FREIE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. Elmar Vogt Sebastian Meinert

Free Groups and Graphs

Winter 2012/2013

Homework 7 Due: December 3, 2012

Problem 1

We know that the fundamental group $\pi_1(\Gamma, v)$ of a pointed graph (Γ, v) is a free group and that all subgroups of free groups are free. A subgroup $F \leq \pi_1(\Gamma, v)$ is called a *free factor* of $\pi_1(\Gamma, v)$ if any free basis of F can be extended to a free basis of $\pi_1(\Gamma, v)$.

Let $inc: \Gamma_1 \to \Gamma$ be the inclusion of a subgraph and $v \in V(\Gamma_1)$. Show that $\pi_1(inc): \pi_1(\Gamma_1, v) \to \pi_1(\Gamma, v)$ is the inclusion of a free factor of $\pi_1(\Gamma, v)$.

Problem 2

Let $F_2 = \langle a, b \rangle$ be a free group on 2 generators and $\phi \in Aut(F_2)$ an automorphism of F_2 such that $\phi(\langle a \rangle) \subseteq \langle a \rangle$.

Show that in fact $\phi(\langle a \rangle) = \langle a \rangle$ holds. (Hint: Taking the abelianization of a group is functorial and an automorphism of a group induces an automorphism of its abelianization.)

Problem 3

Let

$$\begin{array}{c|c} \Gamma & \xrightarrow{F} \Delta \\ P & & \downarrow p \\ \Sigma & \xrightarrow{f} \Theta \end{array}$$

be a pullback diagram of graphs. Show that if p is an immersion then so is P. Also show that if p is a covering then so is P.

Problem 4

Let Γ be a connected graph and T a tree, and let $p: T \to \Gamma$ be a finite-sheeted covering (i.e. the fibers of p are finite sets). Show that p is in fact an isomorphism.