Configuration spaces

E. Vogt/F. Lenhardt WS 2013/14

Exercise 1

Let $X=S^{k} \vee S^{n}, n, k \geq 2$. Let $i_{n}: S^{n} \rightarrow X$ and $i_{k}: S^{k} \rightarrow X$ be the obvious inclusions. Show that $\left[i_{k}, i_{n}\right] \in \pi_{n+k-1}(X)$ has infinite order.

Exercise 2

Let $n \geq 2$ and $Y=S^{n} \vee S^{n} \vee S^{n}$. Show that $\pi_{2 n-1}(Y)$ has rank at least 3 .
Exercise 3
An H-space is a space X together with a map $\mu: X \times X$ and an element $x_{0} \in X$ such that $\mu\left(\left(x_{0}, x\right)\right)=\mu\left(x, x_{0}\right)=x$ for all $x \in X$. Show that all Whitehead products in $\pi_{*}\left(X, x_{0}\right)$ vanish.

