

Configuration spaces

 $\begin{array}{l} \mbox{Problem Set 7} \\ \mbox{WS 2013/14} \end{array}$

E. Vogt/F. Lenhardt Due: 08.01.2014

Exercise 1

Recall that for a fibration $p: E \to B$ with fibre $F = p^{-1}(b_0)$ we have for every loop ω in B based at b_0 a well-defined homotopy class h_{ω} of self homotopy equivalences of F, which defines a (right) action of $\pi_1(B, b_0)$ on the homology and cohomology groups of F. Consider the fibre bundle

$$F_2(\mathbb{R}^2_{k-2}) \to \mathbb{R}^2_{k-2}$$

with fibre \mathbb{R}^2_{k-1} .

Show that for k = 3 the action of $\pi_1(\mathbb{R}^2_{k-2})$ on the homology of the fibre is trivial.

Exercise 2

Do the same for k = 4.

Exercise 3

Recall that S_k acts freely on $F_k(\mathbb{R}^{n+1})$. Show that the quotient space $F_2(\mathbb{R}^{n+1})/S_2$ has the homotopy type of $\mathbb{R}P^n$.