

Topology 2

Problem Set 12 WS 2012/13

H. Reich/F. Lenhardt Due: 23.01.2013

Exercise 1

Show that \mathbb{Q} is not projective as a \mathbb{Z} -module.

Hint: Consider the map $p: \mathbb{Z}[\mathbb{N}] \to \mathbb{Q}, \sum_{n \in \mathbb{N}} \lambda_n[n] \mapsto \sum_{n \in \mathbb{N}} \lambda_n \frac{1}{n}$.

Exercise 2

Prove or disprove:

(i) For each family of \mathbb{Z} -modules M_{ij} , $(i, j) \in I \times J$, the natural map

$$\bigoplus_{i \in I} \prod_{j \in J} M_{ij} \longrightarrow \prod_{j \in J} \bigoplus_{i \in I} M_{ij}$$

is an isomorphism.

(ii) For each \mathbb{Z} -module M the functor

$$\operatorname{Hom}_{\mathbb{Z}}(M, -) \colon \mathbb{Z} - \mathcal{MOD} \longrightarrow \mathbb{Z} - \mathcal{MOD}$$

is additive.

(iii) For each \mathbb{Z} -module M the functor

$$\operatorname{Hom}_{\mathbb{Z}}(M,-)\colon \mathbb{Z} - \mathcal{MOD} \longrightarrow \mathbb{Z} - \mathcal{MOD}$$

strongly additive, i.e., commutes with infinite direct sums.

Exercise 3

Let $C_2 = \langle t \mid t^2 \rangle$ be the group with two elements. Let $\mathbb{Z}[C_2]$ be its group ring, i.e., the multiplication is given by the bilinear extension of the multiplication in the group. The map $t \mapsto 1$ extends to a ring homomorphism $\epsilon : \mathbb{Z}[C_2] \to \mathbb{Z}$ and in particular \mathbb{Z} becomes a $\mathbb{Z}[C_2]$ -module.

- (i) Construct a projective resolution $P_{\bullet} \to \mathbb{Z}$ of $\mathbb{Z}[C_2]$ -modules such that $P_i = \mathbb{Z}[C_2]$ for all $i \ge 0$. Hint: (1-t)(1+t) = 0.
- (ii) Compute $\operatorname{Tor}_{n}^{\mathbb{Z}[C_{2}]}(\mathbb{Z},\mathbb{Z})$ and $\operatorname{Tor}_{n}^{\mathbb{Z}[C_{2}]}(\mathbb{Z},\mathbb{F}_{2})$ for all $n \geq 0$. Compare this with $H_{n}(\mathbb{R}P^{\infty};\mathbb{Z})$ and $H_{n}(\mathbb{R}P^{\infty};\mathbb{F}_{2})$.

Exercise 4

For a finitely generated abelian group A let

$$t(A) = \{ x \in A \mid \exists n \in \mathbb{Z}, n \neq 0 \text{ with } nx = 0 \}.$$

Show that

$$t(A) \neq 0 \implies \operatorname{Ext}^{1}_{\mathbb{Z}}(A, \mathbb{Z}) \neq 0.$$

Try to find a proof which also works when we do not assume that A is finitely generated.