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Classically the vanishing of cohomology groups of a compact complex Kéhler
manifold X with values in certain locally free sheaves .# is proved by studying
positivity properties of the curvature form of a differentiable connection on .#
compatible with the complex structure of X (e.g. [7]). If the Chern classes of
# are non trivial, the connection is neither holomorphic nor integrable.
Therefore, trying to replace the differentiable connection with non trivial
curvature by an integrable holomorphic connection V, one has at least to allow
V to have poles along a “boundary divisor” D. We even will assume D to be a
normal crossing divisor and ¥V to have at most logarithmic poles along D. Since
V is non singular and integrable on U= X — D, the positivity properties have to
be replaced by topological properties of U together with conditions on the
boundary behaviour of (., V).

Because of the restriction made on the poles of V along D one has at
disposal the theory of P. Deligne on differential equations with regular singular
points [3] and in fact his Lecture Notes was the main source of inspiration of
our work:

Let V be the local constant system on U defined by sections of .#|;, flat
with respect to V and j: U—X be the inclusion. (.#, V) is equipped with its
logarithmic De Rham complex DR, # =Q'(D>®,, #, which is over U quasi-
isomorphic to V. If the monodromies of V around the components of D do not
have 1 as eigenvalue the complexes j;V, Rj,V and DR,.# are all quasi-
isomorphic and the hypercohomology of DR,.# is the same as the cohomolo-
gy or as the cohomology with compact support of U with values in V. The
spectral sequence E,(.#) associated to the “filtration béte” of the logarithmic
De Rham complex describes the hypercohomology in terms of the cohomology
of the coherent Oy-modules QP(D>®.#. If in addition the spectral sequence
degenerates in E,, topological vanishing theorems on U imply global coherent
vanishing theorems on X.

In general it is quite difficult to decide when the spectral sequence de-
generates (see (2.6)). Using Deligne’s theory of mixed Hodge structures [4], this
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is true however for sheaves arising from finite covers of X, branched along D.
The main examples of sheaves arising by this construction are invertible
sheaves ¥~ !, where % is ample or more generally related to integral parts of
effective @-divisors with support in D. If U=X —D is affine, the degeneration
of E,(#~ ") implies immediately a general global vanishing theorem containing
as special cases:

- Kodaira-Nakano’s vanishing theorem (2.10)

- Bogomolov-Sommese’s vanishing theorem (2.11) and

- Grauert-Riemenschneider’s vanishing theorem (see (2.14,a)) as well as its
generalization due to Y. Kawamata and the second author ((2.12) and (2.13)).

If one drops the assumption on U, the degeneration of E(.#) implies the
vanishing of certain natural restriction maps in cohomology. Applied to the
sheaves £~ ! considered above one obtains the vanishing of the restriction
maps of twisted differential forms in the cohomology ((3.2) and (3.3)). Es-
pecially one gets an improvement of the Kollar-Tankeev vanishing theorems
(3.5) as a direct interpretation of the degeneration of the spectral sequence.

In §1 we recall properties of sheaves with logarithmic connections and their
De Rham complexes. The condition that the monodromies of ¥ do not have 1
as eigenvalue implies that the minimal and the maximal extensions of V
coincide, as we prove in (1.6).

In §2 we give the cohomological interpretation of (1.6), provided the spec-
tral sequence E,(.#) degenerates and U=X —D is affine. We discuss examples
where all three assumptions hold and state and prove the vanishing theorems
mentioned.

§3 contains the applications to the cohomology of restriction maps, useful
if U is not affine. The main observation is that the conditions posed on the
monodromy of V imply that the residue maps obtained from V are surjective
on each component of D and can be identified with the natural restriction
map.

In order to recover the positivity properties of differentiable connections in
terms of the logarithmic connection ¥, one should at least be able to define the
Chern classes in the De Rham cohomology. That is done in Appendix B by
describing the Atiyah class as the image of the residue of ¥, a construction due
to J.L. Verdier and independently to the first author (and probably to others,
too). We believe that the language of ¢y-coherent logarithmic Z-modules is a
quite adequate tool in algebraic geometry to describe properties of certain
sheaves and we hope that the methods used in this article are useful for
different applications as well.

Appendix A contains an algebraic proof that the Verdier dual of the
complex DRy is quasi-isomorphic to DR y(Hom, (M, Ox)@Ox(—D,.4). The
statement (1.6) on the extensions of V is an immediate consequence. The
corresponding duality for 2-modules is one of the key points in the proof of
the Riemann-Hilbert correspondence for 2-modules (M. Kashiwara,
Z. Mebkhout, see for example [2]).

For Appendix C we just worked out notes given to us by P. Deligne on the
classification of free logarithmic connections on a polycylinder in terms of
“splittable” filtrations of local constant systems.
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The vanishing theorems of §2 and §3 are based on the degeneration of the
E, spectral sequence and the conditions on the monodromy. For the appli-
cations given it is enough to verify those conditions for connections coming
from finite representations of the fundamental group of U. In Appendix D
K. Timmerscheidt proves that for a special extension .# of a local constant
system, coming from a unitary representation of n,(U), the monodromy con-
dition implies the degeneration of the E, spectral sequence. In fact, S. Zucker
proved in [12] similarly results for arbitrary variations of polarised Hodge-
structures over curves, and the methods used by K. Timmerscheidt are based
on [12].

After finishing a first version of this paper we learned that our approach
towards global vanishing theorems is close in spirit to methods used by
J. Kollar [10] and related to results by M. Saito (see also (2.6)).
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§ 1. Logarithmic De Rham complexes
and extensions of local constant systems

In this section we recall the basic properties of locally free sheaves with
logarithmic connections, their monodromy and the extensions of the corre-
sponding local constant systems, as developed by Deligne. Most statements
given in this section are due to him, and all proofs omitted can be found in
[3], especially the Riemann-Hilbert correspondence. The reader mainly in-
terested in the proof of the global vanishing theorems is invited to read just up
to (1.5) and then to read §2.

(1.1) Throughout this article X denotes either a connected algebraic manifold
over € or a connected complex analytic manifold of dimension n. If not stated
otherwise X is assumed to be compact. ¢y, denotes the sheaf of algebraic
functions or the sheaf of analytic functions in the second case. In §1 - starting
from (1.2) - and in Appendix A we have to restrict ourselves to the complex

analytic case. Let D= Y v;D; be an effective normal crossing divisor on X, i.e.
i=1

an effective divisor locally (in the analytic topology) with nonsingular com-

ponents meeting transversally. We write j: U=X —D, — X for the open em-

bedding. We consider locally free sheaves .# of Ox-modules endowed with a
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holomorphic connection V with logarithmic poles along D
Vi M—>QD>QM

as defined by Deligne ([3], II §3). Such a pair (., V) will be called a logarith-
mic connection along D. It induces

V,: Qe(DY®.M— Q5 (DYR.M

by the rule V(w®@m)=do@m+(—1)P-w A Vm. We assume V to be integrable,
ie: V,0¥,,,=0. The complex Qy{D)®.# obtained is denoted by DR,.# and
called the logarithmic De Rham complex of (M, V).

In the literature, DR, .# is often denoted by Qy(log D)(.#). Of course, one
has Q§<{D)=Q%{D, > and DR,.# =DR;, ,.#. However in the covering con-
structions of §2, the divisor D is naturally equipped with multiplicities.

(1.2) From now on all the sheaves are considered in the classical topology
and Oy denotes the sheaf of holomorphic functions. The following statements
are local in X and whenever it is convenient we may assume that X is a

1
polydisk 4" and D= ) pr;”*(0).
1

a) For a local constant system ¥ on U we consider the direct image Rj,V
and the extension by zero j,V. The functor j, is exact. Of course H*X,Rj, V)
=H*U,V) and (for X compact) IHX,jV)=H*U,V), the cohomology with
compact supports. The fundamental group =,(U) operates on the fibres of the
local system V. If T; denotes a loop around D; with base point x, then one
obtains an automorphism y; of V, called the monodromy of V around D,.
Since we are only interested in the eigenvalues of y,, we do not refer to the
base point.

b) The complex DR, #|; is exact at p>0 and the flat sections form a local
constant system V=KerF,. In other words, the inclusion V—DR,. 4\, is a
quasi-isomorphism of complexes. The operation of 7, around D, can be extend-
ed to the boundary D by

1
¢) Proposition (Deligne). Let X=4", D=|)pr,'(0) and M be a free sheaf
1

of rank r with a logarithmic connection along D. Then the operation of n,(X —D)
extends to M.

Proof. Let p: X—S=4""! be the projection where one forgets the first coor-
dinate. The connection ¥ induces a relative one

Veet! J”_’Q;(/S<D1>®«/”,
where

1
Qys<D1>=Q3<D>/p* Qs <Q pri? (0)> = Q<D >/p*Qs.

The kernel V,, of V,x_p, is a relative constant system, isomorphic to
V®cp~ 'Oy over U. Since V,,, is locally on X —D, the sheaf-theoretic inverse
image of a free Og-module, the operation of T, extends to V. If we write the
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first coordinate as x,=r,-exp()/ —1-60,), the local relatively flat sections s of
M satisfy a differential equation

Og, 5=~/ —1l-exp(=y —1-0,)-Vo+) —1:1,-V})-s

. v,
for ¥, in p~'(0s) and ¥, in Oy and ,e,—( 2+ Vl)-dxl. The argument of [3],
1
II; théoréme 1.17, carries over to the case considered here.

d) By ¢), T; defines an endomorphism 7, of #®0;, where D; is the
normalization of D,. Since 7, is a limit of conjugates of y,, its eigenvalues are
constant. Define the residues I; =Res,(V) of V by I =res; o V, where

res;: QD> M0y @ M

is the Poincaré residue. Of course, using the notations from c) one has V|,

=I,. Therefore one has exp(—2-n-}/ —1-I;)=7%,, regarding I; as an element of
End(# ®,, 0p). Especially, its eigenvalues are constant.
i

e) If B=ij-Bj is any divisor supported in D, the Leibnitz rule implies
that V induce; a connection V® with logarithmic poles along D, 4 on
M(B) =M, Ox(B),
whose residues I}® are elements of
End(4(B)®05,) =End(A4 ®05,).
Therefore one may compare I; and I;® and one has
I[[B=T,—b, - identity.

Especially the eigenvalues differ by integers. If I does not have any positive
integer as an eigenvalue, the same is true for I;® for any effective B.

(1.3) a) On the other hand, if V' is a local constant system on U, denote .4,
=0,®¢V and F, the unique holomorphic connection whose flat sections are V.
Then there exist a locally free sheaf .# and a connection V with logarithmic
poles along D extending (.#y, V). As explained in Appendix C, this extension
is far from being unique. However, a choice of a logarithm function fixes a
unique extension ([3], II; 5.3 and 5.4). For example, there is a unique extension
(up to isomorphism) such that the real part of the eigenvalues of I lies in
[0, 1[. This extension is called in the sequel the canonical extension of V and is
denoted by V,,,. If the monodromies are unipotent, then V. is characterized
by the fact that the eigenvalues of the residues are zero.

b) The canonical extension is compatible with subsystems and quotient

systems:
For W <V, one has
W/CBH < V::an and (V/W)can can/VVcan'
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Moreover it is compatible with covers in the following sense: For any cover
u: X'— X, ramified only along D, and with X’ smooth, one has

Vo) (0™ 'V ) -

Moreover, if (#,V) is any other extension of V such that for some cover y as
before p* 4 is contained in (u~'V),,, then one has 4 V.

can? can’

(1.4) The following description of DR,,.# will play a central role: a) ([3], II;
3.13 and 3.14) If (#,V) is a logarithmic connection along D such that none of
the eigenvalues of the residues I is a strictly positive integer, then DR, is
quasi-isomorphic to Rj_V (for example for .# =V, ). By (1.2, €) this condition
is preserved if one tensors with ¢,(B) for an effective divisor B supported on D.
Hence under this assumption DR,.# and DR,,.#(B) are quasi-isomorphic.

b) If the monodromies y; do not have one as eigenvalue then, indepen-
dently of the divisor B, we can apply part a) to .#(B). Therefore the condition
on the monodromy implies that for all divisors B supported on D the com-
plexes DRy, #, DR,.#(B) and Rj_V are quasi-isomorphic.

(1.5) Corollary. If U is an affine manifold of dimension n and V a local constant
system on U, then
HYU,V)=0 for k>n.

If moreover the monodromies y; of V around D, (for i=1...s) do not have 1 as
eigenvalue, then
HYU,V)=0 for k+n.

The proof of the first part can be found in [3], II; 6.2: One chooses X to be
a projective compactification satisfying the assumptions of (1.1), and (4, V) to
be V.. If one denotes for a moment the algebraic sheaves by ()¢ and the
analytical ones by ( )*" one uses the following argument due to Grothendieck.
By (1.2), a) and (1.4), one has
HYU,V)=HXX,Rj,V)=HX, (DR ,(.4))*")
=H*X, lim (DR, #(B)*")=H*X, lim (DR ,.#(B)"®))
B2DZBrea B2DZ Brea
=H*U, DR, M%) =H"H°(U, Q@ #*%)=0 for k>n.
The second part of (1.5) follows from the first part, (1.6) and the Poincaré
duality since

HYU,V)=1HXX,Rj,V)=HX,j,V)=H4U,V)=H>""4U, V).

If one does not want to use (1.6) one can argue using Serre’s vanishing theorem
and Serre duality:

Assume that the y, do not have 1 as eigenvalue. If one chooses B to be a
sufficiently high multiple of an ample divisor, we have

HYX,Q%(D>RM"(B—D,4)=0 for ¢>0.
Here .#" is the Oy-module #om, (M, Uy). By Serre-duality one has
H (X, 0x®(Q4<{D>®@M"(B~D,.))")= H' (X, 25 "<D>Q@.#(—B)=0
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for ¢'<n. Looking at the spectral sequence associated to DR,,.#(—B) with the
“filtration béte” (see [4], 1.4) and converging to

HY(X, DR,,.#(—B))=H"X,Rj, V)=THYU, V)
one obtains H¥(U, V)=0 for k <n.

(1.6) Lemma. Let V be a local constant system on U such that the monodromies
y; of V around D; (for i=1...s) do not have 1 as eigenvalue. Then j,V and Rj.V
are quasi-isomorphic. Especially jV =j,V and

R, V=0 for g>0.

Proof. Since we have a natural morphism j, V—Rj, V, it is enough to prove (1.6)
locally. We have to show that R?j V(W)= H”(Ur\WV) 0 for all p and W
running in a fundamental system of neighbourhoods of a given point on D. If
0-V'>V->V"-0is an exact sequence of local systems on U and if V' and V"
have no cohomology on U n W, the same holds for V.

Choosmg W small enough we may assume that W= H 4; and UnW

j=1

= H A% x H A; where 4; is a small disk and 4% the punctured disk. Since

j=r+1
the monodromies 7; around the components of DN W commute we can find a
local subsystem V"’ of V stable by the y; such that the cokernel is a local system
of lower rank. By induction on the rank of V we are reduced to the case rk(V)
=1.

We may write V=p;'V,®...Qp, 'V, where p;; UnW—4% is the j-th
projection and V; the local constant system on 4% corresponding to the
representation of y; on a one dimensional vector space L.

By the Kiinneth formula we just have to show that H¥(A4* ¥ V)=0 for k=0
and k=1. We may replace 4¥ by its boundary S* =04% and we parametrize S'
by e*™ teR. Take

U,={e*™"t€]0,1[} and U,={e?" se]—1,1[}

as cover of S'. Then U,, U, and the two connected components W+ and W~
of U, nU, are simply connected. The coordinate change from U, to U, is

Wruw -Wrtuw-

t if tewt
t—s= .
t—1 if teWw™.

The Cech cohomology with values in V; is computed by the the cohomology of
the complex
0_}LU1 XLUz_d>LW+ XLw—"‘"O

(I, )= =1, 1 _lez)~

However, if y;# 1, d is an isomorphism.
Lemma (1.6) gives the following improvement of (1.4, b)
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(1.7) Corollary. Let (#,V) be a logarithmic connection along D and V
=Ker(Vy). If Res(V) has no integer as eigenvalue (for i=1...s) then DRy(A),
JDRp(AM),p), Rj,V and j,V are quasi-isomorphic.

(1.8) Remark. If ID denotes the Verdier-duality functor, V¥ =#om(V,C) and
M® = Homg (M, O) with the dual connection, (1.7) implies that

ID(DR . #)~ID(j,V)~Rj,V’~DR,.#*~DR,.#"(—B)

for all divisors B with support on D, whenever the monodromies do not have
one as eigenvalue. We prove without this assumption in Appendix A that
ID(DRy, #)~DRy, M°(—D,.). This implies using (1.4, a) that DR,.# =}, V when-
ever the eigenvalues of the residues of (#,V) are not lying in —N. For
example this applies to & =((V?),,,) ®Ox(—D,.s). Moreover this gives another
proof of (1.6).

§2. The E,(.#)-degeneration, applications
to global vanishing theorems and examples

From now on we allow X to be algebraic over € or - as in §1 - analytic. We
keep the assumptions made in (1.1). Since we only deal with hypercohomology
of logarithmic DeRham complexes over compact manifolds we can use
GAGA theorems and switch from the algebraic case to the analytic case
whenever it is necessary.

(2.1) On the logarithmic De Rham complex DR,.# one considers the “fil-
tration béte”

F?P: 0>Q8(DY>Q.M Q" (DYQ M~ ... > DUD>@ M

and the associated E,-spectral sequence
(EYU(A), d )= (HU X, Q4<D>®@ M), HI(V)),

which converges to IH?*4(X, DR ,.#) (see [4], 1.4).
By definition of a spectral sequence, the following two conditions are
equivalent:

A) dimHYX,DR,#)= ), dimH"(X,Q5{D)®.#)
p+q=k
B) The spectral sequence E{(.#) degenerates at E .
If A and B hold, we say that (M, V) satisfies “the E,(.#) degeneration”.

(2.2) Main Lemma. Let (#,V) be a logarithmic connection along D satisfying
the E (M) degeneration. Assume that U is affine. Then

1) if DRy M is quasi-isomorphic to Rj,V, one has
HYX,Q25{D>®M#)=0 for p+q>n.

2) if DRy # is quasi-isomorphic to j,V, one has
HYX,Q%(D>®#)=0 for p+q<n.
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3) if for i=1...s the monodromy around D; does not have 1 as eigenvalue, one
has

HY(X,Q%(D)>QRM)=0 for p+q=n.

Remark. As we have seen in (1.4) the assumption in 1) is satisfied for the
canonical extension or - more generally - if for all i, Res(V) has no strictly
positive integer as eigenvalue. Correspondingly the assumption of 2) is satisfied
if, for all i, Res,(V') has no eigenvalue lying in —IN (see (1.8)).

Proof. One just writes

dim HYX, DR, #)= @ dim H(X,Q(D)Q.%).

p+a=k

In case 1) or 3) (use (1.4, b)) this is nothing but

dim H(X, Rj, V)=dim HYU, V)
and in case 2) this is

dim H*(X, j,V)=dim HY(U, V)=dim H*"~ XU, V")
and the Main Lemma follows from the “topological vanishing” (1.5).

(2.3) Remarks. a) In fact, by a small modification of the arguments given, it is
enough to assume that the conditions in 1), 2), 3) are satisfied along enough
components of D, such that the complement remains affine. For example 3)
could be replaced by

3y iffor i=1,...,r the monodromy around D; does not have 1 as eigenvalue
and X — J D; is affine, then
i=1

HY(X, Q2(D>®.#)=0 for p+q+n.

b) If U=X—D is not affine, but if there exists a proper surjective mor-
phism g from U to an affine variety W, one still obtains the vanishing of some
of the cohomology groups. In fact, if H*(U,V')=0 for all local constant
systems V' and k>n+r the additional assumptions made in (2.2, 3) imply that

HYX,Q%{D>®.#4)=0 for g+p<n—r or qg+p>n+r.

Using the Leray spectral sequence, the cohomological dimension of affine
varieties for constructible sheaves and the fact that

dim{x;dim(g~*(x))2k} <n—1—k for k>n—dim(W),
one can choose
r=Max {n —dim(W), (maximal fibre dimension of g)—1}.

(24) Let Y be a normal manifold and n: Y—»X be a Galois cover ramified
only along the normal crossing divisor D. Let o: Z—Y be a desingularization
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of Y such that 6= 'n~!D=4 is a normal crossing divisor too. Y has rational
singularities (see [5]) and =, 0y is locally free. By [5], §1,

R(mo0), Q54> =Q5{(D>Ry, 7, Oy.

The push down of the Kihler differential d: 0,—~Q3{4) induces a connection
V' on m, 0y and
R(mo0),, DR (0O)=DRy(m, Oy).

The Galois group G operates on ¢y and =, Oy. Let .4 be a direct summand,
invariant under G. Then V' induces a logarithmic connection ¥V on .# and
DRp.# is a summand of the complex DR(n,Oy). Hence (#,V) satisfies the
E(#)-degeneration, if (0, d) satisfies the E,(0,)-degeneration.

By Deligne’s mixed Hodge theory for open varieties [4] this is true if X
(and hence Z) is algebraic or Kdhler or - more generally - if there exists a
Kidhler manifold X’ and a bimeromorphic map t: X’—X. In the last case we
will say that X is bimeromorphically dominated by a Kdhler manifold.

By definition (4, V') is the canonical extension. The local constant system V
of flat (analytic) sections is given by a representation of =,(U) on a vector
space L factorizing over G. The assumption made in (2.2, 3) says that

(*) The induced representation of the ramification group of none of the
components D; of D has a trivial summand.

Alltogether we obtain:

(2.5) Corollary. Let (#,V) be the logarithmic connection constructed above.
Assume that X is a proper algebraic (or compact MoiseZon) manifold and U is
affine, then HY(X,Q%{D>®.#)=0 for q+p>n. Moreover, if (V, #) satisfies (%),
then

HYX,Q{D>®#4)=0 for g+p=n.

(2.6) Remark. The Main Lemma (2.2) applies as well in the following situa-
tion: Let V be a local system on U given by a unitary representation of n,(U)
and 4 =V,_,,, the canonical extension. If the monodromies y; do not have 1 as
eigenvalue, one can use S. Zucker’s methods from [12] to prove that the E,(.#)
degeneration holds, as was pointed out to us by P.Deligne. The complete
proof is given by K. Timmerscheidt in Appendix D at the end of this article.
Using this we obtain:

Corollary. Under the assumptions made in (2.6) one has
HY(X,Q%D>R.#)=0 for q+p=*n.

In fact, S. Zucker studied in [12] arbitrary variations of Hodge structures,
but he had to assume that X is a curve. A “good” extension of variations of
Hodge structures together with the degeneration of the corresponding spectral
sequence might imply vanishing theorems for certain subquotients of the varia-
tion of Hodge structures. Some more precise questions can also be found in
J. Kollar’s paper [10], §5.
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(2.7) The simplest case of the covering construction given in (2.4) is that of a
cyclic cover.

Let £ be an invertible sheaf on X and D=} v;D; be an effective normal
i=1

crossing divisor, such that for some N>1 one has #"=04(D). Define for

. . j-D
0<j<N-—1 the sheaves ¥V =¥/ (— [J—N—]) where [ ] denotes the integral

part of the Q-divisor ]—NB (see [5] or [11]). Let L»X and IN—X be the line

bundles corresponding to ¥ and £ and #: L—L" the map obtained by
taking the N-th power. Let s: X —»I" be the section corresponding to D and Y
the normalization of 7~ !((s(X)). The cover n: Y—X obtained is a cyclic cover,

ramified over D. It is the same cover constructed in [5] or [11] as normaliza-
N—-1

N-1
tion of y/wc(@ f‘j). One has n,0y= @ £Y"" and the sheaves ¥V
j=0 i=o

correspond to the different sheaves of eigenspaces.

By the construction of (2.4) the sheaves ¥ ™" are endowed with a natural
logarithmic connection along D. It can locally be described in the following
way:

If = is a local generator of ¥ and f=x}'-...-x)" a local equation for D,
one has t" = f. A local generator of £ " is given by

]-...-x,_[j.z:r].

PR i
O'j=t-x1 N

One has

o =[5 (- %)

1 L

The condition (x) of (2.4), saying that the monodromy of (¥ V) does not
have 1 as eigenvalue means exactly that %él fori=1...s.
Rewriting (2.5) in this case one obtains:

(2.8) Global vanishing theorem for integral parts of Q-divisors. Let X be a
proper algebraic (or compact MoiSezon) manifold and U affine. Let ¥ be an
invertible sheaf and ¥~ = Oy(D). Then

1) for 0Lj<N —1and p+q>n one has H{(X, Q3(D>R@LV ")=0.

2) if moreover, for some j, 1<j< N —1, and for all i, one has J—}—V‘i%l, then
HYX, Q5(D>RFLYV"")=0 for p+q=+n.

(29) Remarks. 1) Let D'=XD;, where the sum is taken over all components D,
with %GZ. Then #9(-D,.)=L""?"'(=D’). Using Serre duality one ob-
tains in (2.8.1) the vanishing of

HYX,Qu(DYRLN-""'(-D") for p+q<n.
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2) Using (2.3,a) it is in (2.8,2) again sufficient to ask for the condition
“]—}Vhetl” for “enough” components of D. Moreover - as remarked in (2.3, 6) -
one can weaken the condition “U affine” and obtains still the vanishing of
some cohomology groups.

3) Replacing £ by %7 and N by j- N we may always assume that the sheaf
considered is of the form £, Moreover, since £V does not change if we
replace D by D—N-D,; and ¥ by £(—D,) for some i with v,=2N, we can as
well assume that all O<v,<N. In this case the assumption of (2.8,2)) is

satisfied for the new divisor D. However, if from the beginning %él, D,q
does not change.

At the end of this section we want to show how to obtain from (2.8) several
of the classical vanishing theorems.

(2.10) Kodaira-Nakano-vanishing theorem (see for example [7]). Let X be a
projective manifold and ¥ be an invertible ample sheaf. Then HY(X, 3@ %L~ 1)
=0 for p+qg<n.

Proof. For some N>1 we can find a smooth very ample divisor D such that
ZN=0y(D). One has an exact sequence 0—Q%—Q%(D>—Q% !0 and a long
exact sequence

o HIYX, QDR L) HI (D, Q8 '@ %~ )~ HY(X, 2R £~ 1)
—HYX,Qu(D>® L~ 1.

By construction U=X —D,__, is affine and (2.8.2) implies
H" (D, '@% )= HYX, BQL 1)

forg+p<n(or g+p>n+1).
The sheaf %|;, is ample and - by induction on the dimension - we may
assume that H*~ (D, Q8" '® ¥~ )=0 for p+q=n.

(2.11) Bogomolov-Sommese-V anishing theorem (see for example [117]). Let X
be a proper algebraic (or compact Moisezon) manifold. & an invertible sheaf
with kK(#)=n. Then H*(X,%,® %~ ")=0 for p<n.

Proof. The statement is compatible with blowing up. Therefore we may assume
X to be projective. As well known, k(&)=n if and only if one can find N> 1, a
very ample sheaf # and an effective divisor B such that ¥V = #(B) (see for
example [11], p. 17). Let 6: X'—>X be an embedded desingularization of B and
—E a relative ample divisor, E supported in the exceptional locus of o.
Replacing N by v-N and # by #” we may assume that # =¢* #(—E) is
very ample and for ¥’ =¢*.% we have an effective normal crossing divisor B’
=¢*(B)+E with &'V =4#"(B’). Hence we may assume that from the beginning
B was a normal crossing divisor. Of course, in order to prove (2.11) we may
replace % be a smaller sheaf and hence we can also assume that the multiplici-
ties of all components of B are strictly smaller than N. Let H be a general
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divisor of #. Then D=H+B is a normal crossing divisor. As in (2.9) we have
LV = Since H# is very ample U=X —D,, is affine and (2.11) follows from
(2.8.2).

(2.12) The vanishing theorem for numerically effective sheaves (see [8] or
[11]). Let X be a proper algebraic (or compact MoiSezon) manifold, & a
numerically effective invertible sheaf (i.e. deg(¥ )20 for all curves C<=X) and
¢, (&£)">0. Then HYX, %~ 1)=0 for g<n.

Proof. Again (2.12) is compatible with blowing up and we may assume X to be
projective. For numerically effective sheaves the condition ¢,(£)">0 is equiva-
lent to x(£)=n (the proof is quite simple, see for example [11]). As in the
proof of (2.11) we can find - after blowing up again - an ample sheaf # and a
normal crossing divisor B such that ¥~ = #(B). Since % is numerically effec-
tive #®.Z" is ample for all v=0. Replacing N by N +v, we may assume that
N is larger than the multiplicities of the components of B and - replacing N,
&L, #,Bbyu-N, L* #* u-B - that # is a very ample. Let H be a general
divisor of # and D =B+ H. Then ¥V =2,

U=X——Dred=(X_Hred)_B

red
is affine and (2.12) follows from (2.8.2).
(2.12) can be generalized to @Q-divisors. The most general form is

(2.13) Theorem (see [8], [11] or [5]). Let X be a proper algebraic (or compact
Moisezon) manifold, ¥ an invertible sheaf and C an effective normal crossing
divisor such that for some N>1 ZN(—C) is numerically effective. If for some
j<N the “¥-dimension”

o S Pl (| S

The proof is similar to (2.12): If ¢: X'>X is a blowing up, such that ¢*C
= (' is again a normal crossing divisor, then Ro, Oy ([]'TC])=@X ([J—I-—Vg])
This follows from the fact that the cover Y of X constructed in (2.7) has at
most rational singularities, or from elementary local calculations (see [11]).
Hence the statement of (2.13) is compatible with blowing up.

If we allow “fractional powers of sheaves”, one has

(- [5] er-rboe (e [5)

Hence the assumption says that we can find (after replacing N by some high
i C o
multiple) a subdivisor C' of C such that []_17]= [J_(%_Q] and such that

ZY¥(—C+C') contains an ample sheaf J#. After blowing up we may assume
that #N(—(C—C"))=s(B) where B+ C is a normal crossing divisor. Replac-
ing # by # QLY (—C) we can increase N without changing the multiplicity
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of the components of B. Alltogether we are reduced to the case that #¥=@(D)

where D=H+ B+ (C— (") is a normal crossing divisor, H is ample and [J——A—?]

- [’—NE] Now (2.13) follows from (2.8, 2).

(2.14) Remark. a) If & is an invertible sheaf on X such that some power of ¥
is generated by its global sections, & is of course numerically effective. There-
fore (2.12) implies the global Grauert-Riemenschneider vanishing theorem. The
relative version for modifications of algebraic varieties as well as its generali-
sation for integral parts of Q-divisors are easy corollaries of (2.12) and (2.13)
(see for example [11]).

b) It seems surprising that the vanishing theorems (2.11) for ¢g=0 and (2.12)
for p=0 are more general than (2.10). However, it is well known that (2.10) is
no longer true, if one replaces the condition “.% ample” by “xk(&£)=n and £*
generated by global sections for some pu>07. In this case one could still choose
a normal crossing divisor D with small multiplicities, such that #~=0(D) and
such that U=X —D,, is affine. One obtains the vanishing of HY(X, Q%<{D}
®% 1) for q+p=+n, but the induction used in the proof of (2.10) breaks down,
since for some components D;, k(£ might be too small.

¢) The proof of (2.12) and (2.13) in [11] used Hodge duality to reduce the
vanishing of cohomology of invertible sheaves to the Bogomolov-Sommese
vanishing theorem. In the approach described here, both follow from the same
statement, the E, -degeneration of the spectral sequence associated to the
Hodge filtration, and one does not use the Hodge duality.

§3. Applications to the vanishing
of the cohomology of morphisms

We keep the notations and assumptions made in (1.1) and (2.1). Whereas in §2
we just considered the dimension of EP4(.#) for a logarithmic connection .#,
we will now regard the differentials d, of the spectral sequence.

(3.1) As usual [{] denotes the shift operator for complexes. Hence F?[p] is the
complex starting with Q4<{D>®.# in degree zero and - if & is any complex -
one has IH*%F)=H"*{(F [ —i]).

The differential

d,: HY(X, Q5(DYQ.#)—HY(X, Q5 (D> Q.4)=TH* (X, FP**/FP*2[p]),
is the connecting morphism of
0— FP+1/FP+2[p]—F?/FP*2[p]—Q5{D> @ .# —0.

Hence d, =0 implies that IHYX, F?/FP*2?[p])—» HY(X, Q%{D>®.#) is surjective
and in this case d, is the connecting morphism of

0 FP+2/FP+3[p]—F?[F?* 3[p] - F?/F?* *[p] 0.
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If d, =0 one gets a surjection
HY(X, FP/FP**[p])—>HU(X, Q4{ DY@ M)

and repeating this construction long enough one finds the wellknown equiva-
lence of the following two conditions:

A) For all p,q the connecting morphisms

0, HY(X, Q4<{D>Q@.4)—-TH (X, Fri[p+ 1) =H** (X, F**[p])
of

are zero.
B) (M, V) satisfies E (M) degeneration.

Of course d,, is induced by Q5<(D>@.# % F**'[p+1].

Under the additional condition that DR,.# is quasi-isomorphic to jV,
where V denotes as usual the flat (analytic) sections of .#, the E,(#) de-
generation can be interpretated in a more geometric way. In the Lemma below
part 1) and 3) use the whole vanishing of 8, whereas 2) follows from the
vanishing of d;.

0> FP*![p]- FP[p]->Q%<DY®.4 >0

(3.2) Main Lemma. Let (#4,V) be a logarithmic connection satisfying E (M)
degeneration. Assume that the monodromies of (M, V) around the components D,
of D do not have 1 as an eigenvalue.

1) Then for any effective divisor B with B
phism, induced by restriction of M to B,

HR°®): HY(X, .#)—HB, M \g),

<D

red = “red?

and all ¢=0, the mor-

is zero.

2) Let C be a smooth subdivisor of D,q and D'=D_,—C. Then for all =0
and p =0 the morphism, induced by restriction of differentials,

HYRP): HY(X, Q%<{D">®#)—>HYC, QD' n CYQ M),
is zero. Especially, if D is smooth, the map

HY(X, Q4® M)~ H'(D, Q@)
is zero.

3) Then for all =0 and p =0 the morphism, induced by the connection V,

HYV): HU(X,Q4<{D>Q.#)-»HI(X,V(Q5(D>RQ.H))
is zero.

Proof. 1) By (1.4,b) DR,.# and DR, .#(—B) are quasi-isomorphic. By (3.1, A)
the morphism J,: HYX, #)—IHYX,F'[1]) is zero. Hence in the commutative

diagram HY(X, DR . 4(—B)— HY(X, .#((~B))
B y

HYX,DR,.#) —2*— HYX,.4).

B is an isomorphism and « surjective. Therefore 7 is also surjective.
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2) By assumption Res (V) can not have zero as eigenvalue and this just
means ([3], p. 78) that the composition
Res(V): M——s QLD @ M—r Op® M
is surjective. Hence one has
QD YRM_—— Q5 (DYQM

RP Z res

QD' A CYRM—E— QD A CYRM

H4(V)=0 implies that H(y) and H%(RP) are both zero.

3) We have a quasi-isomorphism (1.7) j,V—>F°=DR,.# and therefore
V(QE(D>QRM)—FP*'[p+1] is a quasi-isomorphism for p=0. Hence 3) is just
saying that J, in (3.1, A) is zero.

Applying (3.2, 1 and 2) to invertible sheaves arising from cyclic covers of X
(2.7) we obtain:

(3.3) Relative vanishing theorem for integral parts of Q-divisors. Let X be a
proper algebraic manifold or a compact analytic manifold which is bimeromorphi-
cally dominated by a Kdhler manifold. Let & be an invertible sheaf on X, D
be an effective normal crossing divisor and ¥~=0y(D) for some N>1. Let
I1<jSN-1. D

1) Let B be an effective divisor supported in supp (j-D —N- [JTV-D Then the
maps

HOR): HY(X, 29" ") > HU(B, £V "'|;)

are zero for all ¢=0.

2) Let C be a smooth subdivisor of

D, 4 Nsupp (j-D—N~ []TD]) and D'=D_,—C.
Then the maps
HYRP): HY(X, 25D Y@LV~ 1) - HYC, (D' n C)@FV1)
are zero for all p=0 and q=0.

(3.4) Remark. As described in (2.9, 3) one may rephrase (3.3) in the following
way.

Assume that for an effective normal crossing divisor D one has, ¥ =0(D),
where N is larger than the multiplicities of the components of D, and let B be
any divisor supported in D,.,. Then the maps HY(X,¥~')-»>H4B, ¥ |y are
zero for all ¢=0.

If C is a smooth subdivisor of D,.,, then the maps

HYX, QD >R®FL H—>HYC,22(D'nCHRL ™)

are zero for all p,q=0.
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(3.5) Corollary (Kollar, [9], 2.2). Let X be as in (3.3), & an invertible sheaf,
such that some power of & is generated by its global sections, and B an effective

divisor, such that Oy(B) is contained in a power of £. Then the restriction maps
HY(X, %~ Y)>HYB, ¥ |, are zero for all ¢=0.

Proof. We choose D' such that Oy(D'+B)=%* 1In order to show that
HYX,% Y(—B))-»HYX,%~ ') is surjective, we may replace X be a blowing
up and thereby we may assume B+D’ to be a normal crossing divisor. By
assumption %" is generated by its global sections for some v>0 and one finds
a smooth divisor D" such that D=B+D'+D"” is a normal crossing divisor.
Choosing v large enough one may assume that the multiplicities of the com-
ponents of D are smaller than N=pu+v and obtains (3.5) from (3.3,1) or
(34, 1). .

In (3.2,2) and correspondingly in (3.2, 2) and correspondingly in (3.3, 2) one
can weaken the hypothesis “C smooth” to “C reduced with non singular
components. However, in this case we just get that the natural map

HYR): HY(X, Q4<D")®.#)~H'(C,Q &D>®.#)

is zero, where C is the normalization of C and D the pullback of the one by
one intersections of D to C.
Of course the map we are really interested in is

HYR): HY(X, Q%<{D">®.#)—HYC, QD" >R .H).

The only cases where we know that H%(R)=0 implies HY(R)=0 are the trivial
one, =0, or the case p=0, handled in (3.2, 1) by different methods.

In [6], 1.1, we proved (3.3, 2) for g=0 by direct calculation, and - similarly
to the global case (see (2.14,¢)) - we used Hodge duality to obtain the p=0
case. Finally we had to use the strict compatibility of the restriction map with
the Hodge and the weight filtration ([4], 8.2.7) to show that for p=0, HYR)=0
implies H!(R)=0 (see [6], 1.6).

If one tries to consider more complicated restriction maps, the picture is
even worse and the interpretation of the morphisms nearly impossible. Nev-
ertheless, we will try in the last part of this chapter to use (3.2, 3) to obtain
some generalizations of (3.2, 1) and (3.2, 2).

We assume in the sequel that D is a reduced normal crossing divisor with
non singular components.

The idea of the constructions following is quite simple. We try to find (-
modules (or complexes) A7 and AP and an @y-linear map y: A"?— A7 which
fits into a commutative diagram

QD> Q@ M——V (BLDY R M) QD> M

NP N Al

Y

of €, sheaves. Then HY(V)=0 implies H%(y)=0
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(3.6) The sheaves A7 will be given by the weight filtration (see [4]) W, of
Q%<D) where W (Q4<(D>)=Q5{D> A Q5.

We denote by %7 the quotient sheal Q4%(D>® .4 /W (Q24%{(D>)® .# and
by P the image of V(Q% '{D>® #) in €F.

By the Leibnitz rule one has

V(WD QM) = W, (5 (D))RA,
and V induces a map

V' gr—@rt!  such that AP < Aeu(V').

In general V' is not Oy-linear and #;? is not an Oy-module. Applying again the
Leibnitz rule we obtain an (¢y-linear map

Resp~1(V): W(Q4 '(DY)QM D QD) R.M—GP
and S(Res?™ (7)) < A,

(3.7) Denote by DU! the normalization of the s by s intersections of the
components D, of D and by D**! the normal crossing divisor on D obtained
by pulling back the (s+1) by (s+ 1) intersections of the components of D. One
has an inclusion

G Qb T DH Y@ M
given locally at a point on D=zero set of x,-...-x,=0 by

dx; dx, dx;

“HA o A—e@m-@+ A —@m

Xiy X; ied X; {x1y= 0,18}
i ’ I=1..r

where 1<i,<...<i,<r, and where the direct sum is taken over all subsets
J<&{l,...,r} of r —k —1 elements, and the signs are given by the usual rule.
If I;: M5 Q(DYRM 2 ) p, denotes the residue of V along D; then, for

d d . .
example, Res?~!(V) maps —fi Ace A —xi’i Ap®m to @k + ¢ A I(m). Especially, if
1 i>

k
the monodromies of (.#, V') around the components D; of D do not have one as
eigenvalue, then I is surjective as well as Res?~*(F) at the general points of
the components of D**+11 Moreover Res?~ (V) factors in the following way

W(Q5 (DY) @M — W Q5 (DY)Q MW, _((Q% (D)@ M
QBT QUM > QPR @ MD QI @ M—EE.

Here D**' is the normalization of D**! and p is mapping @®m to the
alternating sum of the possible restrictions ¢ ® I;(m).
By the E, () degeneration we obtain.
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(3.8) Claim.
H(Res?™ 1(V)): HUX, W(Q% *(D))® M)~ HUX, Q5.7 (D 2y @ M)
is the zero map.

Of course, the (y-linear map Res?™'(V) depends on the residues of the
connection and the only case where one can find an isomorphism o of
p—k—1

QPE (D 2> @4 such that «- Res?~ (V) does not, is for k=0. In fact (3.2.3)
implies a stronger statement:

(39) HY(Resy ™ (V)): HY(X, W(Q%~ ' (DY) @ .4)~ HY(X, 4,7)

is the zero map, where A,? = Her(V':GF>C21 ).

However, both sheaves, ;7 and % are quite difficult to describe.

For 47, at least, we have a reasonable filtration. If #; denotes the image of
W(Q4<{D))®-A in ¥, one obtains a filtration O=H, ¥, ,=...c¥#, =4
such that %[/#,_, = Qb Q@M.

For k=p—1, one obtains €7_, =0, ®.#. However,

. —_ +1
V' '/”lD[p]*J”ID[p+I]—*(g5

is given by the alternating sum of the I
Mlp,.
Define y'P': M |pip1—> M | pir to be the automorphism given by

:, considered as an isomorphism of

I ol o.. ol—;

i1 tip

on My, N...nD; . Since V is integrable y'” is independent of the numbering
of the components One obtains a commutative diagram

I
*//I\D[p] 'ﬂlplxﬂl]

ym y,tpm

M\ pipy—— M |pip+ 11
eP®id,

where ¢? is the usual map (OD[,,]—%OD[,,H, Hence ! maps .}t” P to fm(s")@.ﬂ

=Im(e?")@.#. Locally, if D is the zero set of x,-...-x,, Y/ ‘o Res?_,(V)
dx, dx,_,

maps L a A—2=l@m 1o
X, Xp_4

@_{_?[l’] oI’(m)IDm .ADp_1nD,

izp

=@ ipl—1o...ol;"_ll(m)lpm._‘nbp_mDi.

izp

Hence we obtain
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(3.10) Claim. Keeping the assumptions made in (3.2) and the notations in-
troduced above the map

He(yP)” o Res?_ (7)) HY(X, Q5 UDYQ.M)— HYX, Her(e) QM)
is zero.

For p=1 and D=B this is the same as (3.2,1). For p>1 the map
yP1" o Res?_,(V) depends on V. Of course, we can apply (3.10) to the situation
of invertible sheaves coming from cyclic covers (as in (3.3)). In this case, one
can give a more explicit description of the morphism considered, but we
don’t.

Appendix A: Duality for logarithmic De Rham complexes

We keep the notations and assumptions introduced in (1.1), except that X is a
(not necessarily compact) analytic manifold and - to simplify the notation -
that D is reduced.

(A.1) Let D%(X) be the derived category of bounded complexes of C-sheaves
with constructible cohomology. The Verdier dual is given by the functor

D: D?(X)— D¥(X)
F'>ID(F) =R HomgF, Ty).

For an Oy-module .# we write M* =Hom, (M, Oy) and, if (A, V) is a logarith-
mic connection along D, V¥ denotes the dual connection. The main result of
this appendix is:

(A.2) Proposition. In D%(X) one has
DRy M =ID(DR, M"(—D)).

The arguments needed to prove (A.2) are quite similar to a proof of the
corresponding statement for Z,-modules, due to J. Bernstein ([2], §5). We
recall some notations from the theory of 2,-modules. Details can be found in

21

(A.3) 24 denotes the sheaf of holomorphic differential operators on X and
94{ D) the subalgebra of &, generated by Oy and Ty —D)=(Q3<{D))" the
sheaf of vectorfields preserving 0y(— D).

Locally we choose a parameter system of X such that D is given by
XX, =0.

Let 0,,...,0, be the vectorfields orthogonal to x;,...,x, and define

o, =

x;-0; for 1Zisr
0; for r+1<ign.

1

6; is dual to d%i (1igr) or dx; (r+1<i<n), and Ty{(—D) is generated by
01seensOy i
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The logarithmic connection V on .# gives .# the structure of a left
24{—D) module and for me.#,

Pm=Y 5i-miﬁ+ Y 6, -mdx;.
i=1

i Xi  i=r+1
(A4) Claim. Let of and & be two left 9y{ —D>-modules. Then
a) %m@,d_l))(&{, .@) = fm@,d—D}(&{(D)a '@(D))
b) One has an isomorphism

‘%m_@x<—b>((0)(’ %ﬂmwx(ﬂ, .@))_N* fm9x< _D>(ﬂ’ '@)
given by o ¢(1).

Proof. a) If M is a Py{(—D) module, and @€Homy, _p\(H,B), then the
induced morphism e®1 from 4@ .# to BR.# is also defined over 2,{ —D>.
Therefore, taking .# to be (,(D), we obtain an equivalence of the category of
Dx{—D) modules to itself, whose inverse is defined by ®,, Ox(— D).

b) As for connections the Z,{—D)-module structure on Hom, (o, RB) is
given by (6, ¥)(a)=6,(¥(a))— ¥(5;a) for ¥ eHom, (A, %). The morphism ¢(1) is
Oy-linear and

Si(e(1)(a) — @(1)(6;a)=(:(p(1))(a@) = (@(5;1))(a) =0.

Hence ¢(1) is 24{ —D) linear. On the other hand, if ne#om,  _p\ (A, B) we

define QpeHomy, (  py(Ox, Homy (4, B)) by @(A)=4-n. In fact, ¢ is 2,{-D)
linear since

@(6;4)(@)=(0;4)- n(a)=0/4-n(a)— 1- 5,(n(a))
=0(p()(a)) —(9;a)
and @(1)=n.
Oy has a locally free resolution as 9, — D)-module by the Koszul complex
dn-1 dn-2
024 —D)® A" Ty —D) —— Zx(— D)@, A" ' Ty{ —D) ——
D~ DY®y, T(~DY D (~DY>0

where, for local sections v;,...,v;  of T'¢(-D), and p a local section of
24 —D), one has

Pp®;, A-.. AT, )

p+1

=Y (=1 v, @@, A AT AL AD L)
1

+ Y (Do, 0 AV AD AL AD A LAY
1<k<I<p+1
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With the generators J;, this gives
p+1 .
" (p®(O;, A ... A S, )= Y (- 1)’“1p-5ij®((5il A A ci-j A NS L),
j=1
(A.5) Claim.

DRy M =R Homg_(_po(Oy, M) Hom g _py (D3 —DY@, ATy( — D, .H)
& Homg _py(Dx{—D>® ATy —D)®,, Ox(D), # (D))

Proof. The last quasi-isomorphism follows from (A.4, a)). The Koszul complex
is a locally free resolution and therefore one obtains the second quasi-isomor-
phism. Since

Homagy— py(Dx—D) @y A" Ty — D), M)= Q5{D) ¢, M

we just have to verify that the differentials d, of the third complex are the

same as V,. For simplicity we assume p=0.

Let m= (1) for peHomy, _ py(Dx{—D>, H).

r dx. n
One has dym= Y n;-—+ Y n;-dx; for
i=1 i i=r+1

ni=(0 0 d)(6)=0(0)=0,0(1)=0;m.
By definition of the Zy{ —D)-module structure on .# we have d,m=Vm.
(A.6) Claim. DR, M " =R Hom gy, _ ps(M,Oy).

Proof. By taking I’ to be an injective resolution of ¢y over 2,{ —D) we obtain
Homg, (_py(M,I)=R Homg _py(M,0x) and by (A4, b) this is quasi-isomor-
phic to

fm@x(— D>((9X, Homg, (M, T)).

Since . is locally free and Oy quasi-isomorphic to I, #om, (M, )= MR, I
is an injective resolution of ./#". In fact, #°®, I' is locally a direct sum of
copies of I' and

M= Homy (M, Ox)= R Homg (M, Ox)= Homgy (M, T).
Therefore

Homgy 0y Oxs Homo (M, I))=R Homg, _p(Ox, Homq, (M, )
=R W@x(—l)>(@x’ ﬂv)

and using (A.5) we are done.

(A7) There is a natural pairing, non degenerate over U

L
DR, M ®¢DRpM*(—D)-C.
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Proof. Again, let I' be an injective resolution of 0y as 9y —D)-module. Using
(A.5) and (A.6) we obtain the pairing
L
DR, M Q¢ DR, M*(— D)
2
Homg (- py( Dyl =D>®gy ATy~ D) ®g, Ox(D), M(D)®¢ Homg, _py(M(D),T)

Homg,,_py( Dy — DY@, ATy —D>®,, Ox(D),I')
|2

%M@x<_p>(9x< _D>®0x/iTx< —D>®0x(9x(D)’ @x)

The last sheaf is by scalar extension isomorphic to
Hom g (Dx®a (- pyPx{ —D))®0, ATy = D>®, (D), Ox)
In fact, if ¢ is a D4 —D) linear morphism
@: Dy —DY®,, ATy —D)®,, Ox(D)—~0y
one can extend the operation of 9,{—D) to &y using the Oy-linearity and
writing 6i=% forisr.
The inclusion ATy> ATy —D)®,, O(D) gives a morphism

Homg (Dy®q, ATy —D>®q, Ox(D), Ox)

|

Homg (Dx®o, ATy, Ox) =R Hom g (O, Ox)=C.

As a corollary we obtain:

(A.8) There is a natural morphism, isomorphic over U:
DR, -2>ID DRy #*(— D).

Proof of (A2). If 0> M'>M—.M"—0 is an exact sequence of logarithmic
connections along D and the morphism in (A.8) an isomorphism for .#’ and
A", it is an isomorphism for .# as well.

Moreover the question whether @ is an isomorphism can be answered
locally.

So we may assume X to be a polydisk and D to be the coordinate axes. By
(1.2,¢), the action of the loops T, on V extend to .. Its eigenvalues are

i
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constant. Therefore, there is a subconnection A" of # of rank 1, with constant
T-action, such that the quotient .#/.4" is a connection of lower rank. Arguing
by induction on the rank, we may assume that rank(.#)=1.

Choosing the neighbourhood small enough we may write (X,D)~(X,,D))
x(X,,D,) and A as .M =p*.#,®p% M, where .#; is a rank one connection on
X;, logarithmic along D; (see [3], p.81). Then DR,.#=pi{DR, .#,
®p3DR,,, #, and since the Verdier duality is also compatible with products
we are reduced to the case of curves:

Let X be a curve, DeX a point, given by x=0, and .# a rank one bundle
whose connection has constant coefficients. If the residue ResV of .# at D is
given by multiplication with a, Res(V*~P?) of .#"(—D) is given by multiplica-
tion with (1 —a). Hence changing the role of .# and .#°(— D) if necessary, we
may assume that 1—a¢IN—{0}. By [3], II, 3.14, DR, .#°(-D)=Rj, V"’ and
IDDR, #*(—D)=j,V where V =Ker(Vy). Therefore we just have to show that
—a¢N implies that DR, . # =(0—.# —Q3{D)®.#—0) is quasi-isomorphic to
Az

Since Res V:.# —.#,, is given by multiplication with a+0, KerV = .#(—D).
Similarly, since Res(V| 4_;.p) is given by multiplication with a+! and is
nontrivial for [=>0, one obtains

KerV e () M(—1-Dynj, V=jV.
120
On the other hand, if e is a generating section of .# such that

17(f'e)=(>c-6+a)f-e%zf
and
dx dx A
ge S =(hx)-eeQiDYOM,  then T "

converges as well and

AN N (5 A g e P g X
V((Za+l x) e)-(;a_{_l(l»x +a-x)) e =8¢ —.

1 X

Hence V is surjective and the quasi-isomorphism is established.

Appendix B: Chern classes and logarithmic connections

Let (#,V) be a connection on a proper algebraic or compact analytic manifold
X with logarithmic poles along a normal crossing divisor D. As we have seen
in §2 the classical positivity conditions on a C® curvature matrix of a differ-
entiable connection on .# can be replaced by conditions on the residues of ¥
along the components of D, if one is interested in vanishing theorems of
Kodaira-Nakano type. In this appendix we want to show how to define the
Chern classes of .# using the logarithmic connection V. This is a second
example indicating that both, the theory of ¥*-connections without singulari-
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ties but with nontrivial curvature matrix and the theory of holomorphic integra-
ble connections with logarithmic singularities can be applied in a quite similar
way in algebraic geometry.

The computation of the Chern classes and the Atiyah class described here
was done independently by J.L. Verdier and the first author about one year
ago.
Let D be the normalization of D and Res: Q4(DY>® .#—>0;® # be the
Poincaré residue. The element I'=resoVeHom, (4, 4| p) is mapped under
the connecting morphism of the exact sequence

0-> Q@M —QL(D>R MOy M0
to an element yeExty (M, Q3 ® 4).
(B.1) Proposition. —y is the Atiyah class of M.

Proof. We consider here holomorphic, not necessarily integrable connections.
Let {U;} be an open covering such that .# has a connection ¥, on U,. Then
each connection on U is given by V,=V+a; for some Q) ® 6nd M. There-
fore the connections on .# form a Qy®é&xd M principal space (torseur), whose
class {V,—V;}e H' (X, Qx®&nd M) is by definition [1] the Atiyah class of ..

Assume now that .# has a global connection ¥ with logarithmic poles
along D and with residue I'e H*(Op®y, End M). On U, the holomorphic con-
nections on .# are described by V;=V +a;, where a,€Q}{DYQ@&nd M is of
Poincaré residue —I'. The class of o;—a;=V,—V; in HY(X,Q5®&End M) is by
definition the image of —I' under the connecting morphism of the Poincaré
residue sequence tensorized by &nd M over 0.

(B.2) Remarks. 1) Atiyah described his class as the extension class
0-QYQ M — P (M) M -0

in Ext! (4, Q4@ #)=H"(X,Q3®End M), where P () is the first order jet
bundle of .#. A connection V on . is a Oy splitting s: .4 —P'(.#) by s(m)=
(1®1)ym—V(m) ([3], p. 7). For the embedding of the holomorphic forms in the
holomorphic forms with logarithmic poles, one obtains an induced extension
Py(M) in Ext'(,Q3<{D>® #). A logarithmic connection is a 0, splitting
s: M—Pp(M) by s(m)=(1®1)m—V(m). The residue of V is by definition the
morphism from # to Py(M)/P'(M)=Q;{D>/Q%®# induced by —s, whereas
the class of s in Ext!(/#,Q;®.#) is by definition P'(.#). This gives another
way of understanding the proposition.

2) In both proofs, it does not change anything to replace the one forms
with logarithmic poles by forms with poles of order k along D, and the
residues of the logarithmic connection by the residue I'e Hom(.#, Qy(k - D)/Q4
® ). The image of — I is again the Atiyah class of /.

Atiyah himself explained how to use the Atiyah class to compute the Chern
classes (i.e.: the symmetric functions of the Chern roots). Usually one gives the
formula for the Newton classes N (ie. the sum over the p-th powers of the

p
Chern roots) and obtains the Chern classes by the interchange formulas.
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(B.3) Corollary ([1], Prop. 13). Let I;=Res;c VeHom, (4, # ip) and [D;] the
class of D, in H' (X, Q}). Then

NO=(=17 ¥ (O)Telrpe.on®)- (0,30 DI

A+t as=p

Especially C,(M)=N,(M)= — Z Tr(l)-[D,].

i=1

Appendix C: Local structure of logarithmic connections

In this section we reproduce a classification of free logarithmic connections

l
(#,V) on X = 4" with poles along D<) pr;*(0), due to P. Deligne.
1

(C.1) Let p: X—S=A" be the projection on the first ! coordinates and D’
=p(D). If 5 is the zero section of p, & =s*(.#) carries a connection V', induced
by V, with logarithmic singularities along D'.

Lemma. (#, V) is the pull-back of (N, V).
Proof. By induction we may assume [=n—1. V induces the relative connection
Vier: M —>Qys® M =Qx{D>[p* Q<D )R M.

The kernel of V,,, is a relative local constant system V,,; and s™'(V, )~ A As
in [3], p. 17, the existence and uniqueness of a Cauchy problem with parame-
ters implies that a local section of 4" is obtained as the pull-back of a unique
relative flat section of 4. Therefore one can extend the isomorphism
s~ (V)= A" to an isomorphism p~ ' (A)x V.

(C.2) From now on we assume D= Q pr;” 1(0) because of (C.1).

By (1.2, ¢) the loop T, around D;=pr; '(0) acts on .# with constant eigen-
values. As in [3], p. 95, we can decompose .# in generalized eigenspaces (which
means especially subspaces stable under the action of the T)).

Write A = G—c) U,® #,, where U, is the rank one connection on which T;

Ae(CHn
acts by multiplication with 4, and where the monodromy on .#; is unipotent.

Hence, in order to classify the logarithmic connections, one may and one
does assume that the monodromy is unipotent, or, equivalently (1.2, d) that the
residues I; have integers as eigenvalues.

(C.3) Let x; be the local coordinates in X=4" and V be the local constant
system on U=X—D. For aeZ" we define the logarithmic connection x*-V,

can

n
=V,an®0, 0 (—-Zaj-Dj). Of course for any torsion free coherent logarithmic
1

connection .# we find ceZ" such that x°-V,, «# =x~°-V,, . The connection

on # is the restriction of the connection on x~¢-V,,, because they are the
same on U.
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(C.4) Definition. a) A filtration B, aeZ", a=(a,,...,a,), of a local constant
system V consists of subsystems P, such that

) JPR=V
ii) B,c P, for b<a (coordinate-wise).

b) A filtration P, of V is called splittable (scindable) if for some point peU
there are sub-vectorspaces W, of V,, verifying (F,),= @ W,
b<a

c) If P, is a filtration of V one defines the torsion-free module

P(F)= 3 x"(F)ean

aeZn

where the sum is taken in j, V,

can|U*

(C.5) Lemma. If P, is a splittable filtration, then ®(P) is free.

Proof. One has (B),,,= @ W,®0x<V,®0x~V,,,. Hence x*:(B).,, is generated
b<a

by x*~*.(x?- W,), b<a. Since the later is already contained in x*-(B),,,, ®(P) is
generated by {x"- W,},z., and one finds the right number of generators.

(C.6) Theorem. Let V be a local constant system on U=X —D with unipotent
monodromies. Then & defines a one-to-one correspondence between the splittable
filtrations P,, acZ", of V and the free Oy modules with a logarithmic connection
extending V.

Proof. Let (#,V) be given. We denote as in (A.3) by §; the operation of x;- J,
on .# induced by V. Especially J,,, is the residue I;. In order to find the
inverse of @, we construct a filtration of .# by free subconnections %, generat-
ed over Oy by elements in the kernel of some high power of §,—b;, b;<a;, in
such a way that the residue classes in L =.#/x-.# fulfill the condition (C.4, ii).
Since the subconnections of .# are in one-to-one correspondence with the
subconnections of .# =.# ®o, CIx], we may construct %, in the formal case.
As a C-vector space, .# can be decomposed in .4 = [1 M, where the

ael®

product is infinite, the M, are the generalized finite dimensional eigenspaces on
which §;,—a; is nilpotent, and x*-M,=M,,,. Actually this is obvious for
x¢-V,,. and, since one can squeeze .# between two such modules (C.3), this
carries over to ..

Write L= (P L,, the decomposition in generalized eigenspaces. Write L, for
beZn

a lifting of L, as a C-vector space in M,. Define #; as the submodule of .#
generated over Oy by L,, and £, as the one generated by M,, for all b<a. By
the Leibnitz rule, 2, is stable under ¢, for all i, and contains all #;, for b<a.
On the other band, .# is free, and therefore freely generated by the #;. Since
M,=@® x*~?. L, one has Z= @ #;.

b<a b<Za

If .# = ®(P) for a splittable filtration P,, then

2= X" (B)es, and #;=x"-(W,@0).

b=a
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(C.7) 1) For n=1, the condition splittable is empty. No longer assuming the
monodromy to be unipotent, one may directly write that the logarithmic con-
nections are in one-to-one correspondence to the filtration (P,), .z, ; of V;, where
V, is the local system associated to U, ® .4, in the decomposition of (C.2).

2) For any n and in the unipotent case, one defines n filtrations P
=P, .. w.a ... o> Where a; is at the i-th place. If P, is splittable, one recovers
P, as the intersection of the P®.

3) For n=2, and P and P® two filtrations by subsystems of ¥, the
filtration P, defined as before as the intersection of PV and P® is always
splittable (by a trivial lemma of two filtrations).

(C.8) One knows that O-coherent Z-modules are locally free. This no longer
true for 2{—D) modules. For example, the maximal ideal » has a logarith-
mic connection along the coordinate axis. Taking P, =C, for e
=(0,...0,1,0,...,0), where the 1 is at the i-th place, B, _,=0and F, ,=C,
one sees that P, is not a splittable filtration, nor the condition (C.7,2) is

fulfilled. One has @(P,)= ..

.....

Remark. In the proof of theorem (C.6) we only used the freeness of .# in order
to construct the splitting #, of 2. Hence the same proof gives immediately:

(C.9) Proposition. ¢ defines a one-to-one correspondence between the filtrations
P, acZ", of V, and the torsion free Oy coherent logarithmic connections
extending V.

(C.10) Corollary. @ defines a one-to-one correspondence between the filtrations
P, aeZ", of V, such that

P=

a

- D=

(i) (i) —
ai ’ where P:z,- _Poo,...,oo,af,oo,oo,.,.,oo

a, is at the i-th place) and the reflexive Oy coherent logarithmic connections.
i p X g

Proof. As a torsion free module ®(P) is locally free at the generic point of D,.
By (C.1), it is determined there by its restriction to a generic curve transverse
to D,. The corresponding filtration is nothing but PY.

Since the reflexive hull of @(P) is generated by local sections of ®(B)
defined outside of codimension 2, it carries also a logarithmic connection, and
therefore is of the shape ®(E) (C.9). Since both coincide in codimension 1, one

has P =P/®. Therefore, one has P'<P=("|P,¥ as P/ is an ascending filtration.
1

This implies #(P)) = ¢(B), and &(B) is reflexive.

Conversely, if # is reflexive, it is torsion free, and therefore of the shape
®(B) (C9). Since Bc=PE, where B/ is the intersection of the filtrations in
codimension 1, one has @#(P)c=@(P)), and both are equal.

(C.10) The combinatorial properties of the filtrations given in (C.7) have now
a well-known interpretation on the side of modules:
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1) corresponds to the fact that a torsion free module on a smooth curve is
free.

2) corresponds to the fact that a locally free sheaf is the reflexive hull of its
restriction to a subset whose complement is of complex codimension 2.

3) corresponds to the fact that a reflexive sheaf on a smooth surface is
locally free.

(C.11) In general, for ¢y coherent logarithmic connections, the structure is
more complicated. For example even the skyscraper sheaf ¢/» has a logarith-
mic connection as a quotient of two compatible logarithmic connections: the
zero map! Of course, this is not realizable by the correspondence (C.9), as /s
is a torsion module.

Appendix D: Hodge decomposition for unitary local systems

Klaus Timmerscheidt

We continue to use the notations introduced in (1.1); X is a compact Kéahler
manifold.

In this appendix we will show that for a unitary local system V on U, the
cohomology of j,V on X has a Hodge decomposition. The idea of proof is
taken from parts of S. Zucker’s paper [12] where he treats the case of one-
dimensional X and V the underlying local system of a variation of Hodge
structures.

Let (#, V) be the canonical extension of V.
Using the inner product on ¥, we shall first introduce a subcomplex of
DR ,(.#) whose hypercohomology is the cohomology of j, V-

(D.1) On U, let Qﬁ}(ﬂ)w::[){’,@/lw. For xeD, let A be a small polycylinder
around x such that AnD= U D? is a union of coordinate hyperplanes. For

ie{l,...,r}, let ¥ be the monodromy of ¥, p around D, and let ¥;* be the

(well- deﬁned') subsystem Ker(y{ —id). Let W, be its orthogonal complement
Now let Q‘(ﬂ)MQQ}((D}@//IM be generated over 0, by 2,®,,-#,, and

Q) D")@WA i=1,...,r. Let Q}(M) ,;:=A7Q%(M),. Tt is clear that these

locally deﬁned sheaves patch together and give a subcomplex DR p(.#)
:=(Q;£(//l), V) of DR(#). Note that if Res,(V) does not have 1 as eigenvalue,
then DR (#)=DR (H).

We want to prove the following

(D.2) Theorem. a) j, V is quasiisomorphic to DR (A).
b) The spectral sequence

EPi=HY(X,Q4(M)=>H"*4(X,j,V)
degenerates at E,, ie. H(X,j, V)= @ HYX,Q%YM)).

p+g=
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c) There exists a conjugate linear isomorphism
HY(X, Q% (M) = HP(X, Q%(N)),
where A is the canonical extension of V.

The proof of a) is parallel to (1.6): The statement being local, one restricts
to the case rk(V)=1, using that locally (with respect to X) V is an orthogonal
direct sum of unitary systems of rank 1. But in that case, DR (.#) is simply
DRy, (#) where D’ is the union of all components of D across which V does
not extend to a local system.

For the proof of b) and c), the idea is to represent the hypercohomology of
DR,(.#) by harmonic L*-forms with respect to an appropriate Kihler metric,
and then use the Kihler identities as in the classical case.

The metric is a complete Kdhler metric w on U which locally near a point
x of D has the same asymptotic form as the Poincaré metric of 4nU where 4
is a small polycylinder centered at x. This means that in local coordinates
(z4»..-,2,) on 4 such that 4nD_, is given by z,-...-z,=0, w has the asymp-
totic form , ) _ .

Wz 0% S gz ndz,

w~ —_—
i=1 IZiIZ . 1082|Zi|2 i=r+1

For the construction of such a metric, see [12, §3].

Let £%(V),, be the sheaf on X of measurable k-forms ¢ with values in V
such that both ¢ and (V+0)c (understood in the distributional sense) are
locally square-integrable. Let L*(V),, be the vectorspace of k-forms ¢ on U
such that ¢ and (V + 0)¢ are square-integrable, and

Hk(U’ V)(z)‘ = Hk(L‘(V)(Z)a V+ 5_)
Similarly we define £?4(V),),, L'4(V),,),

HP4(U, V):=HY(LP'(V)3), 0),
insisting on ¢ and J¢ being square-integrable. Note that
L(V)ay=T(X, 2*(V)3) and LP4(V)q, =T(X, 274(V)y)
since X is compact.
The reason for introducing L?-cohomology is the following

(D.3) Theorem. Let U be any complex manifold with a complete Kdhler metric,
V a unitary local system on U with dim H*(U, V),,, finite. Then we have

HYU, V)= @ kHM(U1 [ 473

Pt+q=
and H"%(U,V),,, is conjugate-isomorphic to H*?(U,V"),,.

For a proof, see [12, §7]. Note that the Kéhler identities 0, ;=20,=20;
(on C*-forms with compact support) follow directly from V being unitary. For
the last part, use the “conjugation map” from (p, g)-forms in V to (g, p)-forms in
VY clearly it maps harmonic forms to harmonic forms.
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The following proposition gives the connection between H4X,j,V) and
HYX,QP(.#)) and L?-cohomology, thereby finishing the proof of (D.2).

(D.4) Proposition. a) j, V is quasiisomorphic to Z*(V),,,, hence
HYX,j, V)= HYU, V),
b) QY(A) is quasiisomorphic to L7"(V),,, hence
HYX, Q8(M))= HP(U, V) ).

Proof. The statement being local and well-known for points of U, we restrict to
a small polycylinder A=4, x ... x A4, around xeD such that AnD_, is given by
zy-...-z,=0 where z; is a coordinate on 4;. As V|, splits into an orthogonal
direct sum of unitary local systems of rank 1, we may assume that V itself has

. *odz; .
rank 1. Then .#|,=0,, the connection is given by V(f)=df + f- Y a —Zfi, with
r i=1 i
a; a real constant, 0<a,<1. [[ z7* is a (multivalued) section of V|,., and the
fibre metric is given by i=1

117 = [Tl AP

For j, V=H%Z"(V),), we only have to show that sections of j, V are square-
integrable; this follows from the fact that 4~ U has finite volume with respect
o w.

For QF(.#)=H*(&""(V)s,), we have to show that the sections of Q(.4)
are exactly the square-integrable sections of j (Q4 ;®.#,,.y)- This follows
directly from

r r —1
| fdz )= 1S P T lzd> (n |zi12-2"*-log21zi12) v
i=1 i=1

i¢l iel

(where dV is the Euclidean volume element on 4, I=(i,, ...,i,) with i; <...<i,
dzy=dz; A...Adz; ) and the fact that for square-integrable fdz;, gdz; one has
(fdz;,gdz;)=01if I%J.
Notice in passing that this characterizes the canonical extension as the
sheaf of square-integrable sections of j (O, & V).
T

Let us now turn to the proof of the exactness of Z7*(V),,, at a level g=1:

We will always work in the Hilbert space H, of square-integrable k-forms
on A\D, viewing ¢ and V +0 as densely defined operators. CZ will denote the
subspace of C®-forms with compact support in A\ D.

It suffices to construct for any ie{l,...,n} and any aeH,, not involving dz;
for j<i, with da=0, some feH, , such that «—0Jf does not involve dz; for
j<i. - Here and in the following the writing of Jax and 0f indicates that a and
B are in the domain of definition of 0. Let us assume i <r, the other case being
similar but easier.

By the computations made in A. Andreotti, E. Vesentini: Carleman esti-
mates ..., IHES 25, p. 92, there exists a sequence («,), o, € Cy, with a,—o and
da,—0 in the I*-norm on a relatively compact polycylinder in 4, containing 0.
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Introduce polar coordinates z,=r;e'. Denote by 0; the weak closure of the

1, 0 d
operator o> e%dz; A (———+— %)a on C¥. Notice that 0= Z d;on Cg.
We will define a bounded rlght inverse G, to 0, on all forms 1nvolv1ng dz;:

First, for dz, AoeH,, ¢ not involving dz;, dz;, we look for
1=G,(dz;A0)eH,_, with 0,t=dZ Ao
Write ¢ and 7 as “Fourier series”

+ 0 + 0

o= Y o,re" =Y t,(r)e"

n=— o n= — o
where in the notation we suppressed the dependence on the other parameters.

Now for geC®, d;t=dz;Ac translates to E (1:’,,—g z,,) =0,,,, which we
solve by _ 2 r
2§0,,(p)p"dp-r", for 2n+2a;+1<0
Tn(ri)z Ig‘. )

—2{0,, (p)p~"dp-r’, for 2n+2a,+1>0

here R;<1 is the radius of 4;. Note that

+o R,
14z nol?=4n 3 ] lo, o)l e dn,
n=—-—w 0
+o Ri 2a1—1
Izll?=2n _\é §||T (r)Hz fi zrz

where [lo,(r)| is the L*-norm of 6,4, «qieionx..xa, FOr 2n+2a;+1<0, we
estimate
20,—1 R;

Jnr @I 5o i p zdr<C' §

ri

§6n+1(p)p“"dp

2n+ 2a;—1 dr

R;r:
SC- [ [low, 1(p)I>p~2"dpr?" > dr,
00
R; Ri
=C [ oy, ()29~ 2" (f r,?"”“*dr,.) dp
4]

' 2 2ai+1
_____.: itld
_)2n 2a,+1] § 5“0',.4,1(/3)” p-
In the other cases one can get similar estimates, giving

Izl = Clldz; A al.
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Next, for dz, ndz; AceH,, we look for t such that dz;AnteH, , and 0,(dz;
AT)=dZ; ndz; A o. In this case, define the Fourier coefficients of © by

2{ 6, (p)p~"dp-1, for 2n+2a,+3=0
nH=1 & .
~2{ 0, 1(p)p"dp 1, for 2n+2a,+3>0

As above, we get |dz; At| S Cldz,Adz; A q].

Finally defining G,(o)=0 for ¢ not 1nvolv1ng dz;, we get a bounded opera-
tor G; on H, with 6G(dz Ao)=dZ;no. It is clear that 6 G;,= Ga on Cg for
Jj=*i, whereas (G,0,—0,G;)a =0 for 6e C{ not involving dZ;; espec1a11y, 0G,—G,0
is bounded on CS"

Now we are done: let 2 € Cg, o,—a, da,—0 (on a smaller neighbourhood of
0). Then G,x, and 0G;x -(aG G@)oz +G Oa, converge, so G,a is in the
domain of deflmtlon of 8 Furthermore, 6 o, —»0 for j<i. Hence G;o is in the
domain of definition of 6 with 6 G;0=0, for j<i. But then a—0G;o does not
involve dz;, dz; for j<i.

At last we have to show the exactness of Z°(V),, at a level k=21. We show
that for ie{l,...,n}, ae H, not involving dz;, dz; for j <i, with (V +0)a=0, there
exists feH, such that cx—(V—{—ﬁ)ﬁ does not 1nvolve dz;, dz; for j<i. - Let us

again only consider the case i<r. Denote by (l7+6) the weak closure of the
operator

0 a; do 0 a; 0
A4 A Ay PR e ,
o—dz; A (6zj+zj>a+dZ’A8z. dr; (8r.+rj>a+d9’/\ (60 +za>

J J

on C?. Then V +0= Z (V+0); on C3.

j=
Since (V +0),=9, on all forms of the type dz; A0, we can use the above
analysis to remove all terms involving dz; AdZ; in a. Hence, now using polar
coordinates, we proceed to the case a=dr. A oc’+d6i Ao +a" with o, o, & not
involving dr;, d0; for j<i.
If a;>0, then for a form d0; A ceH,, ¢ not involving dr,, d6,,

+
— inf
- Z G,€ Y

h= — o0

we define Gj(d0; A 6)=1 where t has Fourier coefficients 7,= ( + 3" For dr,

AdO;AnoeH,, we define Gi(dr, AdO, A o)=dr, At where 1 has the same Fourier
coefficients as above. On forms not involving d6;, G;=0.
If a,=0, then we replace 1, by

{51, for n#O}
tn= mn .
0, for n=0
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R;
Furthermore, Gi(dr, A 6)= — | 6,(p)dp, which makes sense since
R 1Ry dr,  RR: dp Rllogplt dr,
_dn 2 _pdp gpl* , dn
g !IUO(P) P r,-log : =£ ! ao(p)l log p|* rf' P dp r.log?r?
1 R R pdp dr,
<- 2 _ i
<! i“a‘)(p)” llogpl’*" rllogr*
1R 5 e dr
== L
6 11701 fog 7 | ogrs
1 R,
=3 Jloolo)l*pdp.

On forms not involving dr,, d6,, G:=0
In either case, one easily checks that G; is bounded. As before,

(V +0),G;=Gy(V +5)j for j#i, and (V+0),G,—G\V +0);
is bounded on CJ. Furthermore the definition of G; was made in order to get
I(V +0),Gia —a|| < C||(V + )|

on forms g€ Cy not involving dr, Ad6,.

Now let a,eC¥, a,—a, (V+0)a,—0 (again one has to shrink 4 to get
convergence). We may assume that o,=dr, Ao, +d0; Ao +0o), with o, o), o)
not involving dr, d6,. Then (V+5)l(dr, A cxv+d01 Aoc’v’)—->0 and so (V
+0);Gia,—dr, Ao, As (V +0)Gja, converges, G« is in the domain of definition
of ¥ +0 and a—(V +0)Ga does not involve dr;, 0, for j<i, g.e.d.
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