FREIE UNIVERSITÄT BERLIN Institut für Mathematik



Prof. Dr. Elmar Vogt Sebastian Meinert

# Free Groups and Graphs

Winter 2012/2013

Homework 1 Due: October 22, 2012

The tutorials will take place on *Mondays*, 4 - 6 pm, at Arnimallee 6, SR 032. The first tutorial will take place on Monday, October 22, 2012.

### Problem 1

Show that the reduction-of-words algorithm from the lecture reduces two equivalent words to the same reduced word. This proves that if two reduced words are equivalent then they are in fact equal.

#### Problem 2

Let T be a set and  $w = t_1^{\epsilon_1} \cdots t_n^{\epsilon_n} \in W(T)$  with  $t_i \in T$ ,  $\epsilon_i \in \{\pm 1\}$  a word in  $T \sqcup T^{-1}$ . Say that w is cyclically reduced if it is reduced and  $t_n^{\epsilon_n} \neq t_1^{-\epsilon_1}$ , i.e. the last letter of w is not the inverse of the first letter. Denote the cyclic reduction of w by  $\operatorname{cr}(w)$ , and denote by [w] the class of w in F(T), the free group with basis T. Furthermore, call any word of the form  $t_r^{\epsilon_r} \cdots t_n^{\epsilon_n} \cdot t_1^{\epsilon_1} \cdots t_{r-1}^{\epsilon_{r-1}}$  a cyclic permutation of w.

Given  $w_1, w_2 \in W(T)$ , show that  $[w_1]$  and  $[w_2]$  are conjugate if and only if  $cr(w_1)$  and  $cr(w_2)$  are cyclic permutations of each other.

#### Problem 3

This problem might be a little bit tricky. However, please don't be discouraged! Spend some time on this in order to develop a sense for words and their reduced representations.

Show that if  $x, y \in F(T)$  are commuting elements, i.e. xy = yx, then there exist  $z \in F(T)$ ,  $k, l \in \mathbb{Z}$  such that  $x = z^k$  and  $y = z^l$ .

(Hint: Let u and v be reduced representatives of x and y respectively. Denote by |u| the length of u (the number of letters after reduction). One may assume w.l.o.g. that  $|u| \leq |v|$  and u is cyclically reduced.)

## Problem 4

A free group is of rank n if it has a basis of cardinality n. As all free groups of rank n are isomorphic, we may speak of the free group of rank n, denoted by  $F_n$ . One easily sees that  $F_n$  contains a free subgroup of rank k for all  $k \leq n$ . More surprisingly, one can also show that for  $n \geq 2$  the group  $F_n$  contains a free subgroup of every finite and even of countably infinite rank.

Show that  $\{b^kab^{-k}\mid k\in\mathbb{Z}\}$  forms a basis of a free subgroup of  $F_2\cong F(\{a,b\})$  of countably infinite rank.