o" : D (T,T) xD (T, T) —> D" (T,T).
(see [14], for example).
From now on we assume that T and T have finite cohomological
dimension. Then both RI'* and o" are defined on the derived category

of bounded complexes.

4.7. If Hiz P = (H:,H ,v) is a third complex of sheaves, a pairing
+ 7

u FT,T ® GT,T —> HT,T (and - using flat resolutions as in 3.8
Fe

- L g~ 3 i i i
T,T ® CT,T — HT,T) is given by a pair

U? : FP e G —> H® and

Uy : Cone ((3%F" @ G*)B(F" 0 3*C°) &> F* 86" ) [-1]—> H°

compatible with n° and vy° . Taking the special injective resolutions
described in (4.2) one obtains from U a pairing

Uz RF'(Fé'T) ® RF'(Gé,T) —> RT (Hé’T), and

. . L . . . .
U : RT (FT,T) ®  RT (GT,T) —> RT (HT,T)
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4.8. If - as in (4.4,D) - we consider on (X,X) the complexes

F = A(p)

X, X Og,x = Ay g, x and fy o = Alpraly 3 ¢

?,X,x ' %,

the multiplication table (3.2) defines pairings

L
APy x,x © Ry x yx —> APy g ¢

In fact, the first calculation made in (3.3) shows that Uu,X is
well defined and the second part of (3.3) shows at the same time that

Uu,i is a morphism of complexes and that Ua = (Uu,f’ua,x) is
compatible with the morphisms n°® from (4.5) and Y'=-1 . Hence (3.2)

defines a product
. L . . _
RT (A(p)D,i,X) ®  RT (A(q)D,i,X) — RT (A(p+q)D,X,X)
which - on the cohomology of the complexes - coincides with (3.9) and

is independent of «

§ 5 Extensions and complements

5.1 The definitions and properties of the D - b - cohomology given in
§2 and §3 carry over to the case of separated simplicial schemes Z. of
finite type over

As in [8], 8.3, we can find a diagram X.ei:>x.-él»z. where p
satisfies cohomological descent and where X. is proper and smooth

and D. = X. - X. is a normal crossing divisor. We define H%(X.,A(p))
as the hypercohomology (in the sense of cchomology of simplicial schemes)
of Cone (Rj4A(p) & Fg.~—+ Rj*Qk_)[—1]. As in (2.8) one obtains
the independence of H%(X.,A(p)) of the compactification X.

5.2 If X.dls x. —R'5 2. is a second diagram and \
(t,1) : (Xf,x:)——é(i.,x.) a morphism, compatible with p and p', one
knows, that Tt* is an isomorphism on the cohomology with values in A(p)
and . Moreover {(loc, cit.) T, is an isomorphism on the F-filtration
on the DeRham cohomology. By (2.10, a) 1% : H%(X.,A(p))—~>H%(X:,A(p))

is an isomorphism as well. Since two diagrams as in (5.1) are dominated

by a third one (loc. cit.) we can define:
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Definition 5.3. The D - b - cohomology of 4. is

HJ(Z.,A(p)) := HF(X.,A(p)).
Remarks 5.4. If f : Y, — 2%, is a morphism of simplicial schemes
one has - choosing the smooth hypercoverings and compactifications
in the right way - the obvious map

£% : HI(Z.,A(p)) —> HI(Y.,A(p)).
The exact sequences (2.10) exist as well for simplicial schemes, the
definition and the properties of the product remain unchanged. As in
(2.1,1II) the D - b - cohomology exists as well for simplicial schemes

over 1R.

5.5. Sheafification of the Zariski topology

Theorem. Let X be a smooth algebraic manifold.

a) There exists a complex A(p)v zar of sheaves in the Zariski topology
r
on X such that for all open subvarieties X' < X one has

q = 19 (x!
HD(X',A(p)) H (XZar’A(p)D,Zar) -
b) We have natural morphisms
. « 0% _
cq ¢ A —> A(O)D,Zar and cq : ox,Zar[ 11 — A(1)D,Zar

(c1 induces on X'c<X the morphism p described in (2.12,1iii)).

c) In the derived category of sheaves in the Zariski-topology we have
a product

L
A(p)D,Zar @ A(q)D,ZaJ:' A(p)fq)D,Zar
inducing on X' c X the product defined in (3.9).
Proof. Let V be the category of complex algebraic manifolds (or
real ones - in case 2.1,II). We denote by I the category of pairs

(V,v), where ¥V 1is a proper complex (or real) algebraic manifold and

VeV the complement of a normal crossing divisor.
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We define a sheaf F,,, on I to be a collection of sheaves

Fiy = (?V,Fv,wv) on (V,V) (as in 4.1), together with a morphism

r — [
£ i FGiFyiey) — (£4F G/ ExFyrfa0y) for each morphism .
£ : (U,0) — (V,V), satisfying (f.g)* =g*ef* and id* = id. One

denotes by Sh(ll) the category of sheaves on II. As in (4.2) one finds

that Sh(ll) has enough injectives. If o:I —>  is the "forget-functor" .
¢((V,v)) =V, one defines for F,,, € Sh(I) - the direct image

O4Fere to be the Zariski sheaf on V associated to the presheaf

X 1= _Lin . 0
&;x) e T (x)

X

where FO is the functor described in (4.3), and where the limit is
taken over the direct family 0_1(X) of all good compactifications of
X. 0, : Sh(I) — Sh(V) is left exact. Let Ro, : D'(I) —» D' (V) be
the derived functor. Since

0 _ . 0

H (X’G*(Fi,x)) = limp T (FX,X)

-1
g ' (X)

one has for a complex F;,, of sheaves on I

HY(X, RO, Fesy) 5 lim RIT(Fo
= !
g (X)

%)

Let A(p)D «. « De the complex of sheaves introduced in (4.4,b).
14 ’
Then we define A(p)D,Zar 1= Ro*A(p)D’*,* . From (4.4) and (2.9) one
obtains

= 14 q = 14 % -
B (K AP ) = Lim  RI¥AE), 2 ) = Lim MA@, = B (X,AR) .

T x
b) Since A(O)D is quasi-isomorphic to the constant sheaf & .
H%(X',A(O)) = A for each connected open subvariety X' of X and

we obtain ¢y - Similarly, by (2.12,i) we can describe A(p)p zar for
r
P>0 by a complex starting in degree 1 and (2.12,iii) gives on each open
subvariety X' c© X the morphism
1) P

: ' = 10 = 0 (%
oy O Vi1g = B (g 0% 50} —>H Rpap B 7o) = Ker(d (xZar,(A(nD’ nay’

Hxs ANy 50 D).
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c) By (4.8) the products U from (3.2) define products on the com-
plexes A( ), v . for all (X,X) €. The product
r ’

L
A(p)D’*’* ® A(q)D,*,* — A(p+q)D,*,*
in the derived category gives

L -
ARy pop 8 RQ)p 70 —> RO BE), | BA@) , ) > RO, BER), ) = ROk, 4 -

§ 6 The cycle map in the De Rham cohomology

In [10] one finds the definition (due to P. Deligne) of the class
of a cycle in the Deligne cohomology. Before describing this construction
in a slightly modified way (§ 7) we recall some of the. properties of the
cycle class in the De Rham cohomology. Especially we will need that
those cycle classes behave well with respect to the F-filtration (6.10).
Since we do not know any reference we sketch a proof. We thank F. ElZein

and J.L. Verdier for useful conversations on those topics.

6.1. Let Y be an algebraic manifold over € and ne€Y be an
irreducible subvariety of codimension p. We will fregquently use some

properties of the local cohomology with support in n (see for example
[14]1):

a) If F' 1is a complex of sheaves and Y'c Y an open subvariety one
has an exact sequence

P . P . o} Vet .p+1 .
...——9&Hn_Y,(Y,F ) ——>:Hn(Y,F ) ——>:HnnY,(Y  F IY-) ——9—Ln_Y,(Y,F ) —=> ...

b) If F is a locally free OX sheaf and j<p one has H%(Y,F) = 0.

¢) Assume that n - Y'#n. Then b) applied to the cvcle n - Y!'
implies that

(¥',F

Hﬁ(y,F')—> BP ).

nny' Y'

d) Let F' be a complex of locally free OX sheaves with FL = 0

for i<p. Then W) (X,F') =0 for j<2p and

]HTZ]p(X,F') < w2 (x,P).
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In fact, one has the spectral sequence associated to the
A
"filtration bete"
- . ) {6 ;
By = H%(X,Fl) :m; I(x,Fy.

By b) H%(X,Fl) =0 for j<p and - of course - for 1i<p. -
Hence EiJ=0 for all i +3j<2p. For i+ 3j=2p one obtains that

PP =m’P(x,F') is embedded in 5P = P (x, FP) . -

The example we have in mind is: If F¥ denotes the F-filtration
of Qi (see 2.5) then one has an inclusion

2p P el p
JHn (X,FP) s I—,n (X,Qx).

6.2. Since n 1is smooth at the general point one can find divisors
D.],...,Dp on Y and an open affine subvariety Y' of Y such that
Di==Dir1Y' are non singular divisors intersecting transversally and
such that

D
n'=nny' = n Di .
i=1
{Ui =Y'-—Dj‘_}i=1 ° is a covering of Y'-n'. Let c(n') be the
PR « v »
element of HP'1(Y'-n',Q§,_n,) given by the Cech-cocycle
dat,a...adt P
— P on U‘; =Y' - U D].'_ ’
gttty reetP i=1

where t, is the defining equation of Di . By (6.1,a) we have a map

P

Hp_1 (Y"n',ﬂp ;

Yl_nl) —> H

G A

surjective since Y' is affine. We denote the image of c(n') by

cQ(Y',n'). Moreover, by (6.1,c) we have an inclusion

- Hﬁ(Y,Qi)C—> Hﬁ,(Y',Qg,) .

Theorem 6.3. ([2] and [9])

There exists a cycle class cQ(n) = cQ(Y,n) of n on Y, lying in

P 13
Hn(Y’QY) such that A
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Lleg(¥,n)) = e (¥',n'") .

Remark 6.4. a) F. ElZein [9] shows in addition that cﬂ(n) can be
defined by a cocycle in the closed differential forms (Qg)Cl. There-
fore cQ(n) is the image of a class cF(n) in Eip(Y,FP), uniquely

determined by (6.1,d4).

b) The image of cp(n) in MP (Y,9;) = 528 (¥,0) is denoted by

cm(n)é Of course, one can also consider the fundamental classzof il

in HIﬁI(Y,Z) or - after multiplication with (2im)P - in Hlﬁl(Y,z(p)).
We denote it by cz(n). The image of cm(n) is again cm(n). In fact,

by the description of (6.2) and (6.3) it is enough to consider the case
p = 1. For divisors the equality of the two classes easily follows from

the definition of ¢, (n) (see [7]).

Remark 6.5. Let D be a normal crossing divisor on Y, containing n.

Then the image of CQ(H) in H?(Y,Qs(log D)) is zero.

Proof. Keeping the notations from (6.2) it is enough to show that the
image of <¢(n') in Hp_1(Y'-n',Qg,_n,(log(Y' nD))) is zero. We may
choose the divisors D1,...,Dp such that D =i§1Di for some «r.

Then the cocycle

dt1A...Adt0

PR -~

t1-,..-.tp
: =1 P p
in €5 (Qf,(log(Y'n D))) extends to U! =Y'- U D! and
() = 0. relree.p i=rer T
c(n = 0.

6.6. Let f : X —> Y be a birational morphism, isomorphic over
X =Y - n, such that D = f_1(n) is a normal crossing divisor. One
has natural maps

P p, _f* Px oPy &, oPx oP
B (Y,0y) —> HJ(X,95) —> Hp(X,05(log D).

Proposition. The image of cQ(n) in Hg(i,ng(log D)) is zero.
Proof. One would like to say that f*cQ(n) is the sum of cycle
classes of codimension p cycles and that (6.5) implies (6.6). However

to get hold of f*cQ(n) we have to use the description of cycle
classes given by B. Angéniol and M. Lejeune-Jalabert [1]:
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Let M° be a perfect complex of OX sheaves on Y. The first
Atiyah class A; € Ext1(M‘,Q; @L M*) is the obstruction for M° to
have a holomorphic connection. One defines the p-th Atiyah class
AP. as the p-th exterior power of A;. in Extp(M',Qg ol M*). If

M
M® is acyclic outside of a subvariety ZcY one uses the isomorphism

. . . L .
Extp(M ,Qg ®L M*) = l%m Extp(OZIT e M ,Q$ ®

L M)

and the trace

P L 4o oP L - p P
Ext (OZm e M ,QY e M°) —> Ext (Ozm,QY)

to define the p-th Newton class Z\)ﬁ. in  1im ExtP(0, ,00) =ub(v,0b)
m m
(see [1], § II).

As shown in the proof of II, 2.5.3 (loc. cit.) cQ(n) is - up to

a constant ~ the same as the p-th Newton class nvg . By II, 4.2.1
#B - P ; PiLexo 0P ol e+ dce i '
f AO ALf*O in Ext* (Lf On’QX ®  Lf On)' The trace is compatible

withnpullbackg ({13],v, 3.9.3) and one obtains f*nvgn =

D p
VLE*0, C
Therefore (6.6) follows from:

Lemma 6.7. Let M®° be a perfect complex of sheaves on X, exact

outside of D. Then a(Dvﬁ.) = 0 for -
o e Hg(i,ng) - Hg(i,og(log D)) .

Proof. We denote by o as well the morphism
ExtP (U, M° o 9f) — ExtP i, M & 0B (10g D))

and we call a(Aﬁ.) the logarithmic Atiyah class of M°

Case I: Assume that M° is quasi-isomorphic to a locally free sheaf

1C—9—> MO) for

locally free Ox - modules M_1 and Mo. On a suitable ech cover

{U;} we have isomorphisms MriU. o Oﬁv and, if £, is an equation
i .

on a smooth divisor D'c D. We may write M® = (M

for D! nu; . @ =w]Ui can be given b% a diagonal matrix with 1 -
and £, in the diagoénal. As in [1], II, 1.5 the logarithmic Atiyah

v
class is represented by a Cech-cocycle of morphisms -

—_— Mr+p—k

Py i e 2
Soligreeesiy) = H |Ui0r---:ik o o7(log D)|Ui .

0,...,ik R
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In our situation only r =0, k=p and ==-1, pzkzp-1 may occur.
We claim, that u(Aﬁ.) can be represented by a cocycle ég(io,...,ip).
Since a(Aﬁ.) is obtained from a(A;.) by exterior product (II, 1.4

loc.cit), it is enough to verify this for p=1. Since has a

My,

logarithmic connection for all i, u(k& is zero. This means in

. )
ju.
particular that 611(1) is for all i on™ U, a coboundary in the
corresponding complex. Hence we can change the whole cocycle to obtain

the representation wanted.

(Explicitly, if we use the notations from II, 1.5 (loc. cit)

611(10) = d(wiin' ) = B-df where B is a diagonal matrix having only
1
1 or 0 in the diagonal. We have a morphism
af | -1, -1 1
By : M ‘Ui — M o 2y (log D)IUi
0 0
and 6! (1) = o, - B3 . If d' denotes the differential in the

dech complex we have to change the ech cocycle ég(i) by d'(B%?) to
obtain the representation wanted.)

Since M® is acyclic outside of D we may pass to the limit and
obtain a(Aﬁ.) as a fech cocycle in

Hom(M'iU‘ Moe S)%(log D) u. ) ) = lim Hom(OD ® M.lU. ) ,M'@Q%(log D)iU. _)

ig.--ip lO"'lp m ™ 10"'1p 10"'lp
By definition of the trace map in [13], V, 3.7,the trace map can be
calculated on a &ech—covering. Hence a(Dvﬁ.) is represented by a
collection of elements of

N 1 B
l%m Hom(ODmlUi . /9% (log D)\Ui . ).
o 1p 0 "3p

Those groups however are zero.

To reduce the general case to case I, we need that the logarithmic
Newton classes a(Dvﬁ.) with support in D are additive for exact
sequences of perfect éomplexes, acyclic outside of D. In fact, the
proof in [1], II, 4.3 uses just the additivity of the trace ([13],V, 3.7.7)

and carries over to logarithmic Newton classes with support.

Case II: If D'e D is smooth and M® quasi-isomorphic to a OD,—module,

we can take an OD' locally free resolution N. Since N is bounded
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and
KT o s NS0 > 0N T > o 2K 550) > (0> NF +0)
is exact, case II follows from case I.

Case III: If M® is gquasi-isomorphic to any OE - coherent sheaf F
with support in D, we can filter F by Fm = F® Oi(_ E miDi). For

. . ° i=1 .
m -(m1,...,mi+1,....,mr) ﬁn/ﬂg' is an ODi sheaf and Wwe are in case II.
Case IV: If M® is any perfect complex, acyclic outside of D, we use
the surjection

5
=M1 > WS =5 S s 0y » (0 > MS/Im 5, > 0)

with kernel

-s=~1

0> uT > .. >H > Im§__ » 0) T (0> MT > L M

to reduce the proof of (6.7) to case III.

6.8. The definitions of the cycle classes with values in Qp, FP, i
and Z are - as usual - extended to the group zP(v) of codimension
p-cycles. For example, for n=% ving € zP (¥) one defines

cqn) =1 vi-mult(ni)-cQ((ni)red)

in H?nl(Y,Qi), where |[nl is the support of n. If, keeping the
notations from (6.6), f : X —> Y 4is a birational morphism, isomorphic
over X=Y - |n} and such that f_1(|n|) = D is a normal crossing

crossing divisor one obtains as well that af*(cﬁ(n)) = 0.

Remark 6.9. One can consider the statement corresponding to (6.6) for

F instead of ¢yt If Fé denotes the F-filtration of Qi(log D)

it would be nice to know that cF(n) is mapped to zero under

e}

2p D 2p % wP
JI-Ilnl(Y,F ) — Hj (X,FD).

Without this we still obtain:
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Proposition 6.10. If Y is a complete algebraic manifold and if
cp(n) lies in the kernmel of mff]’l (v,FP) — 1P (¥,FP), then cp(n)

lies in the image of the composed map

(¥,F%).

|

© : wP! ®,F) — mP71 (x,5P) —>1H2§1

Proof. Under the assumption cg(n) lies in the kernel of
Hfl’nl ('Y,Q§) — HP(Y,Qg) and by (6.1,a) in the image of HP | (x,ng’().
(6.6) and the commutative diagram

w71 (%, (1og D)) —> #P7'(x,08) —— #P_ (%,9B(log D))
X X IDI| X
Y = aof*

p-1 py _* P P
B (x,05) —— 8] | (1,9

with exact first row implies that cn(n) lies in the image of 1o7y.

One has a commutative diagram

wP (%, 1) £ w71 (X,0B (log D))

| |

2p D P P
Iﬂlnl(Y,F ) ?H|n|(Y'QY)

B' is injective (6.2,d) and, since X 1is compact, B is surjective
(2.5).

§ 7 The cycle map in the Deligne cohomology

7.1. Let Y be a complete algebraic manifold, n a codimension p
cycle and X = Y - Inl. We define H?nl(Y,z(p)D) as the hypercohomology
group IHTnI(Y,Z(p)D). By definition of Z(p)v as a cone (2.6) we have
an exact sequence (2.2)

-1 P P 2p O, P
— Hzml (¥,T) —>1Hfm(y,z(p)v) — Hfm wzE)em? (v,FH > anl (T,0) —> ...

Since 2p-1 1is smaller than the real codimension H?§T1(Y,¢) = 0.
Moreover, since 6 1is the difference of the two natural maps ¢ and

T, e@m(n),c¥Jn)) is zero (see 6.4). Therefore we may regard
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(cz(n),cF(n)) as an element of Efgl(Y,Z(p)D), and we call it cv(n).
By the forget morphism

InI(Y /Z(p)y) —> HD (Y,Z(p))
we obtain the cycle class of n without support, called ¢{n) in
the sequel.

Remark 7.2. If Y is non compact and Z(p)v is the D -~ b - complex

on a good compactification Y, the same construction works with
InI(Y F(Y Y)) instead of H pI(Y F‘) . However, since the class
(Y,n) of the closure n of n is already defined as an element of

EZP (¥,FP) we can as well compactify first and use at the very end the map
Int

HOP (V,2(p)) —> BZP(¥,Z(p))
to get classes in the D - b - cohomology of Y.

7.3. Let n be a codimension p-cycle and n' a codimension g-cycle.
If both intersect properly n-n' is a codimension p+gq cycle. The
product U : Z(p)v ol E(q)v —> z(p+q)v defined in (1.1) (see also §3)

gives

. 2(p+q)
U : InI(Y z(p)p)olﬂl (Y0Z () p) ——>1Hl (Y Z(p+q) ) .

Proposition 7.4. If n and n' intersect properly
Cpty Uey(n') = cp(n.n') and Y} uw(n') = v(n-n').

Proof, The second equality follows from the first one. By (3.7) the
cup product is compatible with the usual products.on Hf'I(Y,Z(.)) and
HI'I(Y,F'). Since p is uniquely determined by c, and c¢., , the

/4 F

first equality follows from the corresponding ones for Cz; and Cp

(see [9], for example).

The same argument proves:
Proposition 7.5. If g : ¥Y' —> Y is a morphism and n a codimension
p cycle such that g*n is of codimension p as well, then

g;; (n) = cplg*n) in JHfg*nl(Y',Z(p)D) and g*(Y(n)) = Y(g*n) in
Hy (Y'.Z(p)).

84




Proposition 7.6. Let N4 and Ny be two rationally equivalent
codimension p cycles on Y. Then w(n1)=w(n2).

Proof. By definition of rational equivalence there is a codimension

1

p cycle & on YxIP and x1,x263IP1 such that n, = 1;(&) for

It ¥EYx{x}e—s yx®'. If t is an isomorphism of P! with
T(x,) =x,, 13+ (idXT)*(E) = n,. T* acts on H'(P' ,Z) as identity.
Hence (idxt)* 1is the identity on H" (Y x Eﬂ ,Z) and therefore on

B (vx®',FP) as well. By (2.10,a) (idx7)* is the identity on

le,p(YXIl?1 /% (p)) and
Vingd= 14 - (EAXTVFWE)) = X W(E)) = pn,).

Corollary 7.7. Let CH'(Y) = p@o CHP(Y) be the Chowring of Y,

i.e.: CHP = zP(v)/rat.eq. and Hp(Y) = @) HZP(Y,Z(p)). Then
Yy defines a ring-~homomorphism

Y ¢ CH®(Y) —> Hb(Y).

Moreover, Y is compatible with g* : CH(Y) —> CH"(Y') for
g : Y — Y.

Proof. By (7.6) ¢ factors over CH'(Y). Using the moving Lemma it
is enough to verify the compatibility of ¢ with the product for
cycles intersecting properly, and to verify the compatibility of y
with g* for cycles n with codim (n) = codim (g*n). This has been
done in (7.4) and (7.5).

7.8. Griffith's intermediate Jacobian

Recall that Y is a complete algebraic manifold. By (2.5) the subgroup
Fqu(Y,E) of Hq(Y,E) is isomorphic to mq(Y,Fp) and the quotient
group Hq(Y,ﬂ:)/Fp is isomorphic to mq(Y,Q;p). Since

2p-1 2p-1

FPH (¥,T) nFPu (¥,c) = 0

the image of H2p_1(Y,Z(p)) in H2p_1(Y,(I:)/Fp is a lattice and

2p-1

Py = w7 v,0) /877 v,z (1) + ¥PHPT (v 00 =mPPT (v,03P) /%P v,z (p))

is a complex torus, called the p-th intermediate Jacobian of Y. We

denote by HgP(Y) the Hodge cycles of Y, i.e.
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BF(Y) = Ker (52P(v,z (p)) © m?P(y,rP?) &1 w%P(y,q)).

This coincides with the usual definition, since
b
P u%P (v,0) n P 5%P(v,C) = 0 and therefore

Ker(e - 1) = 8_1(Hp'p) nHZP(Y,z(p)). The exact sequence (2.10-,a)
implies:

(7.9) 0 — P(v) — HP(Y,2(p) —>Ey) — 0

is exact.

By (3.7) the cup product respects the exact sequence (7.9). Hence

p@ JP(Y) is an ideal of the commutative ring
22 HZP (Y, (p)) .

J°(Y)
Hp (Y)

Proposition 7.10.

J°(Y) 1is an ideal of square zero.

Proof. An element of JP(x)  is represented by an element of
m2p—1(Y’Q;p) or, by Hodge theory, of k+pgzp_1Hk(Y,Q§). The differential
L<p
d is zero on Hk(Y,Qé) and (7.10) follows from the definition of U

given in (1.2).
Let us return to the cycle map

s 2P —> HP(v,B(p).

By construction € oy : Zp(Y) —> HZP(Y,z(p)) and factors through

1ol & Zp(Y) — H2P(Y,Fp) are the usual cycle maps. Hence, if Hp(Y)h
denotes the subgroup of cycles homologous to zero, € oy and ioy
are zero on Zp(Y)h. By (7.9) we obtain a lifting of

wiZP(Y)h to Y : Zp(Y)h —» JP(Y). In fact, by (7.7) y, factors through
P = 7P
CH (Y)h Z (Y)h/rat.eq.
Theorem 7,.11. wo is the Abel Jacobi map.

Instead of the original definition by currents we use (proposed in [10])

7.12. The description of the Abel-Jacobi map using mixed Hodge structures.

Let n Dbe a codimension p cycle on Y. One has the exact sequence
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0 — P (v, zp)) B 5P (x,2(p)) —> HP (Y2 () — B (Y,E(p))—>..

where X = Y - Inl. All the cohomology groups carry mixed Hodge
structures and the morphisms in the exact sequence respect them.
Since H%EI(Y,Z(p)) is generated by the cycle classes of the components

of n, and since those cycle classes are by construction (6.4) of

type (p,p), the cokernel of B is of type (p,p) and B induces
isomorphisms

w?P~ 1 (y,0) /FPe2P 1 (v,r) = 2P (x,¢) /FPE?P" 1 (x, @)

and

(7.13)  3Pv) > w7 (x,0) /8% (v,2 (p)) + FPHZPT (x,0).

Regarding the exact sequence one finds that f0£~_p € ZP(Y)h the
fundamental class Qz(n) is the image of a clasi\dcz(n)e H29_1(x;%(pn
uniquely determined up to Im(B). We denote by cﬂ(n) as well the
12?1 x,0). By (7.13) é;'(‘n) defines an element Y/ (n)esP(y).

image in

Definition 7.14. ( El Zein and Zucker, [10] )

vy zp(y)h —> JP(Y) is called the Abel Jacobi map .

—_— s s e

Proof of 7.11. Consider the commutative diagram of exact sequences:

) <> 1P (v,2(p)) —> #P(v,2(p) @ BP (v,FP) —> u2P(v,q)

e I |

2P 2p 2p., wpy % 2p
0 —>]H|n| (Y,%(P)D))—> Hlnl(Y,E(P))f]Hm[(Y,F ) —> Hln](Y,ﬂl)

s |

1P (x,zpne P (x,7P) & w2P-1(x,0)

Js

2P~ (v,

For ne€z¥(Y), we have p(S,(n), e (n)) = 0 . Therefore
g
(qz(n), CF(n)) = D'(Cz(n), Cr(n)) for some

~ —_ _
(G, cpm) e (x,z(p)) © 5P (x,5P) .
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~ 2p-1
Since 68(gy(n),cn(n)) = 0, 8'(cyin),cpin)) lies in B(H (,T)).
By the snake-lemma one finds wo(n) to be the image of
-1 ~ ~ i p i A ,
B 6'(qa(n),CF(n)) in JY(Y). By (6.10) CF(n) lies in the image
of

2

m2P! (X,Fg) = pPy2pP-1

(x,0) —> 2P (x,FP).

~ —~ ~
Therefore e'(qz(n),cF(n)) and 6‘(Qz(n),0) define the same element in

2p-1

1P~ (x,o) /FP%P (%, 0) + BTV (v, Z (p))

and by (7.13) ¢,(n) = Wé(n)-

Remarks.a) The construction of the Abel-Jacobi map and of the cycle map
in the Deligne cohomology has been done in [10] and [3] in a slightly
different way. At first glance it seems surprising that the proof of
(7.11) in [10] or [3] does not need the statement like (6.10).

However, the proof given there uses a description of the Abel-Jacobi
map by currents, which is different from the one given in (7.12).

If one assumes that both coincide , it proves (6.10) directly, without
studying the pullback of cycles. On the other hand one can use (6.10)
to show that Wé is the same as the Abel-Jacobi map defined by currents.
b) A different treatment of these topics can also be found in the Chap~
ter by U.Jannsen (81.21-23) in this book.

§ 8 Chern classes in the Deligne-Beilinson cohomology

8.1. Let X be an algebraic manifold or - using § 5 - any simplicial
scheme of finite type over . In this section we sketch two methods

to define Chern classes
c (B) € H2P(x,% (p))
P p A2IP

for locally free Ox—sheaves E (called bundles in the sequel) of rank r
on X. They should depend just on the isomorphism class and satisfy

A) (Functionality) For any morphism
f : Y —> X one has f*cp(E) = cp(f*E).
B) (Compatibility with the Chern-classes in H'( ,Z))

cp(E) is mapped under ¢ : ng(x,ﬂ(p)) — HZP(X,Z (p)) to the usual
Chern classes of E.
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Of course we can as well consider Chern classes in H%p(X,A(p))
for any subring A of IR . However those are just the image of the
classes in H;P(x,z(p)).

Proposition 8.2. The Chern classes are uniquely determined by conditions
A and B.

Proof. The classifying space BG = BGLr(E) is a simplicial scheme of
finite type over € and, as proved in [8] there are elements ¢
D

of pure weight (p,p), such that
H" (BG,Z) = z[c1,...,cr]

Therefore H2p_1(BG,¢) =0 and 1 : Ezp(BG,Fp) — HZP(BG,E) is an
isomorphism. By (2.10,a) or (2.10,b)

e : le)p(BG,Z(p)) —> #%P(8G6,Z (p))

un
r
are uniquely determined by B. If E on X is any bundle of rank r

is an isomorphism, and the Chern classes of the universal bundle E

one can take a hypercovering op : Z0 —> X such that p*E 1is trivial

on each Zv . Then there is a morphism f : Z. —> BG such that
frglh

r _ .
Since the D - b cohomology of Z. and X are isomorphic (5.2) one

obtains (8.2).

= p*E. By A the Chern classes of ¢*E are uniquely determined.

8.3. For a non-singular variety A.Grothendieck defines in [12] Chern
classes :;(E) of vector bundles E 1in the Chow group cuP (X). Those

are functional and, under the cycle map ¢, , compatible with the Chern

z v)
classes in Hzp(x,z(p)). Therefore cp(E) = w(g;(E)) defines Chern

classes for vector bundles on X, satisfying A and B by (7.7) and
(6.4). Of course, one has to use (5.1-3) to extend this definition to

arbitrary simplicial schemes of finite type over .

8.4. A second construction of Chern classes is based on (2.12,iii) and
the splitting principle:
Recall that for an algebraic manifold X we constructed an isomorphism

PO — H)(X,Z (1)) .

By (5.5,b) p induces a morphism (in the derived category) of complexes

89



of sheaves in the Zarisky topology
. *
oy ¢ 0X — Z(1)D’Zar[1] .

Taking hypercohomology of sheaves in the Zarisky topology this gives
a map

cp ¢ H(X,08) —> HI(X,E(1)).

1
Since invertible sheaves correspond to elements of H1(X,O§) we can

use cC to define the first Chern class of an invertible sheaf.

1
The induced morphism

L —
OX > z(1)D’Zar[1] —> Z (1) [1]
is in the derived category the "edge" morphism of the exponential
sequence. This shows that e(c1(L)) is the first Chern class of L
in #(x,2(1)).

Broposition 8.5. Let E be a vector bundle of rank r on X,
m : = IP(E) —> X the corresponding projective bundle and
OP(1) the tautological invertible sheaf on P . Then for all gq,q'

r

H (P ,2(q")) <= 0

3l 9-2p v P

8, T*H; (X,Z(g'-p)) U <, (O]P (1)) .

Proof. As is well known, the same maps are isomorphisms for H°( ,E(.)),
H'( ,C) and by [8] for MW"( ,F'). By (3.9) the cup product is compatible
with the exact sequence (2.10,a) and therefore (8.5) holds.

8.6. DNow one can define Chern classes of rank r vector bundles in
the way of Hirzebruch and Grothendieck:

r-p
(0 (1))

r
In H;r(P,Z(r)) = @ n*H;P(x,z(p)) U c,

p=1

we have a relation

r r-p

L DF ey w0, 1) P =0
p=0 P ¥

with v € 2P (x,Z (p))  and Yp = 1. We define c (B) = v .
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As in [12] one shows that the Chern classes obtained are functorial
and additive. Since the usual Chern classes can be defined by the
splitting principle as well, one obtains (8.1,B).
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