

Prof. Dr. Elmar Vogt Sebastian Meinert

Free Groups and Graphs

Winter 2012/2013

Homework 6 Due: November 26, 2012

Problem 1

Let S be a subgroup of the free group F(T) on the alphabet T, and let $R_S = \{w_{\alpha} \mid \alpha \in A\}$ be a set of reduced words in $T \sqcup T^{-1}$ such that $\{[w_{\alpha}] \mid \alpha \in A\}$ forms a system of representatives for the set of right cosets

$$S \backslash F(T) = \{ Sg \mid g \in F(T) \}$$

of S in F(T). Call R_S a Schreier system if whenever we have a factorization $w_{\alpha} = w_1 \cdot w_2$ then the word w_1 also belongs to R_S .

Show, making use of the theory of coverings of graphs, that for *every* subgroup S of F(T) there is a Schreier system of representatives for $S \setminus F(T)$.

Hint: Let G(T) be the graph with $V(G(T)) = \{v\}$ and $\pi_1(G(T), v) \cong F(T)$, and consider the covering graph of G(T) corresponding to the subgroup $S \subseteq F(T)$.

Problem 2

Let S be a subgroup of F(T) and $R_S = \{w_\alpha \mid \alpha \in A\}$ a Schreier system for $S \setminus F(T)$. Consider the set $E_S = \{[w_\alpha \cdot t] \cdot [\overline{w_\alpha \cdot t}]^{-1} \mid \alpha \in A, t \in T\} \subseteq F(T)$, where $\overline{w_\alpha \cdot t}$ is the word in R_S such that

$$S\left[\overline{w_{\alpha}\cdot t}\right] = S\left[w_{\alpha}\right]\left[t\right].$$

Show that $E_S \setminus \{1_{F(T)}\}$ forms a basis of S.

Hint: You may solve this problem either way you like. However, making use of the theory of graphs as in problem 1 might simplify things.