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CHARACTERISTIC CLASSES OF FLAT BUNDLES
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INTRODUCTION

InTHIs article we construct by a modified splitting principle characteristic classes of bundles
with supplementary structures.

On an analytic manifold X a bundle E is said to be flat if it has an holomorphic
integrable connection V. We construct classes

¢,(E.V)e H¥(X. Z(p) - C) ~ H*»~ (X, C/Z(p)).

More generally, if 74: Qy — A" is a quotient of the holomorphic De Rham complex Qy such
that A=, and A'is a quotient bundle of Q%, we say that E is t,-flat if it has an integrable
connection V with values in 41 (2.1). We construct classes

c,(E,V)e H¥(X, Z(p) > A

which are functorial and additive for exact sequences compatible with V. They are uniquely
determined by those two properties and the definition of ¢,(E, V) (due to P. Deligne [2],
(1.3). [6]). The group H*(X,Z(1}—( y—A') is identified with the group of isomorphism
classes (E, V) of rank one bundles E with an 4'-connection V. Therefore V is integrable if
and only if (E, V) lies in the subgroup H?(X, Z (1) » 4°). This defines ¢,(E, V).

M. Karoubi ([11] and [12]) constructed with K-theory and cyclic homology classes
¢,(E)e H**"1(X,C/Z(p)) when X is a simplicial set and E is a flat bundle. He told the
author that his classes are functorial and additive {and that he will write it down in the
planned “Homologie cyclique et K-théorie ITI"). This would imply c¢,(E, V)=¢,(E) for flat
bundles (2.25.2).

The cohomology H??(X, Z(p) — Q) maps to the Deligne cohomology H**(X, Z(p),),
where Z(p)g=Z(p) = Ox — ... - Q%™ '. Our classes c,(E, V) lift the Chern classes cE)in
the Deligne cohomology (2.25.1) (see [2] for a definition of ¢2(E)). If X has an Hodge
structure, for example if X is algebraic proper over C, then the projection of ¢,(E, V) in
H?*"(X, Z(p)— R(p)) is identified with c¢Z(E) (2.25.1).

J. Cheeger and J. Simons ([4]) constructed in a differential geometric framework classes
¢,(E)e H** (X, R/Z) when X is a C* manifold and E is a flat bundle. In general the
relationship between ¢,(E) and ¢} (E) is not known. When E is unitary and X has an Hodge
structure, S. Bloch [3] and C. Soulé¢ [13] proved that ¢,(E) lifts cZ(E). Therefore
in this case our classes lift the Cheeger—Simons classes (2.25.3) via the map C/Z(p) —
R(p)/Z(p) > R/Z.

Our method consists of two parts: the definitions of the “-construction” and of the “z-
product”. If f: P — X is the flag bundle of E(2.7), the connection V defines a morphism 7:
Qp - f*A'. The integrability condition implies that (td)>=0 and that 1 extends to the
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324 Héléne Esnault

De Rham complex 1: Qp > 4, where Ai=f*A', with Rf,A,=A" (2.7,i). This defines an
integrable t-connection (i.e. with values in A!; see (2.1) for definition) V, on * E, which is
compatible with the canonical filtration of f*E. Therefore it defines integrable t-con-
nections V., on the splitting rank one bundles L, of f*E, and classes (L,, V_,) in
H?*(P, Z(1) > A;) (2.7,ii). Next, one has to define a “z-product” on the “r-cohomo-
logy” H??(P, Z(p) — A;). We do it just by multiplying on the left with H3?(P, Z(p)) (2.9).
This defines classes

c)(f¥E,f*V)e H* (P, Z(p) » A;)

as p-symmetric sums of (L, V. ) (2.10).

The t-cohomology is not a free module over the t,-cohomology. So one can not apply
Hirzebruch—Grothendieck’s splitting principle. However the construction implies imme-
diately that our classes are defined on X and lift the Deligne classes (2.15). Tt is technical but
straightforward to prove functoriality (2.16) and additivity (2.17).

We hope that our quite elementary method may cast a new light on the role played by
the flat structure V on the multiplicative behaviour of ¢7(E). (Recall in this connection that
S. Bloch’s conjecture [3], asking whether ¢;(E) is torsion if p>2 when E is flat and X is
projective, is still unsolved.)

Flat or 7y-flat bundles are quite rigid. It is a larger class to consider holomorphic
integrable connections V with logarithmic poles along a divisor with normal crossing D.
More generally if 1, Q; (D) - 4} is a quotient of the holomorphic De Rham complex
with logarithmic poles along D. such that 45=(, and 4% is a quotient bundle of Q5 (D,
we consider bundles £ with integrable connections V with values in A} (3.1). We construct
classes

c,(E,V)EH** (X, Z(p) > (y—...—Q57 ! N AB— . .. —r—;»A%imx)

which are functorial and additive for exact sequences compatible with V. They are uniquely
determined by those two properties and the definition of ¢,(E, V). Moreover they lift the
classes ¢Z(E) (3.6). The method is the same t-construction as in the t,-flat case, but the 1-
product has to be refined a little bit to obtain classes lifting the Deligne classes cZ(E) (3.6).

P. Deligne [6] in the rank one case, H. Gillet and C. Soulé [8] in the higher rank case
defined characteristic classes of hermitian bundles in Chow groups in the Arakelov theory,
ie. groups of cycles with supplementary structures. A good cohomological theory of
characteristic classes of hermitian bundles should factor through their classes, lift ¢(E) and
the Chern forms. A very small step in this direction is described in §4.

PRELIMINARIES

(0.1) Throughout this article, X is an analytic manifold over C of complex dimension ,
D is a normal crossing divisor on X, j: X —D — X is the open embedding. As usual one
denotes by Qy (Qx (D)) the holomorphic (holomorphic with logarithmic poles along D)
De Rham complex of X with Kahler differential d. The complex Qy{(D) is quasi-
isomorphic to Rj,C ([5]). One defines ¢5=QY, the sheaf of holomorphic functions. A
vector bundle E is a locally free ¢x-sheaf of finite rank. We call r its rank. The vector bundle
&nd E of endomorphisms of E splits into Oy @ &»4°E, where &4 °E is the vector bundle

. . 1 . .
of endomorphisms of trace 0, via @ =- trace ¢ -identity + ¢°. For a Z-module 4 we set
r

A(p)=(2im)" A.
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(0.2) An holomorphic connection

V: E— Q) ®E is a C-linear morphism verifying the Leibniz-rule
V(A-x)=4-V(x)+dA x, for Ae Oy and x e E. One defines
V:OYRE - QL1 ®E by
Vio®x)=dwArx+(—1)" @ AVx, for 0eQf and xeE.
One says that V is integrable if (Q; ® E, V) is a complex, or equivalently, if the curvature
V2 eHom,_(E, Q}® E) vanishes. The bundle E is said to be flat if E admits an integrable

connection. Flat bundles are in one-to-one correspondence with local constant systems by
the Riemann-Hilbert correspondence

((E,V)} > {L=KerV}, {L}>{L® 0y,1®d}.

(0.3) On a trivializing open cover U, of E on X define V, by declaring some basis to be
flat. Since two holomorphic connections differ by a holomorphic one form with values in
End E, the class in H'(X, Qy ® énd E) of the cocycle (V,—V,)eT(U;nU;, Q; ® énd E)
does not depend on the trivialization chosen. This is the Atiyah class atE of E ([1]).
Its vanishing is the g)bstruction for E to have an holomorphic connection. One has

cPR(E)=(—1)" trace /\ at Ee H?(X, Q}), where ¢2®(E) is the De Rham Chern class. One

p
has

1
atE= —— c¢P®(E)-identity @ at°E,
r

according to the splitting éxd E=0x @ £24/°E (0.1). If £, is a cocycle represeﬁting the class
of Ein H'(X, 9/,(0x)), then — &' d¢,; represents atE.

(0.4) One defines aty E to be the image of atE in H'(X, Q% (D) ® & E). Its vanishing
is the obstruction for E to have an holomorphic connection with logarithmic poles along D
(same definition as in (0.2) where one replaces Q) by Qi<D>). Integrable logarithmic
connections were studied by P. Deligne [5].

(0.5) Define P=P(E)=Projy(@® S'(E)) the projective bundle of E, where S'(E) are the
nz0

symmetric powers of E, f P — X, ((1) as the relatively ample sheaf uniquely determined by
the surjection
S*E—> 0(1).

One has two fundamental sequences

i p
0) 0-f*Q5 - Q}’—’QIIJ/X -0

(1) OaQ},/X(I)—»f*E—q»(Q(l)ao

where Qpy is the sheaf of relative holomorphic one forms. Denote by T}y the relative
tangent sheaf.

{0.6) Let ¥; be an open cover of P such that p admits a section ¢; on ¥,. Two sections of p
differ by an element in f*Q} ® T'},x. Therefore the class in

H'(P,f*Qy® Thx)=H' (X, Qx @R, Thx)=H" (X, O} ® End°E)
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~ of the cocycle
(6;—0,)eD(V.nV;, f*Qr®@Thx)

does not depend on the trivialization chosen. This is the extension class (0.5.0).
Lemma. This class is —at®E.

Proof. By the descriptions (0.3) and (0.6) it is enough to see that on any trivializing open
set U for E on X, any connection V defines a section of p, and that QL ® & °E acts on the
connections on U as f*QL® Thyx does on the sections of p on f~ .

Given V, define

a®1, =12 ®q) [*Vlg; 1y from Qpx(1) to Qp(1),
where [*V is defined to be f 'V on f'E, d on (; via the Leibniz rule. Then o0 ® 1y, is
O p-linear.

(0.6.1) Claim. —a is a section of p.

Proof. Let ¢ be a basis of E on U. Define t*=g(e*). Then * are the homogeneous

coordinates of P~ 1inf~1U ~ U x P"~1. Onf~ 1 U n(t° #0) the holomorphic coordinates
. . t* . .
of P~ n(t°#0) are o £ is a basis of 0(1), xkzek—t—oeo (k=1,...,r—1)isabasis of Qpy

) tk k
with pd( >=%. One has

©
0’®1(Xk)=(1®61)(f*Ve"—%f*VeO)_d <_>.to

and therefore

¥\ 1 L 0 t
7\ % ZIT)(1®CI)(f*V€ —t—of*Ve )—d o)
Since f*Ve*ef*Qy ® E, one has

1 k
P(ro“ ®q) (f*Ve"—%f*VeOQ:o.

x* t* x*
po\ )= —rl\ @ )= e

If V' =V+a with a=a"eT (U, Q} ® &2 E), one has

Therefore one has

k
(0 —o)®@1(x"=(1®q) <oce"—;—o cxe°>
k
=y “kltl#f'o Y oot
[} 1

1 . . . .
One sees that - trace o-identity acts trivially and that (¢’ — o) defines a O p-linear map
v

from Qpy to f*QL. Therefore f*Qp ® 6/ °E acts as F*Qb® T'hx does.
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(0.7) Assume that E has an holomorphic connection V. This defines ¢ as in (0.6) and
t=1+0p is a section of i. With the notations of (0.6) one has

tk 1 * k tk * 0
Td g =t—0(1®q) f*Ve _t_of Ve® ).

Define a t-connection V., on a sheaf F on P to be a C-linear morphism V. F —» f*QL®F
verifying the t-Leibniz rule V (.. x)=21.V.(x)+t(dA).x, for Ae @, and xeF.

LEMMA. 1f*V is a 1-connection on f*E such that tf Viasqy is a t-connection V; on

Qx(1) and (1® q)tf*V is a well defined t-connection V_ on O(1).

Proof. As —ais a section of p, (1 ®q) (1f*V) gy 1)=0. Thercfore Qp x(1) is stable under
7f*V, and the quotient (1® g)tf*V is defined.

(0.8) Remark. In an effort to understand conditions for a bundle to be flat, we computed
some time ago (0.6) and (0.7) with B. Angéniol. The point (0.6) is well known whereas the
point (0.7) will play an important role in this article.

§1. SOME CONDITIONS FOR A BUNDLE TO BE FLAT.

(1.1) Let E be a rank one bundle. Its isomorphism class is a class in
HY(X, 0*) <~ H*X, Z(1) > 0),
exp
say with cocycle &,;eT"(U;nU;, (*)in a Cech cover U,. Consider the exact sequence of

complexes

0-0 - 0-0 -0 —-...-0%

d
I >0y > Qx >0} —...>Qf

!
(Z(1) > Ox > Qx) -0

As H*(X,050-50- 0% ... Q%)=0, the morphism

H*(X,Z(1) » Q) > HY(X, C*)

H(X,Z(1) > 0y - QF)
is injective. One considers also the morphism

H2(X,Z(1) = 05 - QL)
H*(X,Z(1) > 0y) > H'(X, O%).

LEMMA. (i) The isomorphism classes of rank one bundles E with holomorphic connections
V build a group identified with H*(X,Z(1) - Oy »QL). Denote by (E,V) a class in
H*(X, Z(1) > Oy —»Q%). Its image (E) in H*(X, Z(1) — Oy) is the isomorphism class of E.
(ii) V is integrable if and only if (E,V)e H*(X, Z(1) — Q3).
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Proof. (i) This is Deligne’s observation ([2], (1.3), [6]) In some Cech cover V is given by
one forms w;eT"(U;, Q) verifying &' . d¢,,=w,—w;. (¢;, »;) is the class wanted. It is
isomorphic to the class of (¢, d) if and only if they are functions f,e I'(U;, ) verifying
&= fj_l and w,=f; . df..

(ii) The curvature dw;e H*(X, Q% —. . . —» Q%), where w; is as in (i), vanishes if and only
if

(E,V)eKer (H*(X, Z(1) » Oy —» Q%) e HX,Q% - .. - Q%)
=H*(X, Z(1) - Q).

(1.2) In this language it is easy to see the well known

Cram. If X has an Hodge structure, then HY(X, C*)=H?(X, Z(1) » Oy > Q%). There-
fore if E is a rank one bundle with vanishing Atiyah class, all the holomorphic connections on E
are integrable.

Proof. By (1.1) the second statement is a consequence of the first one. One has the
commutative square of complexes

Z(1) >0 —»Q!
! 1,

ZH) -0 Q.. .>Q"
ldg i

QL2 . -

This gives a commutative diagram

H(dy)
H*(Z(1)» 0 -»Q")—— H°(Q*> > ... - Q")

l H()
H(do) l
H*(Z(1)» O)————H Q' - Q2 ... > Q"
The first statement is equivalent to H(d,)=0. The image of H(d,) is contained in H'(Q")

and therefore meets in 0 the image of H{i). Since H(j) is injective, this implies H(d;)=0.

(1.3) Let E be a bundle of rank r with an holomorphic connection V. Introduce t,
(0(1), V,) and (Qpx(1), V3) as in (0.7). If (zd)* =0 denote by Q; the complex

Op— f*Qk —> .. —f*Q%,
t T
td

and call it the t-De Rham complex. We say that V (V}) is integrable if V=0 (V. =0). Define
the z-flat sections to be those which are annihilated by a t-connection.

LEMMA,
(i) One has Rf, (f*Qk r_d>f*Q§+1)=Q§_",Ql)c{+1

(i) One has Rf, V.=V

(iii) (zd)?=0 if and only if V2 is Op-linear. In this case, :Qp — f*QY extends to a
morphism of complexes 1:Qp — Q;. One has Rf,Q;=Qy. This defines a morphism
Rf,Cp — Cy in the derived category.

(iv) V is integrable if and only if V_ is. In this case, V., is integrable. Moreover O(1) and
Qpx (1) are generated by t-flat sections.



CHARACTERISTIC CLASSES OF FLAT BUNDLES 329

Proof. (i) As Rf, [* Q% =0k, one just has to see that f, td=d. This is a local condition
onX.Onanopenset UonX,onehasT(f~1U,f*Qk)=T(f"'U,f *Q%)onwhichtd=d.

(ii) Asin (i), one just has to see f, V,=V. As f*E is by construction the sheaf generated
by relative global sections of @(1), and as V.=(1®gq)tf*V, this is equivalent to see
Sfx(zf*V)=V. This is the same as in (i).

(iii) One has V2(1-x)=A1-V3(x)+(zd)*(})- x, for Ae@®, and xe O(1). Q} is additively
generated by elements y=1-dw, for weQ%™ !, le®p. Then tdy=1dA A tdw, whereas
1d(A- tdw)=1dA Atdw + A (1d)*w. If (1d)* =0, then tdy =1d (2 - tdw). In other words, one has
a morphism of complexes 7:£2; — Q;.

Since Q; is f~acyclic and f,td=d (i), one has Rf, Q;=Qj. Since Qp and Qy are quasi-
isomorphic to Cp and Cy, 7 defines a morphism Rf, Cp — Cy in the derived category.

(iv) If V2=0 then E=L ® Oy where L is a local constant system, and V=1®&d. Then

C

: : . t*
f*V=1®1d. If €* is a basis of L on U, one has (with the notations of (0.7)) rd<;5>:0.

Therefore (td)? =0. This implies (zf*V)?>=0, as well as VZ=V.>=0.
Conversely if V2 =0, then f, V2 =V?=0. One may generate ¢(1) by * and Q3 x (1) by x,
which are 7-flat sections.

(1.4) Remark. To see that the integrability of V implies (rd)? =0 (which means that one
has a t-complex), one does not need in (iv) the description of E by its flat sections. If ¢* is any
basis of E on U, one has (0.7):

CrduF =Y ofur—uk )y 0% uw
S

§

o t* , . .
where one sets for simplicity u* =0 where " is the connection matrix of V on U. Therefore

one has:
(td)*u*=A+B+C+D+E

where

A=Y do* u*

B= A_Zwkszwss’_us’_i_zwks,usZwOS’,us’:b+b/
s s

s s

C=-Y o ud o vwr+u*) o® ') o® vw=c+c
s s s 8
D= —u*y do® v
5

E:ukaOsZ wss’,us’_ukz wOs,usZ wOs’,us‘ze_’_e/'
s s’ N s’

The integrability condition
dwkl_z wks, CUsl:O

implies A +b=0, D+e=0. On the other hand one has b’ +¢=0, ¢'=¢'=0. This proves that
(td)*u*=0.

TOP 27:3~F
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This remark is important for §3 and §4, where the t-flat sections for the connections
considered there do not generate the bundle E.
(1.5) If (xd)*=0, one has as in (1.1) an injection

H*(P,Z (1)>Q;)

HY(P,Z(1) > Op — f*Q3).
d
(Op, 1d) is the trivial (integrable) t-connection. One considers the morphism

HA(P,Z(1) > Op—>f*2})

H*(P,Z (1) - Up).
For (F, V.) and (F’, V.) two rank one bundles with (integrabie) t-connections, define the
(integrable) t-connection on FRF: V.®V.(e®e)=V.e®e' +e®@V.e'. If o:F' > F is a
Op-morphism, define on F’ the (integrable) z-connection: ¢*V.(¢')=V,(¢(e)). Then ¢
is an isomorphism from (F’,V.) to (F, V) if it is an isomorphism from F’ to F verifying
Q*V, =V,

LemMA. (i} The isomorphism classes of rank one bundles F with t-connections V., build a
group identified with H*(P,Z (1) — C’/PTf*Q}f). Denote by (¢ (1), V,) the class defined
in (0.7). Its image in H*(P, Z (1) — Cp) is the isomorphism class of ¢ (1).

(i) Assume that (xd)? =0. Then V_ is integrable if and only if (€ (1), V,)e H*(P,Z (1) - ).

Proof. (i) We mimic (1.1). If u,, is a cocycle representing F on some Cech cover, then V, is
given by w,e ' (U,, f*Qy) such that u" - tdu,, = w,— w,. Then (u,4, w,) is the class wanted.
This class is isomorphic to (0, td) if and only if they are f,eT'(U,, 0F) verifying

ua/z=fa'f,3_1, and w,=f; ! df,
(i) By (1.3)(iv), V=0 if and only if VZ=0. This is equivalent to

0=1dw,e HO(P,f*Q2 — . .. »f*Q1)

or
(© (1), V)eKer (H*(P, Z(1) » 0p—>f*Q})

HO(P, f*Q%— ... —f*Qu)
=H(P,Z (1) - Q).

(1.6) Cram. If X has an Hodge structure, and E is a bundle on X with an holomorphic
connection V such that (1d)* =0, then one has

HX(P,Z (1) > Q)= H(P, Z (1) > Op — f*Q}).

In particular V?=0 if and only if (zd)>=0.
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Proof. By (1.5) the second statement is a consequence of the first one. From the
commutative diagram

Z(1) > Op— f*Q%
! d,
Z(1)—> Op
}do f*?ﬁ—*- Coo R
o NN o JENS R o AL
} i

[*QL > *Q3 - ... > f*Q%

one has the commutative diagram

H(d,)
H>(Z(1) > Op — f*Q5) HO(f*Qf - .~ [*Q%)

l H()

H*(Z(1) > Op)——— H'(Qp > .. > Q") —— HI(f*Qy > .. -f*Q%).
H(do) H(?)

The first statement is equivalent to H(d,)=0. The image of H(d,) is contained in
H'(Q}), therefore the image of H(t)H(d,) is contained in H!(f*Q%L.).
It meets in O the image of H(i). Since H(i} is injective, one has H(d,)=0.

Remark. Compare (1.3)(iv) and (1.6). In general one has V? =0 if and only if VZ=0. With
an Hodge structure, one has V2=0 if and only if (zd)*=0. This is slightly weaker. This
corresponds to (1.2).

§2. CHARACTERISTIC CLASSES OF A BUNDLE E WITH AN INTEGRABLE CONNECTION

(2.1) Let Y be a smooth analytic variety. Let (4%, k> 0) be a complex such that there is a
morphism of complexes 1: Q; — A* where A°= 0y, A*A' = 4* is a quotient bundle of Q.
Define B =Ker 1: Q1 — A% As the differential of 4" is the factorization through A" of 7d,
write simply td for it.

A bundle F is said to have a t-connection if there is a C-linear morphism V: F > A'® F
verifying the t-Leibniz rule V(A x)=4"V (x)+1d(1) ® x.

V. is said to be integrable if V2=0.

F is said to be generated by t-flat sections if it is locally generated by sections x verifying
V.x=0. In this case one may find a cocycle u,; representing F with u" - tdu,; =0

(0, td) is the trivial (integrable) t-connection. As in (1.5) the isomorphism class of (F, V,)
isin H3(Y,Z (1) » 0y - AY), and V2=0if and only if (F, V) is in H*(Y, Z (1) > A4").

(2.2) One has the standard operations for bundles with t-connections.
Let F and F’ be bundles with (integrable) t-connections V, and V,. One defines
(integrable) r-connections on

14 i
AF by (AVYirn oo ASD=DAA oo Afic ik AV Afivd A v A
F®F by V. V. (f®f)=V.()®f +/®V.(f)

Homg, (F, F') by (Vo) (f)=V.o(/)—o(V.f)
Denote by V' the connection on #oum (F, Oy)=F".
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If (F,V,) and (F',V;) are of rank one, of cocycles (uy, @,) and (uys, wy), then
(FRF,V,®V;) is of cocycle (u,;-tiyg, w,+w,). Therefore (FRF,V.®V)=(F,V)+
(F,V) in H¥Y,Z(1)— Oy —> AY) (resp. in H*(Y,Z(1)—> A")). Similarly (FY,V))=
—(F,V)in H*(Y,Z(1) » Oy — A") (resp. H*(Y, Z (1) — A)).

A filtration F,_, < F, of a higher rank bundle F by subbundles F, such that
V.F,c A'®F, is said to be t-compatible (t-flat if V2=0). This defines (integrable)
7-connections V_ , on F,/F,_,.

An exact sequence 0 - F' - F — F” — 0 is said to be t-compatible (t-flat) if the filtration

F'cFis.
(2.3) Let g: Z - Y be a morphism between two manifolds, and F and 1 be as in (2.1).
Define Q} , by the exact sequence
g*B* - Q} 4 Q;.—0.
One has the exact sequence
»
Q*Al - Qé,: _’Qé/y -0

k
1 k
Define A\ Q} ,=0Q% ..
CLaM. 7 extends to a surjective morphism of complexes r: Q; — Q' ..

Proof. In order to extend r as a morphism of complexes, one has to see that the kernel of
Q} — QF . is generated by the image in Qf of g*B' /\ Q4™ ". By the Leibniz rule it is enough
to see that dg*B* = g* B* /\ Q3. Since A" is a quotient complex of Q; one has dB' = B! A\ QJ.
Write g*B' =0, ®,-:c,9 ' B. By the Leibniz rule again one has

dg*B' c g*B' NQ; + 0, ® ,- 10,9~ (B \Q}) = g*B' \ Q3.

Now since Q7 — Qj . is surjective by definition, Q% — Q% _ is surjective, and r is a surjective
morphism of complexes.
Denote by rd the differential on Q.. One has (rd)*>=0. One defines the r-connection

g*V.ig*F > Q; . ® g*F
sz

by writing g*F =0, ® g 'F
g7,

and V(AR ¢)=rdi® o+i ® V.0
[ g 10y

for oeg™*F and ie,.
The corresponding B’! is the image of g*B? in Q}. As (rd)> =0, g*V_ is integrable if V _ is,
and g*F is generated by r-flat sections if F is generated by 7-flat sections.

(2.4) Set Z=P(F) the projective bundle of F. One has the other exact sequence
q
00— Q%/Y(I) - g*F->0(1)-0
Define as in (0.6) 0: Qzy — Q7 . by 6 ® 1 =(1® q) g*V.|o, - BY the same computation as in

(0.6.1) one has —o is a section of p'.
In this case, g*A' is embedded in Q3 ..
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One obtains a section
=(1+po) Q%yr - g*Al

k

. . . t 1 t
which may be written with the notations (0.7) as t'rd <t4°> =5 1®q) (g*V,e" 0 g*Vre°>.

(2.5) Assume now that V. is integrable. By (1.4) one has (t'rdy*> =0. This defines (1.3, iii)
a morphism of complexes
T Qy > g*A

where the differential on g*A’ is defined by t'rd. As in (1.3) one has Ryg,g*A = A" The
morphism 7’7 defines a morphism in the derived category 7'r: Rg,C;— 4"

(2.6) Further one may define: t'r-connections V., and V7, on O(1y and Q} (1) by
V= T/Q*Vrlﬂg A

Vr’r = (1® q)rlg*vt'
They are integrable if V_ is.

(2.7) Through the rest of §2, one considers on a manifold X a morphism of complexes
10:Qy — A" as in (2.1) and a bundle E with an integrable t,-connection V.

On the projective bundle P(E) one has defined r7, and integrable rTo-connections on
0(1) and Q} g x1) One may repeat this construction (rank E-1) times. One has the
following data on the flag bundle of E which we call f: P — X, with f the splitting morphism.

(i) There is a morphism 1: Q5 —» f*A4* with (td)’>=0. The complex

verifies Rf,A,=A". If to=identity (which means E flat), write Q; for 4; One has
Rf,Q,=Qy%.
7 extends to a morphism of complexes 1: Qp — A;.

(i) The integrable t,-connection V defines an integrable 7-connection (f*V), on f*E.
The canonical filtration 0=E, < ... < E,=f*E of f*E is t-flat (see 2.2). This defines an
integrable t-connection V, , on the splitting rank one bundle L,=E,/E,_,, and therefore a
class (L, V. ;)€ HX(P, Z (1) > A;) whose image in H*(P, Z(1) — Op) is the isomorphism
class of L, (and whose image in H*(P, Z (1)) is c¢{* (L), the topological Chern class (2.1)).
This class is represented on some Cech cover by (u¥,, w¥)e T(U 4, 0*)x T(U,, A;) such that
Su=0,u" ! rdu=dw, tdw=0, where J is the Cech differential.

(2.8) The Deligne complexes (see [2]) on a manifold Z are
Z(po=Z(p) = Cz— ... > Q!
—cone (7 (p) ® FP—Q;) [~ 1]

where o Z(p) — C is the natural embedding and i: F? - Q; is the Hodge-Deligne F-
filtration, There is a product

Z(p)g X Z(@)g —> Z(p+ 9z
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which is uniquely defined by

x-x'=a(x) x" ifdegx=0
xAndx' if degx>0and degx'=¢q
0 otherwise,

for x homogeneous in Z(p), and x' homogeneous in Z(q)g.

In the cone language this corresponds to (n®fPw) (W@ f®wYy=n-n+ff,
a(n) o' +o A i(f)).for(n@f)eZ(p) D F?, (W ®f Ve Z(q)® F*, ow and o' €Q;. One has x- x’
=(—1)°®"9&'x"- x up to homotopy, for x homogeneots in Z (p), and x’ homogeneous in
Z(q)s (see [2], and [7] for precise computations).

This defines a product in the cohomology

H"(Z(p)z) x HY (Z(q)g) » H" * ¥ (Z(p+q)a)
which is anticommutative, that is
x-X'=(=1)""x"-x for xe H” (Z(p)y) and x'e HY (Z(q),).

Therefore the p-symmetric functions of the classes of L, in H?(P, Z(1),)=H'(P, 0%) on
the flag bundle P of E define classes c&(f*Eye H**(P, Z(p)y).
Define
Z(P)ony=Z(p) > A > A' > . .. — AP 1,

One has the morphism t,: Z(p), — Z(p)s <,

(2.9) On a manifold Y with a morphism 7: Q; — 4" asin (2.1), define Z(p),=Z(p) 54
One defines a map

2(p). x Z(q), = Z(p+q).
by
xx'=t(x)-x ifdegx=0

0 otherwise

for x and x’ homogeneous in Z(p), and Z(g),. This defines a product, that is it factorizes
through
Z(p). ®22(9).—~Z(p+q)..

One has to verify that
d(x-x)=dx x' +(—1)%8*x dx’'

for x and x" homogeneous in Z(p), and Z(qg),, where d is the differential in the corresponding
complex. The left hand side is

7(x) dx’ if degx=0
0 otherwise
whereas the right hand side is
xd(x)=1(x)-x" if degx=0 (since degdx=1)
0 otherwise.

Define a map

h:(Z(p). ®,Z(q).) > (Z(p+q).)
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where 1 is the homogeneous degree of the complex considered, by
h(x ® x)=(—1)*#*x A x' ifdegx>0 and deg x'>0
0 otherwise.
One verifies immediately that
(hd+dh) (x ® x)=h(dx ® x'+(—1)*t*x ® dx')+dh(x ® x')

is

—xx' if degx=0, degx'>0
(—1)2e*xx’  if degx>0, degx'=0
0 otherwise.

This means that
X' x—(—1)deex 4 x'. x = (hd + dh) (x ® x).

In other words, this product is anticommutative.
This defines a t-product in the t-cohomology

HP(Z(p).) x HY (Z(g).)~>H" "*(Z(p +q).).
The anticommutativity implies
x- X =(—1)P"xx for xeH?(Z(p)) and x'e HY(Z(q).),

and in particular x-x'=x"-x for xe H**(Z(p).).
The t-product factorizes through the product

Z(p)x Z(q). ~ Z(p+4q).
defined by

!

(%, x"y = t(x)- x".
Therefore the t-product in the t-cohomology factorizes through the product
H?(Z(p)) x H* (Z(g).) » H" ¥ (Z(p+4).)

which is defined by 7(x)- x".
Finally the product on Z(p), maps to the cup-product on Z(p). Therefore the t-product in
the t-cohomology maps to the cup-product in cohomology: the following diagram

HY(Z(p)) x H*(Z(q).) = H"'“"(lZ(P +4).)

HP(Z(p)) x H'(Z(9) > H” **(Z(p+4q))

is commutative.

(2.10) Define the characteristic classes of (f* E, f*V) by c,(f* E, f* V)=p-th symmetric
Sfunction of
(Lka Vr, k)e Hzp(Pa Z(p)t)

for E, L,, V., as in (2.7), Z(p).=Z(p) — A; and the product as in (2.9).
(2.11) Denote by a, the morphism

A (Op .. > f*A77Y,
td



336 Héléne Esnault

by 7 the morphism
(Op—.. '—’ng_l)_’((pl’_‘;' ComfrArTh,

by Z(p)y,. the complex
Z(p)—)(ﬁp—;. Lo fE4rT!
and similarly for z,.

PrOPOSITION. One has

’CC?(f* E):apcp(f* E:f* V) in Hzp(P>Z(p)§/,r)'

Proof. The product on Z(p), (2.8) defines a product x on Z(p)y . by
xxx'=1(x)x’ if degx=0
x Atdx ifdegx>0, degx'=¢q
0 otherwise,
for x and x" homogeneous elements in Z(p), . and Z(q),. .. Define a map
hi(Z(p). ®,2(q).) = Z(p+4a)..) ",
where [ is the degree in the complex considered, by
hx ® x)=(—1)%x A x' if degx>0,degx'=q+1
0 otherwise.
We prove in (3.3)—actually in a greater generality—that
apX X a,x—0a,,,%x X' =(hd+dh)(x ® x).

Therefore the diagram

Z(p). ®.Z(q), —— Z(p+4q),

I
l ap®aq ap+q

Z(p)g,. ®22(q),, . —— Z(p+q)s..

commutes up to homotopy. Since tc7(/* E) and a,c,(f*E, f*V) are defined as symmetric
products ((2.8) and (2.10)), it is enough to verify

TC?(Lk)(=C?(Lk) in HZ(Pa ZU)@,:)ZHZ(PaZ(l)g))

=ay(Ly, Vi)
This is (2.7, ii).

(2.12) If g: M — X is the projective bundle of E, then one has ([2], 1.7.2)

H"(JVI,Z(P)Q)=O< S . g 'H"H(X,Z(p—j),) 0(1)
024~ 2]
0sp~j

The Deligne cohomology of M is a free module over the Deligne cohomology of X, with



CHARACTERISTIC CLASSES OF FLAT BUNDLES 337

bases ((1)/, 0<j<r— 1. By taking the coefficients of the expansion of ¢(1)", one defines the
Chern classes ¢ (Eye H*?(X, Z(p),). With the formalism of Hirzebruch-Grothendieck ([9]),
one proves they are functorial and additive, and thereby verify /™! ¢ (E)=c¥(f* E), where
¢7(f* E) was defined in (2.8) (see [2], 1.7.2 and 1.7.3).

The image of ¢Z(f*E) in H*?(P,Z(p)) is the topological Chern class ¢;*(f* E)=
f1ck® (E), where ¢P(E) is the image of ¢Z(E) in H**(X,Z(p)).

(2.13) The formula (2.12) is no longer true for the 1-cohomology: H (M, Z(-),) is not a
free module over H'(X,Z(-),,). Therefore one can not use Hirzebruch-Grothendieck’s
formalism to prove that our classes c,(f* E, f* V) verify the standard properties of Chern
classes. ;

The rest of this chapter is essentially devoted to the definition of classes c,(E,V) on X
(2.15), to the proof of the functoriality (2.16) and the additivity (2.17), and to some simple
comments.

(2.14) LeMMA. With the notations of (2.7) and (2.9), one has the following commutative
diagram of exact sequences
0—f "' HY(X, Z(p),,)~H"(P, Z(p).) » H(P, Z(p))/f "' H'(X, Z(p))~0
. . |

0—f " HYX, Z(P)q,-,) = H(P. Z(p)s .) — HU(P, Z(p))/f "' HY(X, Z(p))~0.

Proof. Just write

Z(p). =cone(Z(p)— A)[—1]

ap

Z(p)y,. =cone(Z(p)—>(Op— ... - (A7) [-1]
zd
and remember that

Rf, (Af — 4K 1)= g% o g*+1
d

Tod

(2.15) THEOREM. Let E be a bundle on a manifold X with an integrable ty-connection V.
They are classes c,(E,V)e H*?(X, Z(p),,) whose images in H**(X, Z(p),,.,) are the images by
1o of the Chern classes ¢Z(Eye H**(X, Z(p),) in the Deligne cohomology, and whose images in
H?P(X,Z(p)) are the topological Chern classes ¢, (E).

Proof. The 1-product is compatible with the cup-product (2.9). Therefore the image of
¢,(f*E, f*V)in H*(P,Z(p)) is precisely f ~' ci*P(E). This shows via (2.14) that

¢ (f*Ef*V)=f " ¢,(E.V)
for a class
¢,(E,VYe H**(X, Z(p).,)

which is uniquely determined. Its image ¢’ in H*?(X, Z(p)g,-,) verifies
ST = aye, (f*E.f*V)
=1c)(f*E) (2.11)
=1f "' cZ(E). (2.12)
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One has the commutative diagram

STTHUX, Z(p),) < HY(P,Z(p),)
f_lHq(Xaz(p)Q,ro) S Hq(P’Z(p).”),t)

Therefore ¢’ =1, c7 (E).
This proves also that the image of ¢,(E, V) is the topological class c?(E).

(2.16) At this point we want to prove the functoriality. Let g: Y—X be a morphism
between two manifolds, and E be a bundle with an integrable 7,-connection on X (2.1). Asin
(2.3) 7, defines a morphism ;0 Qy—Qy . Write for simplicity 4"=Qy . and set
B''=img*B' in Q}. Let r:A”"—>A"" be a morphism of complexes with 4"°=0,, 4"*is a
quotient bundle of A%, Set B! < B"' = # ¢2(Q} — A”'). Then rg* V=rV' is a well defined
integrable 75-connection on g* E=E' for 75: Q; —» 4" Define g ' A" by g ' A°—>g 1A' >
... as a complex of C-modules. One has a natural map of C-complexes p:g~*(Z(p),,) —
Z(p);. This defines

pg " H*(X,Z(p).,) > H*(Y, Z(p)y;).
ProrosiTioN. (i) One has pg™'c,(E,V)=c,(E, V).
(ii) One has c¢,(E,V)=(/\E, \V) as defined in (2.15) and (2.2).

Proof. The second statement is a consequence of the first.
If (i) is true, then one has

o UNE AVI=(AS*E, A(F*V),),
for
P f T Z(p)ey = Z(p),s
and 7 and f as in (2.7). One has

(/r\f* E, /r\(f* V))=(®L;, ®V. ;) by construction
j j

=Z(Lj,Vw-) (2.2)
=c, (f*E, f*V) (2.10)
=f"'c,(E,V) (2.15)

Therefore one has (/\ E, A\V)=c,(E, V).

Let us prove the first statement. Consider the Cartesian product

h
PP

1l

Y- X
g

where P is the flag bundle of E and P’ is the flag bundle of E'(2.7). The canonical filtration Ej
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{resp. splitting L;) of f'*E' is the pull-back by h of the canonical filtration E, (resp. splitting
L) of f*E.

On P and P’ one has 7: Q; — A, and 1": Q5. > A" as defined in (2.7).

One wants to see that there is a natural map

ph"1Z(p). — Z(p).
such that the image by p’ of

(L;, V., jJeH*(P,Z(1),) is (L},V,. ;) in H*(P',Z(1),.).

T,
Assume that P=P(E) and P'=P'(E’) (this means that rank E<2).
One has the commutative diagram of exact sequences

0 h*f*A' - h*QL/f*B' - *Qbx =0

Lo |

0—"fl*AN1 "’Q}lzl/f/*B//l Q}:»/Y——*O
Recall that o is defined by

Qpyx(1)———f*E
lf*V
ce 1 QL/f*B' @ f*E
1®q

Q/f*B' ® 0(1)
This gives a commutative diagram
AL =h*fr a4t L pxQL/ f*BY
(0)
A”rluzf/*AHI T Q}l;/fl*B/ll (1 Q}l)l/f/*Bll
One has t'ah* f*V =1"f"*rg*V.

Define C!'=Aer Qp—AL. Then h*(f*V), is a connection with values in Qb /h*C?,
Define the morphisms " and »”

QL/f*BY 5 QL /h*C D A7
One has 7' =1'a. Therefore one has
(1) F' ¥ f*V), =1 ah*f*V.

Call V, and V, the integrable t-connections on ¢p(1) and Q} (1), V.. and V,. the
integrable t”-connections on . (1) and Q4. (1).

(1) implies F'h*V. =V,
Fh¥*V.=V...

Now (0) implies that the map h~'4*— A", extends to well defined maps of complexes
h™'A;— A% and p":h~'Z(p),~Z(p), such that

p,((QP(l)’ Vr) :((OP” (])3 Vr) and
p(Qpyx (1), V1) =(Q5y (1), V).
One repeats the construction inductively for (Qp (1), V;) and (Q}. (1), V;..).
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(2.17) The next points (2.18) and (2.19) are devoted to the following additivity property.
Let 0—(G,V)—(E,V) 5 (F,V)—»0bea 1o-flat sequence ((2.2)), with r =rank E and s=rank G.

PROPOSITION. One has ¢, (E,V)= Y. ¢/(G,V) ¢/(F,V).

k+1=p

To prove it we need a standard geometrical compatibility of the flag bundles of F, G, E
and further we need that this compatibility respects the complexes Z(p),.

(2.18) We consider the flat exact sequence and

P(F) P(E)

X

The surjective morphism e*E — Op (1) defines an injection j: P(F) - P(E) such that
J¥*Opgy (1) = Oppy(1) [10]. One obtains the following commutative diagram of exact
sequences

0 0

| |
Pl CR e*G
| |

0- QIIJ(E)/X(I) IP(F) - g*E-L0 Opiy (1) =0

e*n

0— QII’(F)/X(I)—_—) e*F —% @P(F)(l) -0

l

0 0

(%)

Call 6; and oy the sections defined in (2.4). ¢*V is a connection with values in
Qs /¢* B, and we have j*¢'*V = ¢*V by construction. Call j*&'*V simply the restriction of
&*V to P(F).

One has

e nj*o, ®@ 1= e*nj*(1 ® q) (£*V)

=(1® gp) e*V

Therefore the diagram
TE|P(F,
Qo pry =5 6* A

TF

1
Qpr)
is commutative and extends to the commutative diagram

. TE|P(F, .
QP(E)IP(F) Afp
]

!

. TF
QP(F)
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Especially the restriction of the t;-connection of Op g, (1) to P(F) is the 7p-connection of
Op (1), and the vertical left-hand side sequence of (x) is an exact sequence of integrable
7p-connections. This shows that our situation is inductive. We repeat the previous first step
to reach the following state at the (¥ —(s+ 1)}-st step.

One has the commutative diagram

D(F)—"s 7

Ve

X

where D(F)is the flag bundle of F, ' is injective. On Z’ one has the canonical “half-splitting”
of
E:E.cE.,. c...cE =h*E

such that
i"*E, = [*G

I"*E/Eq_=F,/F,_; for s+1<k<r
where F, is the canonical splitting of F:
O=F,cF,.,c...cF,=f*F.
Call 7;: Q) — A; . the morphism defined in (2.7), with A%y, = f*AX Rf Ay 5 = 4,
and 1,:Qj — A; the morphism in Z’ defined in (2.5) and (2.7). The filtration E, (F,) is
17, — (17 —) flat. The restriction of the integrable 7,-connection V., , on E,/F,_, to D(F) is

the integrable t,-connection V,_, on F, F,_,.
One has the commutative diagram of complexes

. TLIDEY 4+
QZ’\D(F) A

S
|

Qb(F)

This defines a morphism Z(p),, ., = Z(p)., The classes (E/E,_, V. ;) in
H*(Z', Z(1),,) are mapped to the classes (F,/F,_;, V.,,) in H? (D(F), Z(1),,).
Y 5

(2.19) Consider now the Cartesian square

I

DF) 5z

where Y is the flag bundle of /*G, Z is the flag bundie of E,. Of course ¥ = D(F) x yxD(G)
and Z is also the flag bundle of E. Write E, the canonical filtration of h*E = h"*h'*E. Then
0=EycE,c...cE,=h"*E, is the canonical filtration of h"*E, and E, = h"*E,
for s+1<k<r Call 0=G,cG, ... cG,=7y*G = B*f*G = i*E, the canonical
filtration of y*G, and set F, = B*F,. One has i*E, = G, for 0 <k <s and i*E,/E,_,
=F/F,_ fors+1<k<r
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Call 7: Qy — A;,, the morphism defined in (2.7) (with respect to f*G and 17: Qp (p, = A4,
on D(F)).

One has A% =y*4* and Ry, 4, = A". Call 1:Q; — A; the morphism defined in (2.7)
(with respect to h"*E, and 1,:Qj — A, or if one prefers, with respect to h*E and
10:Qy > A).

We apply now the functoriality (2.16). There is a morphism p’: Z{p), = Z(p),, which
sends the class of (E,/E,—, V.,) in H*(Z, Z(1),) to the class of (F,/F,_, V,.,) for
s+ 1<k <ror to the class of (G,/G,—,, V..,) for 0 < k < sin H*(Y,Z(1),).

By the functoriality again, one knows that

P e (F, V) = c,(y*F, (y*V),) and
7710, (G, V)= c,(y*G, (y*V),).

Therefore one obtains

Pl e, (W¥E, (¥V)) = 3 y7'el(G, V) a(F, V)

The latter is y™' Y ¢, (G, V):¢,(F, V).

k+l=p

This finishes the proof.

(2.20) CoroOLLARY. Let g: Y — X be as in (2.16). Assume that (g*E, rg*V) has a t1y-flat
filtration (E,, rg*V = V). For ¢(E,/Ey_1, V) =Y ¢;(Ey/Ex—1, Vi) one has pg~ '¢(E, V)=

i

H ¢(Ey/Ei-1.Vy)

k

Proof. Apply the functoriality and the additivity.

(2.21) CoRroLLARY. Let X be a smooth projective variety. Let O — (G, V) - (E,V) = (F, V)
— 0 be a flat exact sequence with rank E =r and rank G = s. Then c,(E, V) is torsion for
p = sup (s,r—s)+ L.

Proof. One has ((2.17) and (2.9)), assuming r —s < p and s < p:

Q(E, V)= ) ®(G)e(F,V)

k+il=p

As ¢i°?(G) is torsion for k = 1 and as / < p, one obtains (2.21).

Remark. This implies (2.15) that the image c3(E) is torsion also.

(2.22) MULTIPLICATIVITY.

Let E and F be two bundles on X with integrable 7,-connections V and V. Consider a
morphism f: P — X realizing a splitting L; of E, M ; of F with integrable t-connections V; and
V’. One has the splitting of f*(E ® F) by L; ® M;, of f*(V ® V'), by V; ® V. Then one has

Y T (EQF, VOVt =[]0 +(L,V)+(M;, V)] 1)

pzo iJ
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k k
Y flcp</\E, /\V>'t”=]—[(1+[(Lil, Vi)+ ... +(Ly, V)]0
pz0
1£i,<... <iy<rank E

¢, (E, V)= (—1)? c,(E¥, V").

(2.23) One summarizes the previous statements for standard flat bundles.

THEOREM. Let E be a flat bundle on X with an integrable connection V. There are classes
¢,(E,V)e H**(X, Z(p) » C) whose images in H*"(X,Z(p)y) are the classes cZ(E), whose
images in H*(X, Z(p)) are the Chern classes cyP(E). They are functorial and additive. The class

¢, (E, V) is the isomorphism class of </\E, /\V> in H*(X, Z(1) - C). Moreover c,(E, V) is

torsion for p = 2 as soon as E has a flat splitting by rank one bundles (and X is projective).

(2.24) Axiomatic description of the classes c,(E, V). Let X be a manifold, 7o: Qy - A" be
as in (2.1).

THEOREM. For any bundle E with an integrable ty-connection V, there are classes
¢,(E, V)e H*?(X, Z(p) — A’) which are uniquely determined by the following conditions:
() c¢y(E,V)is the class (det E, det V) defined in (2.1)
(i) c,(E,V) is functorial in the sense of (2.16)
(iii) c,(E, V) is additive in the sense of (2.17).

Proof. The existence has been shown in (2.15), (2.16) and (2.17) whereas the unicity
follows from the existence of the t-flat canonical filtration (L, V,,) on the flag bundle
fiP - X of E: by (2.16), one has /! ¢,(E, V) = c,(f* E, f*V) and by (2.17) this class is the
p-symmetric sum of the classes (L, V_ ).

(2.25) Comparison with other classes.
(2.25.0) Consider the morphisms
a,: H**"Y(X,C/Z(p)) » H*(X, Z(p)3)
B:H**" (X, R(p)/Z(p))— H**(X, Z(p)5)
y H¥* 7YX, R/Z)— H**(X, Z(p))
with V= .Lﬁ
(2im)?
7. C— R(p).
If X has a Hodge structure, for example if X is an algebraic proper manifold, then one
knows that y is an isomorphism onto its image. Call y ™! its inverse.

(2.25.1) Comparison with the Deligne classes cZ(E). We have seen in (2.15) that
apcp(E’ V)= C;{(E)

for flat bundles. This implies the following
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1
LEMMA. Let X be a manifold with a Hodge structure. Then (Z'i)p n,c,(E, V) is uniquely
in

determined by c3(E) for E flat; one has

ﬁ n,c,(E, V) =y~ cg(E).

(2.25.2) M. Karoubi [11, 12] defined for a simplicial set X and a flat bundle E classes
¢,(E)e H**~' (X, C/Z(p)), using K-theory, cyclic homology and the cohomology of the
classifying space BG. In a personal communication, he hold the author that his classes verify
the conditions (i), (i) and (iii) of (2.24) (work in preparation). Therefore one would have
(2.24): ¢, (E, V) = ¢,(E) for flat bundles.

(2.25.3) J. Cheeger and J. Simons [4] defined for a differentiable manifold X and a flat
bundle E classes ¢,(E)e H*? ™! (X, R/Z) using the cohomology of the classifying space BG
and the existence of universal unitary connections after M. S. Narasimhan and S. Ramanan.

If X has a Hodge structure and E is unitary (that is coming from a unitary represen-
tation of the fundamental group), S. Bloch ([2]. (3.1)) and C. Soul€ ([8], (5)) proved that
y¢,(E) = cZ(E). Therefore one has in this case (2.25.1)

1

WﬂpCP(E, V) = CAP(E)

(2.25.4) It would be nice to know that the Cheeger-Simons classes lift the Deligne
classes if E is a flat bundle which is not necessarily unitary. This would imply that our
classes lift the Cheeger—Simons classes as in (2.25.3). However it might be difficult to show,
since the construction of Cheeger—Simons is quite complicated in the non unitary case (at
least for me!).

§3. LOGARITHMIC THEORY
(3.1) Let D be a normal crossing divisor on X and j: X — D — X be the open embedding.
One considers a morphism of complexes
T0:Q% < D > — A,
where Oy = A9, A% is a quotient bundle of Q% (D >. One defines
Z(p)p.o = Z(p) > Ap,
Z(p)s.pze=Z(p)—> A ... > AF!
4y L(P)p,eg= £(DP)o.D,co
19:Z(p),— Z(P)g p -

One may perform the whole construction of §2. One finds classes ¢, p(E,V)e
H?*(X,Z(p)p..,) For 1, = identity, ie. for standard logarithmic connections, this gives
classes in H*?(X, Z(p) — Rj, C). One has a,c, ,(E,V) = 15cZ(E). As one sees, those classes
do not lift the Deligne classes. We have to refine the construction to obtain this property.

(3.2) On X define the complex
Z(p)y =Z(p) > Cx— ... »QF ' 5> Ap— ... > 4]

Tod 7,d

and the morphism
ap: Z(p)ey = L(p),-



CHARACTERISTIC CLASSES OF FLAT BUNDLES 345

On the flag bundle /2 P — X of E, the integrable t,-connection defines a morphism of
complexes 1:Qp (D' > > Ay, where D' =f"'D, with Rf, A} .= A}, and integrable -
connections V_, on L,. This defines of course

(L4, Vr,k)EHZ(Paz(I)D,r)'
Define
Z(p): Z(p) = Op— ... > Qb7 s f*¥ AL —» . > f* A}

d

One has Z(1), = Z(1), . and morphisms:
T 2(p). = Z(p)p> With Z(p)p. = Z(p) > Cp— f*Ap —> ... > f* A,
d

as in (3.1), and a,: Z(p), = Z(p)... We define a product
Vi Z(p). x Z(q). = Z(p+4q).

by the following data:

xux =1(x)x ifdeg x =0, deg x' < ¢q
xAndx f0<degx<p, degx' =g
x A tdx’ if p < degx, deg x' =¢q
0 otherwise

for x and x’ homogenecous in Z(p), and Z{g)..

LeMmMA. U is a well defined product. that is it defines a morphism of complexes

Z(pr&

Z{g). > Z(p+q)..

Proof. One has to verify
dixux)=dxux' +{— 1% xudx,

where d is the differential in the corresponding complex. The left hand side is

xdx’ if deg x =0, deg X' < ¢
dx A dx’ fO0<degx<p-—2, degx'=gq
(dx A dx’)=1dx A 7dx’ ifdegx=p—1, deg x' =g¢q
tdx A 1dx’ if deg x = p, deg x' =g
0 otherwise,

whereas the right hand side is

xudx = xdx ifdeg x =0, deg x' < g

dx v x' = xdx’ ifdeg x =0, deg X' =¢q

dxux'=dx A dx’ fO0<degx<p-—2 degx' =g
=1dx A Tdx’ ifdeg x =z p—1, deg x' =¢q

0 if deg x =0, deg x’ =2 g+1

or if 0 < deg x, deg x' <g-—2
(— 1) x udx' =0 it 0<degx, deg x' =q—1.

TOP 27:3-G
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(3.3) On Z(p)p . we define the same product as in (2.9):
x-x'=1(x)-x" ifdegx=0
0 otherwise.
The product U on Z(p), defines via 7 a product on Z(p),, ., still denoted by U, by
xux =1(x)-x" ifdegx=0, degx'=Zg¢q
x A tdx' ifdeg x>0, degx =g¢g
0 otherwise,

which makes the following diagram commutative:

Z(p). ®2Z(q),

T T

Z(p+q).

Z(p)p, ®z Z(Q)p.-———Z(p+q)p,

Recall that the Deligne product (2.8) on Z(p), is defined by:
Xogx' =x-X if degx=0
xAndx  if degx>0, degx' =g

0 otherwise.

LemmMma. (1)  The following diagram is commutative

Z(p). ®22(q).

4,®aq, dp+gq

Z(p+q).

Z(p)o ® 22(q)y ——Z(p+q),

(i) The products U and - on Z(p),,, are homotopic.
(i) The product L (on Z(p), and on Z(p),..) is anticommutative.

Proof. (i) is obvious
(i) Define a map

h:(Z(P)pe ® 2 2(q)p)' = Z(p+ )5
where [ denotes the degree of the corresponding complex, by
h(x®@x')=(—1)***x A x" if deg x>0, deg x' =g +1
0 otherwise.
One has to verify that & is the homotopy wanted, that is
xUx' —xx'=(hd+dh)(x®x'),

where d is the differential in the corresponding complex.
The left hand side is

—xx if deg x=0, deg x'2qg+1
xAatdx” if deg x>0, deg x'=g¢g

0 otherwise.
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The right hand side is
hdx®x +(—1)E*x®@dx")+ dh{(x®x").
Recall that if x is in Q% or in f*43}, its degree is (s+1). One has
hdx®x')=(—1)%=**1rdx A x’ if deg x'=q+1
0 otherwise
(=1 *h(x®Rdx)=(—1)2¥E*x atdx’ if deg x>0, deg x’'=¢
0 otherwise
dh(x®x)=(—1)%8>(tdx A X’ +(—1)¥8*"1x A1dx’)
if deg x>0, deg x'=2¢g+1

0 otherwise.

Altogether this gives the equality wanted.
(i) Define the homotopy

hi{Z(p).®zZ(q9).)'—>Z(p+q):*

by
hMx®x)=(—1)%*x A x’ if 0<deg x<p
O<deg x'<¢q
0 otherwise.

One verifies in the same way as in (ii) that
(—1)dexdeex’s x — xUx' =(hd +dh)(x® x').

This proves the anticommutativity of U on Z(p),. On Z(p),, . either one takes the same

homotopy, or one remembers that u and - are homotopic (ii), and that - is anticommutative
(2.9).

(3.4) The product U on Z(p), defines a product U in the cohomology H? (Z(p),),
which verifies xUx'=(—1)"?x"ux for xe H? (Z(p),) and x'e H?(Z(q),), and especially
xux'=x"ux if p'=2p. Define the characteristic classes c,(f*E, f*V) as the p-symmetric
sum of

(Ly, V. )eH? (P, Z(1),) (3.2)
By (3.3, i), one has ‘
a,¢,(f*E, f*V)=c2(f*E)(=f"'c%(E) by (2.8)).

PrOPOSITION. There is a class ¢, (E, V)e H*?(X, Z(p),,), which is uniquely determined such
that

Tl ey (E,V)=c,(f*E, f*V).
It verifies a,c,(E,V)=cZ (E).

Proof. One considers the exact sequence

H??(P, Z(p))

- —0
fTIH?(X, Z(p)s)

0—f "1 H?"(X, Z(p).,)~>H**(P, Z(p).)
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As a,c,(f*E,f*V)ef "'H*®(X, Z(p)y), one has c,(f*E, [*V)=f""'c,(E, V) for a well
defined class c,(E, V). The second assertion follows from the commutative diagram

fTYH?P(X, Z(p).,)s H*" (P, Z(p).)

ap ap

STTHPY(X, Z(p)y)s HY (P, Z(p)g)-
(3.5) Consider the morphism 74:Z(p),,—Z(p)p.,-

LEMMA. One has
ToCpE, V)=c, 5(E, V) (defined in (3.1)).

In particular, if D = ¢ and ©, = identity (that is if (E, V) is a flat bundle), then the two definitions
of ¢,(E, V) (in (2.15) and (3.4)) coincide. If D= ¢ and t,#identity, one has ToC,(E, V) (as in
(3.4))=c,(E, V) (as in (2.15).

Proof. By (3.3,i), the products v and - are homotopic. Therefore one has
e, (f*E, f*V)=c, p(f*E, f*V). From the commutative diagram

JTHH(X, Z(p)., )5 H*"(P,Z(p).)

f— lep(Xs Z(p)D,to)G HZP(P:v Z(p)D,r)
one obtains the result.

{3.6) One proves now in exactly the same way as in (2.16) and (2.17), replacing each
time it is necessary Z(p), defined in §2 by Z(p), defined in §3, that the classes defined in (3.4)
are functorial and additive.

Summarizing everything, one has the following

THEOREM. Let 14: Qy{D>—Ap, (E,V) be as in (3.1), Z(p),, and a,: Z(p),,—~Z(p)s be as
in (3.2). There are classes
¢p(E,V)e H??(X, Z(p),,)

which are uniquely determined by the following conditions:

(i) ¢ (E,V)is the class (det E, det V) defined in (2.1)
(i) c¢,(E,V) is functorial in the sense of (2.16).
(iii) ¢,(E, V) is additive in the sense of (2.17).

Moreover one has a,c,(E,V)=c%(E). The proof is of course the same as in (2.24).

(3.7) Remark. The theorem (3.6) is interesting essentially in the case t,=identity, that is
if (E,V) is an integrable logarithmic connection. However, even in the case D=¢ and
7, #1dentity, one obtains slightly more than in (2.15), because the classes (3.4) lift the
Deligne classes, whereas the classes (2.15) lift “only” the “1,-Deligne classes”.

§4. MISCELLANEOUS ABOUT HERMITIAN BUNDLES

(4.0) In [6] P. Deligne introduces the group Pic x of isomorphism classes of rank one
bundles E with an hermitian metric h on an analytic manifold X. He identifies it with the
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cohomology group.
H*(X,Z(1)»0x—S%)

where S¢ is the sheaf of R-valued C* functions, and the map Ox—S% is described by
f—f+F This may be seen with Cech cohomology asin (1.1). If U, is a trivializing cover of E,
with E|y,~0ye, and h,=log hle, e,), the Cech cocycle of (E,h) in %*(Z(1))
X @1 (Og) x 6°(S2) is Qinmyy, fi;, log h;), with 6f=2imm, f+f=& log h, where 4 is the Cech
differential, coming from e;=exp(f;;)e;, h;=exp (fij)-mfiﬁ-hj.

(4.1) Let Ay be the C* C-valued De Rham complex of X. Its differential d decomposes
in 0+, where 3: A§—>A%* " and 0: 4§~ A", and AY¥ is the sheaf of C* differential
forms of type (i,j). On the other hand, the cohomology group

d 0 8
HZ(X,Z(l)—>(9X—>A§(O—>A}2(O—->. .o A%

is the group of isomorphism classes of rank one bundles E with 4 }-valued connection V
which is compatible with the complex structure and whose curvature in the (2, 0) direction
vanishes: (V2)20 =0. This may be seen in the Cech cohomology in the same way asin (4.1). A
cocycle for (E, V) in €2(Z(1) x €' (Ox) x €°(A1°) is Qimmyy fij, 0;), with 6f=2inm, 6w =df
and dw=0.

(4.2) Define the complexes

d d
GP=0— ... 50> AP S AR L PR AR 5 .

where A% is in degree 2p,
Z(p)g=Cone (Z(p)® G">A3)[ 1],
and the cohomology
HY(X,p)=H(X, Z(p)g)-

Since G? has a natural product, it defines as in (2.8) a product on Z(p); and therefore a
product on H%(X,p). From the natural map G”—F?”, where F7 is the Hodge—Deligne
filtration, one obtains a map

w:Z(p)g—Z(P)o

which is compatible with the products, and therefore a ring map

o0 @ HE(X,p)»® HY(X, Z(p)s).

p.q p.q

This defines a commutative square of rings
® HY(X.p) > @ H(X. Z(p)2)
(.
D HO (AR ) ctosea = ® H??(X, FP)
P I3

(see [2] for the compatibility between the Deligne and the F products, and [7] for precise
computations).
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Let Sy be the C* R-valued De Rham complex of X, and A*(X, R/Z) be the group of
differential characters defined by Cheeger—Simons ([4]).

LeMMA. There is a natural map

H(X,p)—H> ' (X,R/Z).
v
Proof. Define

K*¥1=0-0-8%"1» . 58
where S*1 is in degree (k+1), and
1K = cone(C'(Z)®K* ' - C(R)) [~ 1],

where C'(A) is the complex of smooth singular A-valued cochains on X. The definition
given in [4] implies immediately:

HY(X,R/Z)=H*"(X,**'K).
On the other hand one has maps .Z(p)—+ C (Z(p)),

G?’>K?P(p), Ay—=Si(p)~C (R(p)),
which define a map
Z(p)s—*"K(p)

and therefore a map

HE»(X,p)—> H*?(X,*?K (p)) = (2in)” H** ™' (X, R/Z).
-

1
Then y =%—)—py .

(4.3) By definition one has
d 8
HIX,)=H*(X,Z(1)> Oy —> AL . o AP,

Consider the morphism of complexes
0:Z(1)>0x—S8%

PPl

Z(1)> 0y A —. . .5 A%
which sends Pic (X) to HZ(X, 1).
LemMma. The morphism
0: Pic(X)-»H(X,1)
is injective. One has 0(E,h)=(E,V,) where V, is the unique connection on E compatible with
the complex structure and the hermitian metric h. One has a(E,V,)=c?(E), B(E,V,)= Chern
Jorm defined by V,,

Proof. In the Cech representation, one has

0(2imm, f, logh)=(2inm, f, oh/h).
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Since w=0h/he%°(A%°) defines the unique connection compatible with the complex
structure and h, one has 0(E, h)=(E,V,).
One considers the following commutative diagram with exact columns:

Hl

—_
%]
O
~—
It
o

If xe HX(Z (1)~ 04—S%) with éx =0, then x=Im y, with ye H°(5%), and dy=1Im z, with
zelm HY(Z(1)-0Oy). Therefore (y—Im z) maps to x and verifies d(y—Im z)=0. Since
(y—1Im z)e H°(S9) this implies y —Im z =0. Therefore x=0. Finally, since the Chern form is
dw=00h|h, it is B(E,V,).

We would like to define classes c,(E h)e HZP(X,p) such that ac,(E, hy=c%(E),
Bc,(E, h)=Chern form defined by h, (eventually yc,(E, h)=¢,(E) as defined in [4]), and such
that ¢, (E, h) is the class

(det E, det h)=(det E, det V)

described in (4.1), (4.2) and (4.3). We present a small step in this direction based on the
t-construction. Since it does not lead to the goal, we just sketch the proof.

(4.4) Consider an hermitian bundle (E, k). One has (V;)?° =0, where V, is the connection
compatible with the complex structure and h. Consider the flag bundle f: P—X of E as in
(2.7). Similarly to there, V, defines a splitting : 4} —f* 4%, where

FrAY=f " AL @ 1 g AS.
The condition (V2)?° =0 implies (z0)* = 0. Consider the sheaf ¢p  of functions which are C-
valued, C® in the X direction and holomorphic in the fibre direction. Then 0  is quasi-
isomorphic to the complex
A°—>Ag/x—>AP/X—> ..
where 0, is defined by
8, A9 401 AL,

k
and A= ARUF* A, and A%y =A A%

Define A=f"1AP®-1430p,. One verifies 10A41% = A1* 1% One shows by standard
arguments of the sheaf theory that Rf,Op =A% and thereby that Rf, 4; °= A¥ where 4;°
is the complex (4:°, ©9). Now the connection V, defines t-connections

Vz,;ﬁLk_’Ale @cfp Ly,
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on the splitting rank one bundles L,, and thereby classes

U

(L, Vr,k)eHz(P,Z(l)—>(0P—>AI10~>Af°—>. .2)
14}

sing the product U of (3.2), one finds classes

co(f*E, f*V,)e H*P (P, Z (p)—>Op—. . SO S AP0 5 479

which are coming from X as in (3.4). Altogether this defines classes

d ¢ ¢

C(E, V) eH* (X, Z(p)— Oy — . .. —QF T 5 A 5 5 410)

with the standard properties, and which lift the Deligne classes. However they don’t lift the
Chern form: the natural map

is

d bl
HE(X,p)> H*" (X, Z(p) > Cx— . .. SO 548 5 549

not injective.
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